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Abstract— Enabling bipedal walking robots to learn how to
maneuver over highly uneven, dynamically changing terrains
is challenging due to the complexity of robot dynamics and
interacted environments. Recent advancements in learning from
demonstrations have shown promising results for robot learning
in complex environments. While imitation learning of expert
policies has been well-explored, the study of learning expert
reward functions is largely under-explored in legged locomo-
tion. This paper brings state-of-the-art Inverse Reinforcement
Learning (IRL) techniques to solving bipedal locomotion prob-
lems over complex terrains. We propose algorithms for learning
expert reward functions, and we subsequently analyze the
learned functions. Through nonlinear function approximation,
we uncover meaningful insights into the expert’s locomotion
strategies. Furthermore, we empirically demonstrate that train-
ing a bipedal locomotion policy with the inferred reward
functions enhances its walking performance on unseen terrains,
highlighting the adaptability offered by reward learning.

I. INTRODUCTION

Humans exhibit a remarkable ability to achieve and gen-
eralize locomotion strategies from expert demonstrations.
This inference ability enables the knowledge transfer from
simple tasks to novel tasks and the efficient acquisition of
new locomotion skills [1]–[4]. Despite this amazing ability
inherent in the human brain, our understanding remains
limited regarding the internal representation of a locomotion
skill and more importantly, the mechanism for applying
acquired skills to novel tasks. Inspired by human’s ability to
learn from expert demonstrations, this study takes an initial
step to mimic this learning ability in the context of bipedal
robot locomotion. Moreover, we seek the explainability of
the learned skills and demonstrate their generalizability by
subjecting the robot to maneuver over various rough terrains.

Imitation learning has been extensively explored as a
methodology for learning from demonstration [5]–[8]. Al-
though unable to infer the true intention behind the demon-
strations, imitation learning often adopts Reinforcement
Learning (RL) formulations to sidestep the problem of lack-
ing an accurate reward function. This RL-based approach
requires only designing a reward for tracking the demon-
strated actions. The development of efficient RL algorithms
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facilitated a wide range of successful applications of imita-
tion learning for agile bipedal locomotion, such as running
[9], jumping [10], climbing stairs [11], playing soccer [12],
carrying loads [13], and walking over diverse terrains [14].
However, a majority of these works still adopt handcrafted
reward functions that heavily rely on domain knowledge
and experience. Such reward functions are often tailored for
specific environments and have a combination of specific
features from the robot’s state. Consequently, agents learned
under such rewards often lack generalizability and struggle to
adapt to new environments. Inverse Reinforcement Learning
(IRL) [15], [16], on the other hand, subsumes the afore-
mentioned imitation learning problem. IRL not only recovers
the expert’s policy but also the underlying reward function,
which captures the essence of the expert’s intention and
enables adaptations of the robot’s motion to unseen tasks.
Therefore, IRL has gained considerable interest within the
robotics community [17]–[20], with some studies employing
IRL to gain a deep understanding of the reward function.

However, prior IRL works often presuppose a predeter-
mined feature space and reward structure [19], [21]. This
constrains the expressiveness of reward modeling and leads
to limited performance in estimating the true reward func-
tions. Furthermore, the existing robotics IRL works do not
analyze the learned reward functions for further usage in
practice such as adapting the learned reward for RL during
challenging unseen tasks. It remains unclear how one can
leverage and transfer the information learned from the reward
functions in new environments. Moreover, computational
complexity has been a hurdle for IRL methods to be widely
adopted in the robotics learning community. Recent advances
focus on accelerating algorithm efficiency of IRL [22]–[25].

In this paper, we develop a novel framework of reward
learning, interpretation, and adaptation (Fig. 1) to address the
aforementioned issues of the existing robotics IRL works.
During the learning phase, we employ the Inverse Policy
Mirror Descent (IPMD) method [25] to infer the reward from
demonstrations. IPMD has been shown to be computationally
efficient. It solves the IRL problem with a novel average-
reward criterion under a Maximum Entropy framework [26],
[27]. The Maximum Entropy framework can discern the
most accurate reward estimation by guiding the policy search
with the maximum entropy principle. The average-reward
criterion also helps to accurately identify reward by dropping
the discounted factor that is often used under the classic
discounted-reward setting. Since demonstrations often lack
an explicit discount factor, using a mismatching discounted
factor from the ground truth will lead to drastically er-
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Fig. 1: In this work, we investigate the reward function learned by Inverse Reinforcement Learning algorithms. We propose a two-stage training algorithm
for Cassie to learn reward functions and optimal policies from demonstrations. We then analyze the reward function learned from those demonstrations.
The learned reward is further used to train RL agents in difficult environments.

roneous reward function estimations under the discounted
setting [25]. Moreover, the average-reward criterion has been
thoroughly investigated in the literature and has also been
adopted in robotics learning tasks [28], [29], [29]–[33].
It has become a common practice for RL benchmarks to
use an average-reward metric for evaluation, which further
motivates the adoption of the average-reward criterion for
solving locomotion tasks.

To gain an in-depth understanding of the learned reward,
we employ a Value Decomposition Network (VDN) [34] and
utilize Integrated Gradients (IG) [35] to obtain meaningful
knowledge of locomotion features leading to high rewards.
We will then incorporate such important features into reward
design for locomotion in challenging unseen environments,
which we refer to as reward adaptation. Note that it is not
a new topic to adapt motor and locomotion skills learned
from human demonstrations to robots [36]–[38] or from
simulated environments to real-life environments [7], [21],
[39]. However, these works require a sophisticated design
and learning of policies or controllers to achieve robust
adaptation. Instead, we investigate the possibility of adapt-
ing reward functions. Related methods in adapting reward
[40]–[42] require crafting intricate, domain-specific reward
functions and learning those reward functions under diverse
environments to promote the robustness of the policy. In
this work, we use IRL to learn a free-form reward function
parametrized by a neural network with inputs directly from
the robot’s state and action space. We show that the learned
reward functions contain transferable information about robot
locomotion behaviors and verify such properties by training
agents using the learned rewards in diverse challenging
environments that are not previously seen. We observe a
significant performance boost in walking speed and robust-
ness by incorporating such information. To the best of our
knowledge, we are the first to analyze and adapt free-form
rewards in a principled way.

The salient contributions of our work are listed as follows:

• Inverse Reinforcement Learning for Bipedal Lo-
comotion: We propose a two-stage IRL paradigm to

address bipedal locomotion tasks via IPMD. In stage
one, we obtain expert policies from a fully-body inverse
kinematics function of Cassie. In the next stage, IPMD
learns reward functions from the near-optimal demon-
strations generated by the policies learned in the first
stage. Our work is the first study that applies IRL to
bipedal locomotion under the average-reward criterion.

• Importance Analysis of Expert Reward Function:
We employ a Value Decomposition Network (VDN)
to approximate the inferred locomotion reward function
and Integrated Gradients (IG) to analyze the VDN for
reward interpretation. By ensuring the monotonicity of
the feature space, VDN enables the interpretation of the
reward function with IG while preserving model expres-
siveness. We successfully perform a rigorous analysis
of the importance of individual features, exposing com-
ponents of the locomotion behavior that are crucial to
its reward functions, thereby guiding the design of new
rewards for new environments.

• Reward Adaptation in Challenging Locomotion En-
vironments: We further verify that the learned reward
from a flat terrain and the important features extracted
from our reward analysis can be seamlessly adapted
to novel, unseen terrains. Our empirical results sub-
stantiate that the inferred reward function encapsulates
knowledge highly relevant to robotic motions that are
generalizable across different terrain scenarios.

II. BACKGROUND

In this section, we introduce preliminaries for Average-
reward Markov Decision Processes (AMDPs). An AMDP
is formalized by a tuple (S,A,P, r), where S signifies the
state space, A represents the action space, P denotes the
transition probability, and r is the reward function. At each
time instance t, the agent selects an action a ∈ A from
the current state s ∈ S. The system then transitions to a
subsequent state s′ ∈ S based on the probability P(s′|s, a),
while the agent accrues an instantaneous reward r(s, a).

The primary objective of the agent is to establish a policy
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Fig. 2: Our two-stage training pipeline. The blue box denotes the imitation learning part (first stage). The agent is then used to generate expert demonstrations,
which are used by the second stage to update the reward and policy using Inverse Policy Mirror Descent.

π : S → A that optimizes the long-term average reward,
mathematically given by

ρπ(s) := lim
T→∞

1

T
E

[
T−1∑
t=0

r(st, at)|s0 = s

]
. (1)

Given an expert demonstration set {(si, ai)}i≥1, IRL aims
to extract a reward function that most accurately captures
the behavior of the expert. Particularly, in this work, we
adopt the Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt-IRL) framework [26].

We denote rθ as the estimation of the reward function,
where θ is the parameter of the model of choice to represent
the reward function r(st, at) in Eq. (1). For example, θ
can be the weights and biases in a neural network that
parameterize the reward.

In this work, we adopt the environment designed in [43]
with the robot’s joint-space state as the state space: for any
state s = (x, x̂) ∈ S , let x = (q, q̇) ∈ R2N represent the
robot joint position and velocity, N = 14 be the number
of joints of Cassie and x̂ ∈ R2N represent the reference
motions. Given a reference action â at a reference state x̂,
the policy outputs an augmentation term δa that corrects the
reference action, where â, δa ∈ RM ,M = 10. The result
is a Proportional Derivative (PD) target, a = δa + â, for a
low-level PD controller, which generates a torque τ ∈ RM
to track joint angles.

III. METHODS

In this section, we first introduce the pipeline that applies
Inverse Policy Mirror Descent (IPMD) for bipedal locomo-
tion to learn reward functions. We then outline our approach
to analyze the learned reward function and methodology of
conducting reward adaptation experiments.

A. Two-Stage Learning Pipeline

Recent RL techniques for bipedal locomotion rely on care-
fully constructing the state and action space and designing
sophisticated reward functions [43]–[45]. IRL models endow
capabilities to learn from demonstrations. However, a practi-
cal challenge often arises: what type of trajectory data should
IRL leverage for effective learning? Directly recording tra-
jectories from robots such as motion capture approaches
can be laborious and time-consuming, while data derived

from model-based methods such as inverse kinematics or
trajectory optimization often suffer from inaccurate models
and unrealistic assumptions. To get high-quality demonstra-
tions for effective IRL, we will use imitation learning with
the Markov Decision Process (MDP) environment similar
to [43], which can produce computationally convenient and
dynamically accurate expert demonstrations, even if we only
have trajectory data generated by model-based methods.

Accordingly, we propose a two-stage IRL learning pipeline
that utilizes both imitation learning and IPMD. Our approach
is graphically summarized in Fig. 2. In the first stage,
we apply imitation learning on data generated via inverse
kinematics to create near-optimal demonstrations, as subse-
quent IRL training and reward analysis require dynamically
accurate demonstrations. The imitation learning style reward
function rI used in this environment is defined as a weighted
sum of tracking rewards at the joint level:

rI = c1e
−Ejoint + c2e

− |pCoM−prCoM∥ + c3e
−∥po−pro∥ (2)

where c1, c2, c3 are constant coefficients, Ejoint is a weighted
Euclidean norm of the difference between the current joint
position q and the reference joint position qr: E2

joint :=

wT (q − qr)2, w, q, qr ∈ RN . pCoM denotes the Center of
Mass (CoM) position, and po denotes pelvis orientation. The
superscript r denotes the reference motion.

Using expert demonstrations generated from the first stage,
the second stage employs our IPMD method to learn both the
optimal policy and the associated reward function in the form
of a deep neural network. Concretely, in each iteration of the
IPMD algorithm, we sample state-action pairs by interacting
with the environment and also sample state-action pairs from
demonstrations. We then employ Temporal-Difference (TD)
to evaluate our current policy given the first set of sampled
pairs from the environment and apply a Mirror Descent step
to improve the current policy. At the end of the iteration, we
update the reward estimation through gradient descent given
the two sets of sampled pairs. Due to the space limit, more
details can be referred to in [25].

B. Analysis of the Learned Reward Function

We extend our study to a detailed analysis of the learned
reward function. The reward function rθ is a deep neural
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Fig. 3: Illustration of important features for Cassie locomotion.

TABLE I: Considered Features for Approximating Learned Rewards

state action Euclidean norm of action

leg roll leg pitch pelvis pitch

hip yaw foot pitch foot force

CoM velocity CoM angular momentum CoM to center of foot

network that inherently lacks interpretability due to its black-
box nature. To tackle this issue, we employ a more inter-
pretable model, Value Decomposition Network (VDN) [34],
which approximates the reward function and explains the
significance of locomotion features in determining the reward
value. VDN maintains a monotonic relationship between its
input and output by constraining the weights and biases
of the network to be positive, ensuring continuous positive
gradients [46]. This property of VDN allows us to establish a
monotonic mapping from the state space to the reward output
without compromising the learned reward’s accuracy due to
its usage of neural networks [46].

Additionally, we aim to explore the features that are
highly relevant to bipedal locomotion but may not be di-
rectly present in the state space, such as the leg length or
ground reaction force, to study how these indirectly observed
features affect the reward function. To facilitate this, we
extend the input space of our approximation model to include
these features. The full list of selected features is in Table
I and a majority of them are annotated in Fig. 3. Through
this approximation, we establish a relationship between the
selected features and the reward function, while keeping
the IRL training process separate and intact, allowing it to
preserve the expressive power of deep neural nets.

Equipped with an interpretable approximation from VDN,
we proceed to further dissect the learned reward function
using a set of neural network interpretation techniques. In
particular, we find Integrated Gradients (IG), a widely rec-
ognized tool in the Deep Learning community, to be highly
suitable for our objectives [35]. IG allows us to analyze the
effect of individual features on the overall landscape of the
reward function by perturbing the input and observing the
resulting gradient changes, which in our case are manifested
as variations in the neural network weights. We also find that
directly applying IG to the original reward function itself
does not yield any meaningful outcome, due to the highly
nonlinear relationship between the input (states and actions)
and the output (rewards). This validates the necessity of using
VDN to approximate the original reward function for better

reward interpretation with IG.

C. Adaptability of the Learned Rewards on Difficult Terrains

In this context, we explore whether our learned reward
function harbors generalized knowledge that enables adapt-
ability across varying terrains. Specifically, we test its effi-
cacy in a purely RL-driven training paradigm, without the
need for additional expert demonstrations. Intriguingly, the
RL guided by the learned reward not only allows training
from scratch but also produces a better performance com-
pared to policies learned from the hand-crafted reward. Even
though the reward function was originally trained on flat
terrain, our learned reward successfully guides the agent’s
learning in more complex environments.

This observation aligns well with the intuition that a well-
designed reward function encapsulates generalizable environ-
mental knowledge. To validate this point, we present results
showcasing Cassie’s capability to navigate difficult terrains.

More interestingly, with the understanding of reward
functions, we show that factored components inside the
reward function, i.e., those found during our reward function
analysis, can improve the quality of locomotion behaviors.
This constitutes a significant contribution to the field, as
traditional algorithms often require the crafting of intricate,
domain-specific reward functions.

IV. EXPERIMENTS

A. Two-Stage Learning Setup

Our experiments of Cassie locomotion were conducted
using the MuJoCo physics simulator [47]. The training
pipeline consists of two main stages as illustrated in Fig. 2.

1) First Stage – Training the Imitation Agent: We train
the Imitation agent using Soft Actor-Critic (SAC) [48]. The
discount factor γ for this stage is set to 0.99. Both the policy
and value functions are parameterized by 256 × 256 Multi-
Layer Perceptrons (MLPs). For implementation, we adopt
the state-of-the-art codebase from stable-baselines3 [49].

2) Second Stage – Learning reward functions and policies
via IRL: We use the Inverse Policy Mirror Descent (IPMD)
method described in [25]. The reward function, policy, and
value functions are all represented by 256× 256 MLPs.

3) Training Parameters: Both agents are trained using 5×
106 samples. We employ an experience replay buffer with a
capacity of 1 × 106 and utilize a batch size of 512. The
Adam optimizer [50] is employed with a learning rate set
at 3 × 10−4. These parameter settings are consistent with
established norms for training Deep RL algorithms.

From a simulation experiment, the optimal expert agent
obtained an episodic reward of 447.2 while generating the
corresponding expert demonstration data for the second
stage; the IRL agent trained with IPMD reached a better
performance—an episodic reward of 482.87. The fact that the
IRL agent outperforms the expert demonstrations reflects the
superiority of our methodology. The qualitative performance
of the IRL agent has no distinguishable difference compared
to the imitation agent, this is surprising since we learn both
the reward functions and policies from scratch, while in the
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Fig. 4: The top four most important features: CoM lateral velocity, pelvis
pitch angle, left and right foot forces. The vertical dashed lines represent
time steps when the foot touches and leaves the ground. Green indicates
when the left foot strikes and red is for the left foot taking off from the
ground. The same for orange (strike) and purple (take off) for the right foot.

imitation learning case, a complicated reward function has
already been established.

B. Reward Analysis

For the Value Decomposition Network (VDN), we adhere
to the same network structure as described in [46]. We
gather training samples by recording the states of the Cassie
robot, along with additional data necessary for computing
the features of interest. We list all features we find worth
investigating in Table I. As we aim to approximate the
learned reward function, we use the rewards generated by rθ
as regression targets for the VDN. The optimization objective
is the Mean Squared Error (MSE), thereby transforming the
training of VDN into the following optimization problem:
minψ MSE(VDN(ψ), rθ), where rθ is the learned reward
function and ψ represents the parameters of the VDN, i.e.,
the weights and biases in neural networks. We record and
compute specified feature data as input, and collect rewards
computed from those data using the learned reward functions
as regression targets. We employ the Adam optimizer with a
learning rate of 3 × 10−4 to train the VDN. To interpret
the contribution of each feature to the reward function,
we employ Integrated Gradients (IG) [35], which is further
implemented by Captum [51]. Fig. 4 demonstrates that the
reward function approximated by the VDN aligns well with
our intuitive understanding of what features are important
for bipedal locomotion. We plot the importance change of
four features to the reward during one typical Cassie walking
motion executed by the IRL agent.

We find that some features of interest exhibit periodic
patterns, due to the nature of the periodic walking motion.
This aligns with our understanding of bipedal locomotion.
Some particular features exhibit a strong influence on the
reward even if they have no particular pattern. We note that
pelvis pitch, plotted in Fig. 4, has significant values compared
to its small-scale raw input data. We conjecture that the pelvis
pitch plays an important role in maintaining the stability of
the robot during walking. Other features also have strong
correlations with their physical meaning. For example, the
left foot has ground reaction force only when it is in contact
with the ground. This is rather intuitive for robot locomotion.

(a) Random Perturbed Terrain (b) Gradually Perturbed Terrain

(c) Gravel Terrain (d) Sine Wave Terrain

Fig. 5: Random terrains generated for testing the learned reward function.

(a) Perturbed (b) Gradual (c) Gravel

Fig. 6: Sagittal travel distance comparison between baseline model using
rh, and adaptive reward model using r. Note that even though the Baseline
model can walk up to maximum time steps, it can not walk as far as the
one using the adaptive reward.

C. Adaptive Reward Function

We generate a variety of uneven terrains in MuJoCo
environments as shown in Fig. 5. In particular, we create (a)
random perturbed terrain, (b) gradually perturbed terrain, (c)
gravel terrain, and (d) sine wave terrain, each with maximum
height capped at 0.2, 0.3, 0.1, 0.4 meters respectively. These
categories serve to evaluate the adaptability and generaliza-
tion capacity of our learned reward function.

We train the agent from scratch using SAC with a discount
factor of γ = 0.99, following the same setup as in our
imitation learning model. For comparative analysis, we also
train a baseline RL agent with a handcrafted reward function
defined as rh = rf + rs − rc, where rf encourages forward
movement and corresponds to the sagittal velocity; rs is
a locomotion survival reward, awarded when Cassie torso
remains upright; and rc, the control cost, is defined as
rc = ∥a∥2.

The baseline agent manages to navigate these terrains,
albeit in a less graceful manner with jerky motions (see the
submitted video). In contrast, our approach uses a modified
reward function: r = rh+rθ, where rθ is the reward function
learned from IRL. We refer to r as the Adaptive reward. We
record the average sagittal velocity of CoM when comparing
the baseline reward model and the adaptive reward model
side by side. The results can be found in Table II. We also
plot the sagittal travel distance in each environment, which is
shown in Fig. 6. We find that incorporating rθ significantly
accelerates learning and produces more natural and robust
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Fig. 7: Results for regularizing robotics behavior.

locomotion behaviors, substantiating the transferability of the
learned reward function across domains.

TABLE II: Average Center of Mass velocity (m/s) in sagittal direction

Terrain Baseline Adaptive

Perturbed 0.2617 0.6249

Gradual 0.3970 0.8015

Gravel 0.4132 0.9106

D. Analysis-based Adaptive Reward Design

With the adaptive reward, the robot is able to walk on
unseen rough terrains. However, instances of undesirable
walking gait still occasionally occur. Specifically, using the
adaptive reward alone, Cassie’s CoM exhibits a higher sagit-
tal CoM velocity. In reality, such behavior is undesirable
as this inclination creates instability during locomotion in
rough terrains. Consequently, the robot needs to maneuver
agilely to maintain balance during walking. This leads to
the robot deviating from the original lateral position, which
is reflected by large variations of CoM velocity along the
lateral direction. With the understanding of the learned
reward, a natural question arises: can we further exploit the
learned reward functions to shape the locomotion behavior?
We answer this question affirmatively. The top important
features uncovered in the Reward Analysis improved the
stability of walking behaviors when incorporated with the
learned reward. As such, we incorporate important features
discovered from the reward analysis to boost the stability of
the robot, or ”regularize” the robot’s motion. To do this, we
add three additional terms with high importance scores to
the adaptive reward: pelvis orientation, pelvis pitch angle,
and CoM velocity, which are implemented to follow their
reference motions on the flat ground. We denote such rewards
as rv = e−∥qo−qro∥2 + e−∥qpitch−qrpitch∥2 + e−∥vCoM−vrCoM∥2 ,
where qo denotes the pelvis orientation in a quaternion form,
qpitch is the pelvis pitch angle, and vCoM is the CoM velocity.

To verify the efficacy of the rv , we train RL agents with
SAC on four combinations of reward functions: the baseline
model rh, the regularized model rh+rv , the adaptive model
rh + rθ, and the regularized adaptive model rh + rθ + rv .
We plot the CoM trajectory, and standard deviation of the
velocity drift along the lateral direction in Fig. 7. Although
the adaptive model allows the robot to walk further, it has
a higher deviation from its original lateral position and a
higher deviation of lateral velocity. We conjecture that this is
partially due to the fact that the orientation is less emphasized
by the adaptive reward. We also observe that purely using

(a)

(b)

(c)

(d)

Fig. 8: Ground reaction force with four reward setups: (a) rh, (b) rh + rv ,
(c) rh + rθ , (d) rh + rθ + rv . The orange bar denotes the left foot force,
while the blue the right. The red bar denotes time steps when no ground
reaction force exists for either foot.

the adaptive reward results in a ”hopping” behavior where
each walking step has a brief flight phase. In reality, such
loss of ground contact can lead to a highly unstable walking
motion and pose a risk of failure. Surprisingly, the integration
of additional regularizing terms in the reward function rv
mitigates such undesirable hopping behaviors. We plot the
ground reaction force of all four models in Fig. 8. Time
steps when undesirable behaviors (both feet are in the air)
occur are annotated with red color bars.

Fig. 8(b) and (d) show a more stable and natural walking
motion, compared with Fig. 8(c) (also shown in the video),
indicating the efficacy of the rv reward in regulating the
robot’s behavior. This result further demonstrates that the
augmentation of the reward function with relevant extracted
features leads to improved locomotion performance.

E. Zero-Shot Validation

We observe that agents trained on diverse terrains display
enhanced stability when deployed in unseen environments.
For example, Cassie is able to navigate sinusoidal terrains
with random height variations (Fig. 5d), without additional
training. This corroborates the idea that the learned reward
embodies a form of generalized knowledge beneficial for
robotic locomotion across a range of terrain scenarios.

V. CONCLUSION

In this work, we employ an IRL method to solve bipedal
locomotion problems. Our analyses reveal that the learned
reward function encapsulates meaningful insights and also
serves as a valuable guide to understanding the underlying
principles of robotic motion. The ability to learn and adapt
using the inferred reward function paves the way for new
avenues of research in robotics, particularly in the domain
of reward inference and environmental adaptability. Our
work supports the notion that leveraging learned reward
functions could substantially accelerate the design, training,
and deployment of robotic systems across a myriad of real-
world scenarios. Our future direction will focus on hardware
implementation on the Cassie robot.
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