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Abstract— This paper describes a hierarchical solution con-
sisting of a multi-phase planner and a low-level safe controller to
jointly solve the safe navigation problem in crowded, dynamic,
and uncertain environments. The planner employs dynamic
gap analysis and trajectory optimization to achieve collision
avoidance with respect to the predicted trajectories of dynamic
agents within the sensing and planning horizon and with
robustness to agent uncertainty. To address uncertainty over
the planning horizon and real-time safety, a fast reactive safe
set algorithm (SSA) is adopted, which monitors and modifies the
unsafe control during trajectory tracking. Compared to other
existing methods, our approach offers theoretical guarantees
of safety and achieves collision-free navigation with higher
probability in uncertain environments, as demonstrated in
scenarios with 20 and 50 dynamic agents.

I. INTRODUCTION

Deploying mobile robots ubiquitously requires that they
safely and reliably accomplish navigation tasks in crowded,
dynamic, and uncertain real world settings. These settings are
challenging since the robot system is expected to plan online,
handle the uncertainty, and establish safe actions to avoid
multiple moving agents [1]. Current progress towards this
goal draws from hierarchical navigation, control theory, deep
learning, and optimization. This paper leverages progress on
these fronts to establish an online, hierarchical approach to
trajectory synthesis in crowded, dynamic environments.

Hierarchical navigation systems coordinate modules oper-
ating at different temporal and spatial scales [2–5] to exploit
the advantages of the chosen approaches while offsetting
their limitations. Gap-based planners detect passable free-
space in local environments while relying on an approxi-
mate global path planner. However, current methods, like
potential gap (PGap), are designed for static environments
without dynamic agents [5–8]. Optimization-based planning
methods generate collision-free optimal trajectories as long
as the objective function and constraints are well defined.
The challenge lies designing optimization problems with
real time computation properties [9]. Reactive algorithms,
like the potential field method (PFM) [10], control barrier
functions (CBF) [11], and the safe set algorithm (SSA) [12],
only consider one-step safe control calculation and can get
stuck in local minima [13]. Learning-based planning and
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navigation in crowded environments lack safety guarantees,
even if there is an extensive training phase [14–16].

We design a hierarchical navigation solution consisting
of a high-level planner for long-term safety and robustness,
and a low-level controller for online short-term safety guar-
antee. The planner layer itself is hierarchical and consists
of three components. First, the proposed dynamic agents
gap (DAGap) method handles spatio-temporally evolving
gaps and synthesizes trajectories for detected gaps. While
the DAGap-generated trajectory considers specific pairwise
agent groupings, the top two candidates warm start the
convex feasible set (CFS) optimizer, which enforces hard
safety constraints for all sensed agents while minimizing
a trajectory optimizing objective function. To improve ro-
bustness, a proposed uncertainty analysis module estimates
high-confidence bounds on the prediction errors of agents’
positions for influencing a safety length parameter. At the
controller layer, adopting the fast reactive safe set algorithm
(SSA) monitors and modifies online any unsafe actions to
reduce collisions caused by computation delay or trajectory
tracking errors. The key contributions are summarized below:
• Dynamic agent gap analysis for simplifying the candidate,

spatio-temporally evolving solution space and synthesizing
candidate trajectories.

• Hierarchical use of DAGap multi-trajectory synthesis fol-
lowed by CFS trajectory optimization for scaling the
agents under consideration.

• High-confidence error bound estimation for use by the
safety components of DAGap planning and CFS optimiza-
tion, with provably high probability safety in uncertain
environments.

• Analysis and benchmarking of the proposed solution rela-
tive to two hierarchical navigation methods ARENA [17]
and DRRT-ProbLP [18], and empirically shown to be safer.

II. RELATED WORK

A. Path Planning in Dynamic Environments

Robotic path planning in static environments is a thor-
oughly studied problem that can typically be solved very
efficiently. However, planning in the dynamic environment,
especially in crowded dynamic environment, is still challeng-
ing because time is added as an additional dimension to
the search-space and requires real-time replanning to deal
with unprecedented situations in the future. To overcome
the online computation challenges, dynamic A* and other
incremental variants of classical planning are proposed which
can correct previous solutions when updated information is
received, so that the ego vehicle can safely interact with
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several dynamic agents [19][20][21]. However, they assume
the agents to be static and rely on repeatedly replanning to
generate collision-free paths, which may cause suboptimality.
Restricting the search space by filtering out unsafe subspace
is also very common. For example, SIPP eliminates collision
intervals and searches in contiguous safe intervals [22] and
ICS filters out the inevitable collision states when searching
the waypoints [23]. Besides, sampling-based planning is a
classic concept and various strategies are proposed to handle
moving agents [24], including sampling the control from
robot’s state × time space [25] and sampling the robot
movement based on the distribution of target goal and agents
[18]. Optimization-based algorithms are used to compute
smooth and collision-free paths in dynamic environments by
setting proper cost functions and constraints [9][26][27][28].
The downside is that the optimization problem is highly
nonconvex which comes from the highly nonlinear inequality
constraints, and is computationally expensive.

B. Reactive Collision Avoidance

Reactive approaches are extensively studied to compute an
immediate action that would avoid collisions with obstacles.
Energy-based reactive methods, include CBF [29], SSA [12]
and sliding mode algorithm [30], usually design a scalar en-
ergy function to achieve set-invariant control. The underlying
assumption is that the dynamics of the system should be
known. With the dynamic information, they can correctly and
quickly solve an optimization problem to drive the energy
function in the negative direction whenever the system state
is outside of the safe set. Different from energy-based
methods, gradient-based reactive methods like potential field
method and its variants don’t need the knowledge about
system dynamics and offer simple computations [5][31][32].
However, they lack of consideration for robot kinematics and
dynamics and do not have sound safety guarantees. Optimal
reciprocal collision avoidance [33] and reciprocal velocity
obstacles [34] derive the collision-free motion based on the
definition of velocity obstacles. But they assume all agents’
movements follow certain policies while this assumption is
not always valid in the real world. Besides, reinforcement
learning methods are becoming popular for safe navigation
in crowded environments, however, purely learning based
methods lack the safety guarantee even after long time
training [14][15][16]. Recent safe learning algorithms use
CBF or SSA as action monitor to keep modifying actions
generated from the policy and achieve a low collision rate for
safety-critical tasks [13][35]. When these reactive methods
are tested in challenging environments which require long-
term planning, however, they may stuck in local minimal or
lead to oscillations and cause collision because of their my-
opic property. To offset these limitations, some studies build
hierarchical path planning consisting a low-level collision
avoidance controller and a high-level planner [4][17].

C. Gap-based Navigation

Local planners using the representations of perception
space can gain computational advantages by minimally pro-

cessing the sensor data and recasting local navigation as an
egocentric decision process [36][8]. Following this idea, gap-
based approaches aim at detecting passable free-space, which
is defined as a set of “gaps” comprised of beginning and
ending points, from 1D laser scan measurements. Because
of the detected collision-free regions, gap-based methods
are compatible with other hierarchical navigation strategies
to improve the safety of the synthesized trajectories [6][7].
For example, egoTEB combines the representation of gap re-
gions with the trajectory optimization method timed-elastic-
bands (TEB) [37], which produces and optimizes multiple
trajectories with distinct topologies [8]. As a soft-constraint
optimization approach, however, egoTEB cannot guarantee
that optimized trajectory will fully satisfy all constraints
and the poses of a trajectory may jump over an obstacle.
Besides, the potential gap approach considers the integration
of gap-based navigation with artificial potential field (APF)
methods to derive a local planning module that has provable
collision-free properties [5]. However, all previous gap-based
navigation methods are designed for static environments
without dynamic agents. The intent of this study is to explore
more deeply the gap representations in environment with
crowded dynamic agents.

III. METHODOLOGY

We first give an overview of PGap pipeline and our solu-
tion Hierarchical DAGap (H-DAGap) to contrast the meth-
ods, see fig. 1. The PGap pipeline detects gaps, synthesizes
trajectories for each gap by following the gradient field, and
picks the one with best score. PGap navigation is designed
find free space navigation affordances in static environments,
while DAGap extends the search for feasible trajectories to
spatio-temporal space. Moreover, a computational efficient
trajectory optimization method CFS and uncertainty analysis
are exploited in the planner to improve the safety and
robustness of trajectories. High-level planning happens in
separate thread with agent state estimation and low-level safe
control executed in the main thread, see fig. 2. The following
subsections cover the details of H-DAGap.

A. Dynamic Agent Gap Analysis

1) Inflated Agent Gap Detection: When a new laser scan-
like measurement L (360◦)–consisting of n measurements of
dynamic agents within the maximum sensing range dmax–
is available, we first pass the measurement into a Kalman
filter module to estimate the agents’ positions and velocities.
Then we use L in our dynamic agent gap (DAGap) analy-
sis module, containing two components: inflated agent gap
detection which leads to a set of gap GS and dynamic gap
analysis which synthesizes a trajectory for each gap G ∈ GS.

Inflated agent gap detection inflates the range measure-
ment L of agents by expanding the radii of the agents (to rins)
to allow the robot to be treated as a point [8]. To guarantee
the distance between any points inside the gap region and
the agents is larger than rins when passing through the gap,
we calculate the tangent points from the robot to the inflated
circle as gap endpoints, see fig. 4. Each agent’s inflation
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Fig. 1: Comparison between potential gap (PGap) in [5] (left) and our proposed Hierarchical DAGap (H-DAGap) (right).
The goal is given from a globally scaled problem, DAGap operates on locally scaled problems using paired agents, CFS
enlarges the problem to all sensed agents, and SSA operates at every step with the unsafe agents.
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Fig. 2: Parallel computation architecture. The Kalman filter
and SSA controller are run in one thread while the high-level
planner is executed in another thread.

radius is adjusted based on its Kalman filter estimation
covariance to ensure safety with higher probability (refer
to section III-C). Let i be a circular index of the inflated
measurement Linf , we perform a clockwise pass through
Linf and look for candidate gaps satisfying the following
two requirements:

1) Large range difference: |Linf
l (i+1)−Linf

r (i)| > 2rins

2) Large angle difference: |θl(i+ 1)− θr(i)| > θthre,

l, r means the left or right tangent point, θ(i) is the scan angle
associated to index i and θthre is a user defined parameter.
The candidate gap pairing uses the right tangent point of
previous agent and left tangent point of next agent. When
there is a wide open gap between two agents, agent1 and
agent2 in fig. 3a, split it into multiple passable gaps by
placing static virtual agents at a user defined interval. If one
agent or no agents are detected, use the straight-line local
planner targeting the goal.

2) Dynamic Gap Analysis: Two problems need to be
resolved. First, how to synthesize the trajectory to accom-
modate to the spatio-temporal dynamics of an open gap. For
this, we predict the agents’ positions based on the Kalman
filter, construct a predicted scan L, and recover predicted
gaps and gap regions for N steps into the future. Each gap
defines a local gap goal. When all gap goals are connected to
the robot, they define a star-like graph. N repeated single-
step iterations following the PGap gradient field [5] using
the predicted gaps synthesizes a set of candidate trajectories.

Algorithm 1 DAGap Trajectory Synthesis

1: TS ← TrajectorySet
2: GS ← GapSet
3: function DAGAP(Linf )
4: for horizon = 1, 2, . . . , N do
5: GS ← gapDection(Linf )
6: if horizon == 1 then
7: initialize T for G ∈ GS and add into TS
8: end if
9: for G ∈ GS do

10: if T of G doesn’t exist in TS then
11: initialize T for G and add into TS
12: end if
13: T one step forward towards G using PFM
14: end for
15: update the agents’ Linf with kalman filter
16: end for
17: return TS
18: end function

This reactive approach is computationally fast.
Predicted future gaps states may lead to a new gap or have

a previously-open gap close. These birth/death events need to
be resolved. If a new gap is detected due to agents moving
away from each other, like agent4 and agent5 in fig. 3b,
create a trajectory for this newly-open gap at algorithm 1 line
9-10. From all existing trajectories, pick the one closest to the
new gap as the path to expand from. This new trajectory will
split from the old trajectory towards the new gap. In fig. 3b,
the green trajectory to gap6 is copied from the trajectory to
a previously-open but now closed gap5. The previously-open
but now closed gap will be labelled as closed and trajectory
updating will be halted. After planning finishes, return all
trajectories targeting open gaps.

B. Trajectory optimization and scoring

A set of trajectories TS is generated from the algorithm 1.
Each trajectory considers the specific pairwise agents form-
ing its gap, which is acceptable in static environments.
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(a) DAGap synthesizes multiple trajectories
(red, dashed lines) based on detected gaps.

(b) DAGap trajectory updates for newly-
opened (green) and closed gaps (red x).

Fig. 3: DAGap synthesizes and updates trajectories.

Fig. 4: Inflated agent gap detection.
Black and red circles are the initial and
expanded inflated circles. Red and blue
arrows are the estimated and true agent’s
velocity. Ltp and rtp mean left and right
tangent point, respectively.

Dynamic agents can drive towards the robot outside the
gap region. It’s risky if the robot doesn’t plan in advance,
especially when agents move fast. Thus the second problem
is to ensure safety constraint satisfaction for all agents
over the planning horizon. The CFS optimizer, which can
efficiently find optimal solutions that are strictly safe, is
adopted to further modify these reference trajectories TS.
Compared to other optimization methods like sequential
quadratic programming (SQP), CFS exploits problem geom-
etry to improve computational efficiency while solving the
optimization, which is critical for online planning [9].

For each trajectory, robot with initial pose x0 at time
t is suppose to reach a local goal position xlgoal at time
t + T . Let T = N∆t , where N is the planning horizon
and ∆t is the discrete time interval. The robot trajectory is
denoted as s = [x[0]; ...;x[i]; ...;x[N−1]], where x[0] = x0

, and x[N−1] = xgoal. The trajectory of agent j is denoted
as sjO = [o

[0]
j ; ...;o

[i]
j ; ...;o

[N−1]
j ], where j ∈ {1, 2, ...,M}

and M means the number of agents. Therefore, the robot
should plan the trajectory that can reach the local goal while
keeping the safety distance rins from all agents for every time
step. Mathematically, the discretized optimization problem is
formulated as:

min
s
∥s− sr∥2Qr

+ ∥s∥2Qs
, (1a)

s.t. D(x[i],o
[i]
j ) ≥ rins,∀i,∀j, (1b)

x[1] = x0,x
[M ] = xlgoal (1c)

where ∥s − sr∥2Qr
penalizes the deviation from the new

trajectory to the reference trajectory, and ∥s∥2Qs
penalizes the

properties of the new trajectory itself which ensures low ve-
locity and acceleration magnitude. Constraint D(x[i],o

[i]
j ) ≥

rins requires that the robot should keep safe at each planning
step, where D(. , .) computes the Euclidean distance between
two points. The trajectory scoring eq. (2) combines global
target goal efficiency and optimization cost. The trajectory
with highest score will be selected to follow:

J(T ) = D(target,x[M ])− ∥s− sr∥2Qr
− ∥s∥2Qs

(2)

C. Uncertainty Analysis and Replanning

In the above process, the safety distance is a fixed value
rins that will work with perfect prediction about agents’
trajectories. In uncertain world, however, estimated agent
positions and velocities from the Kalman filter have errors
that will propagate as planning horizon increases. Using a
fixed safety distance rins may lead to collision. To mitigate
this problem, enlarge the safety distance according to the es-
timated high-confidence bound of prediction errors. Assume
the agent has constant velocity. Denote the current estimated
agent state as z[0] =

[
o[0];v

]
, including position o[0] and

velocity v, and its estimated covariance matrix as Σ0. The
ground truth state is labeled as z

[0]
∗ . The future agent state

predicted at step i is z[i] = F iz[0], where F represents the
transfer matrix. Suppose z[0] ∼ N (z

[0]
∗ , Σ0), the prediction

for z[i] should follow the distribution: z[i] ∼ N (z
[i]
∗ , Σi),

where Σi is the covariance matrix propagated forward for
i steps Σi = (FT )iΣ0F

i. Pick out the submatrix of Σi

corresponding to the position o[i] and denote the position
covariance matrix as Σi,o. Then the error ∆o[i] = o[0]−o[0]

∗
should follow the chi-square distribution χ2

N as eq. (3),
where N is the dimension of o[i],

(∆o[i])T Σ−1
i,o ∆o[i] ∼ χ2

N (3)

with the probability support on confidence bound value kϵ:

P ((∆o[i])T Σ−1
i,o ∆o[i] ≤ kϵ) > 1− ϵ (4)

based on Lemma 4 in [38]. The following bound on the error
∆o[i] holds with probability 1− ϵ:

−
√

kϵλn ≤ vT
n∆o[i] ≤

√
kϵλn,∀n (5)

where {λn}′s and {vn}′s are the eigenvalues and eigen-
vectors of Σi,o, n ∈ {1, 2, ..., N}. Since the {vn}′s are
perpendicular bases, ∆o[i] can be represented as

∑
n anvn,
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where an is the coefficient,

vT
n∆o[i] = vT

n

∑
k

akvk = an∥vn∥ (6a)

−
√
kϵλn

∥vn∥
≤ an ≤

√
kϵλn

∥vn∥
(6b)

∥∆o[i]∥ = ∥
∑
n

anvn∥ ≤
∑
n

√
kϵλn (6c)

Theorem 1: Using the bounds in eq. (6c), increasing the
safety distance by

∑
n

√
kϵλn guarantees safety with prob-

ability at least 1− ϵ.
Proof: Since the prediction of the ground truth agent’s

position o
[i]
∗ is unbounded, we ensure a probability safety

constraint between x[i] and o
[i]
∗ for ∀i,

P (∥x[i] − o
[i]
∗ ∥ ≥ rins) < 1− ϵ (7)

At worst case, ∥x[i] − o
[i]
∗ ∥ = ∥x[i] − o[i] + o[i] − o

[i]
∗ ∥ =

|∥x[i] − o[i]∥ − ∥o[i] − o
[i]
∗ ∥|. From eq. (6c), the bound on

the uncertainty ∥o[i] − o
[i]
∗ ∥ holds with probability 1 − ϵ.

Expanding the safety distance dsafe between the robot and
the estimated agent position ∥x[i] − o[i]∥ to rins + r, where
r =

∑
n

√
kϵλn, guarantees safety with probability at least

1− ϵ.
Based theorem 1, estimate the robust safety distance

dsafe = rins + r for every agent and replace the fixed
rins used in DAGap and CFS (see fig. 2). As a detection
threshold, larger values of dsafe increase the likelihood of
false negatives (e.g., rejection of passable paths), which
limits the planning space and leads to more conservative
behavior. To avoid this problem, we set an upper bound of
the dsafe and record the first time step k this upper bound
is reached. Replanning is evoked after executing k steps due
to low safety likelihood, see algorithm 2 line 18.

D. Safe Controller

Even though DAGap and CFS are efficient planning meth-
ods, their longer horizon mean that they are more computa-
tionally expensive compared to one-step reactive safe control
methods. Moreover, challenging crowded environments mean
that CFS may not have converged within a few iterations.
Due to the real-time planning requirement, we don’t run CFS
for all synthesized trajectories until they converge. Instead we
select the top two trajectories based on the efficiency score
D(target,x[M ]) as we notice the optimization cost doesn’t
change the rank ordering of top two candidates in most cases,
and run CFS for only one iteration. Moreover, we adopt fast
SSA in the low-level controller layer to further compensate
the long planning time, and monitor the control at every
step. Compared to other reactive algorithms like CBF which
enforces constraints everywhere, SSA achieves better safety-
efficiency trade-off in complex environment [13].

The key of SSA is to define a valid safety index ϕ such
that 1) there always exists a feasible control input in control
space that satisfies ϕ̇ ≤ −ηϕ when ϕ ≥ 0 and 2) any control
sequences that satisfy ϕ̇ ≤ −ηϕ when ϕ ≥ 0 ensures forward
invariance and asymptotic convergence to the safe set XS ,

Algorithm 2 H-DAGap Algorithm

1: Ua ← uncertaintyAnalyzor
2: Ds ← robust safe distances disafe, i ∈ {1, 2...N}
3: k← replan step
4: function TRAJ OPTIMIZATION(TS, Ua)
5: for T ∈ TS do
6: compute Ds,k with Ua
7: CFS optimizes and scores T using Ds
8: end for
9: return T with highest score and its k

10: end function

11: while not arrive goal area do
12: TS ← DAGAP(Linf )
13: T ,k ← TRAJ OPTIMIZATION(TS, Ua)
14: stepCount = 0
15: for next waypoint p in T do
16: safe control u ← SSA(p)
17: execute u and stepCount += 1
18: break for replan if stepCount ≥ k
19: end for
20: end while

η is a positive constant that adjusts the convergence rate.
In our problem, XS = {x|ϕ0(x) ≤ 0}, where ϕ0 is defined
as d2min − d2, dmin is the user defined minimal distance
and d is the distance from the robot to the agent. Since the
robot we adopt in testing is a second-order system, we add
higher order term of ϕ0 to ensure that relative degree one
from safety index ϕ to the control input, and ϕ is defined as
follows:

ϕ = d2min − d2 − k · ḋ. (8)

where ḋ is the relative velocity from the robot to the agent
and k is a constant factor. As proved in [12][39], the safety
index ϕ will ensure forward invariance of the set ϕ ≤ 0 ∩
ϕ0 ≤ 0 and global attraction to that set. With safety index
ϕ, project the reference control ur to the set of safe controls
that satisfy ϕ̇ ≤ −η ϕ when ϕ ≥ 0, and ϕ̇ is expressed as

ϕ̇ =
∂ϕ

∂x
f +

∂ϕ

∂x
g u = Lfϕ+ Lgϕ u. (9)

Compute ϕj for every agent and add the safety constraint
whenever ϕj is positive. SSA solves the following one-step
optimization problem, with safety and dynamics constraints,
through quadratic programming (QP) when triggered:

min
u∈U
||u− ur||2 = min

u∈U
uT

[
1 0
0 1

]
u− 2uT

[
1 0
0 1

]
ur

(10a)
s.t.Lfϕj + Lgϕj u ≤ −η ϕj , j ∈ {1, 2...M}. (10b)

IV. EXPERIMENTS

This section covers the experiments, results, and compari-
son of H-DAGap with ARENA [17] and DRRT-ProbLP [18].
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Fig. 5: Testing environment with 50 dynamic agents. The
green square is the target goal, the gray circles are agents’
positions at last time step and the red path is the entire robot
trajectory from the start to the goal.

A. Benchmark Results

Experiments are conducted in a 2 × 2 empty world, see
fig. 5, with 20 and 50 dynamic agents in two test scenarios.
ARENA nd DRRT-ProbLP are tested in 20 agents environ-
ments [17][18], and we test our model in the same condition
for comparison and also increase the agents’ number to
50 to test their capability in more challenging scenario.
The radius of agents is 0.05 and the velocity is sampled
from a uniform distribution

[
5e−3, 2e−2

]
. Agents can move

randomly in any direction in the map and collisions between
them are not considered. The robot adopts the second order
unicycle model and with speed range

[
0, 2e−2

]
. The overall

scenario settings used in ours and two baseline papers are
similar, including the relatively agent size to world size
and the relatively agent velocity to robot velocity. But we
don’t assume the perfect lidar measurement is available,
instead, the 360◦ field of view (FoV) measurement has errors
following the Gaussian distribution N (0, 0.012). We use
Kalman filter to track the position and velocity of each agent
inside the 0.2 sensing range. Compare to the environment
used in previous safe learning work [13], we enlarge the
agent size, increase its top speed, and add measurement
uncertainty, which makes the task more challenging. H-
DAGap is run in Python on Ubuntu 20.04 of 3.7 GHz using
Intel Core i7. The average computate times for DAGap, CFS
and SSA are 0.0814s, 0.1120s and 6.854e−4s respectively.
We conduct 100 test runs in each scenario and use collision
rate and success rate as evaluation metrics. A success trial
means the robot reaches the goal within 3500 steps without
any collision. The robot is allowed to continue driving after
collision in benchmark papers. We follow this rule but don’t
observe multiple collisions in any H-DAGap trial.

ARENA and DRRT-ProbLP are used for safe navigation
in crowded dynamic environments and tested in environment
with 20 dynamic agents in their papers. H-DAGap achieves

97% success rate and only 3% collision rate in the 50
dynamic agents environment (see table I), which bests the
benchmark implementations in the 20 agent environment.
For DRRT-ProbLP planner, the DRRT module only considers
static obstacles and the avoidance of dynamic agents is
entirely handled by ProbLP. ProbLP samples the robot move-
ment direction based on the distribution of target goal and
agents, then synthesizes and scores the trajectories. However,
there are usually many safe trajectories in open continuous
space; Sampling-based methods can’t enumerate all of them
and inevitably become suboptimal. ARENA combines the
traditional global planner A* and the Deep Reinforcement
Learning based (DRL) local planner. Vanilla A* doesn’t
consider the dynamic agent and DRL doesn’t consistently
ensure safety constraint satisfaction during execution. On
the other hand, H-DAGap considers and probabilistically
guarantees safety in both layers and in multi-modules.

TABLE I: H-DAGap and benchmark algorithms outcomes in
an empty world with 20 and 50 dynamic agents.

20 agents 50 agents
Model Success Collision Success Collision

H-DAGap 100% 0% 97% 3%

DRRT-ProbLP N/A 4% N/A N/A

ARENA ≤ 92.7% 4 23.7% N/A N/A

B. Discussion

This section looks into the contribution of different mod-
ules. Each experiment is repeated 100 times. Here, the test
run will stop once the robot collides.

DAGap trajectory synthesis result: We compare the
results of DAGap only and static gap detection (SGap),
which synthesize trajectories for the gaps detected at current
time step. CFS optimization and SSA modification are not
applied. Compared to SGap, DAGap reduces the collision
rate by 13% and 7% in 20 and 50 agent environments
respectively, see table II. The reason is that DAGap considers
the spatio-temporal dynamics of open gaps and filters out the
trajectories towards gradually closing gaps. SGap guarantees
safe passage in static environments, however, the originally
open gap may become closed and can lead to collision in
dynamic environments. The improvement of incorporating
spatio-temporally evolving information is greater for the
easy scenario because DAGap is less affected by the agents
outside the gap region due to the lower agents density.

CFS trajectory optimization result: The collision rate
drops from 69% to 29% in the 50 agent scenario after CFS
optimization and uncertainty-based safety distance adjust-
ment. Compared to using CFS directly, DAGap provides
good initial trajectories that can improve the safety of op-
timized trajectories. To better explain it, we need to define
the feasibility of a trajectory: a feasible trajectory requires
the distances between all neighbouring waypoints be smaller

4Note: The success criteria in ARENA is goal attainment with less than
two collisions.
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TABLE II: Experimental results of each module.

20 agents 50 agents
Model Collision Success Collision Success

SGap 49% 51% 76% 24%
DAGap 36% 64% 69% 31%

DAGap+CFS 8% 92% 29% 71%
DAGap+CFS+SSA 0% 100% 3% 97%

than a threshold value related to the robot’s maximal velocity.
An infeasible trajectory increases the risk of collision and is
hard to be tracked by robot due to the large jump between
waypoints. The feasibility rate of CFS optimized trajectory
is around 87.4% when using DAGap to generate initial
reference trajectory that drives towards the affordance free
space, but is only 66.9% without DAGap.

SSA safe controller result: By replacing the feedback
controller with the SSA safe controller, the collision rate
drops to 3%. There are two main reasons behind: first of
all, as we discussed above, CFS may generate dynamically
infeasible trajectory due to the limited number of optimiza-
tion iterations we can run in real-time and the challenging
crowded dynamic environment. Tracking infeasible trajectory
can cause collision. SSA modifies these unreasonable track-
ing controls online. Secondly, DAGap and CFS are long-term
planners considering N steps safety. But the predicted error
of trajectories of agents will compound as time goes, making
the planned trajectory risky in the long-term future even we
expand the safety distance. On the other hand, because of
its fast computation property, SSA always uses the latest
information to calculate the one-step safe control and to
reduce collision caused by uncertainty.

Collision analysis: Even applying all these techniques,
there is still a 3% collision rate. The collisions are cate-
gorized into two main cases: multi-agent traps and a fast,
overtaking agent. Notice, the agents in our environments are
artificial and the collisions between agents are allowed. In the
first case, trapping occurs when a gap detected as passable
is actually not passable (i.e., a false positive) or when an
existing or future gap is not detected due to sensing radius
limits. The robot ends up trapped by multiple converging
agents, see fig. 6a, and SSA cannot find a control to meet
all safety constraints because the robot will get closer to
one of the agents no matter in which direction it drives.
The “best” control for SSA is to stay put. The second case
happens when a fast agent driving behind the robot and in
collision overtakes it. Following the safest one-step control
generated by SSA, moves the robot in a direction aligning
with the agent’s velocity even if the DAGap trajectory points
in another direction. Alignment occurs because SSA modifies
the original control to the safest single-step one based on
the safety index. This escape-and-pursue situation usually
continues for several steps until the robot meets another agent
and needs to take a new control to avoid both. The fast agent
behind will then catch up such that the robot cannot bypass
both within one or two steps due to its size and speed.
From the perspective of SSA, no control exists to satisfy

(a) Trapping collision (b) Overtaking collision

Fig. 6: Trapping collision and overtaking collision. The robot
is the blue triangle and the agents are colored circles. All
are a darker hue at their initial positions and lighten as time
progresses.

the constraints in eq. (10b) once the new agent enters the
sensing radius. The situations can be avoided through high-
level modifications. One high-level planner design change
would be to check if there may be future trapping situations,
then specify an alternative detouring (global) goal until the
danger is resolved. Additionally better coordination between
the high-level planner layer and low-level SSA layer can
avoid conflicts related to the safety specifications. We leave
these to future improvements.

V. CONCLUSION

This work described and evaluated H-DAGap, a hierarchi-
cal navigation solution containing a multi-phase planner and
a low-level safe controller. It is a solution strategy to the safe
navigation problem in crowded, dynamic and uncertain envi-
ronments. Estimated high-confidence error bounds are used
in the planner to achieve provably high probability safety to
uncertainty. Conducted experimental benchmarking in simu-
lation and analysis confirm the effectiveness of H-DAGap at
avoiding collisions and navigating to the goal. The H-DAGap
implementation is available at https://github.com/hychen-
naza/H-DAGap. Improved coordination between the high-
level planning and low-level safety control to improve colli-
sions in low-probability robot-agent configurations is left to
future work. Extension of H-DAGap to consider the case of
reduced field of view sensing is also left to future work.
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