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Abstract— This study proposes a novel planning frame-
work based on a model predictive control formulation that
incorporates signal temporal logic (STL) specifications for
task completion guarantees and robustness quantification. This
marks the first-ever study to apply STL-guided trajectory
optimization for bipedal locomotion push recovery, where the
robot experiences unexpected disturbances. Existing recovery
strategies often struggle with complex task logic reasoning
and locomotion robustness evaluation, making them susceptible
to failures caused by inappropriate recovery strategies or
insufficient robustness. To address this issue, the STL-guided
framework generates optimal and safe recovery trajectories that
simultaneously satisfy the task specification and maximize the
locomotion robustness. Our framework outperforms a state-
of-the-art locomotion controller in a high-fidelity dynamic
simulation, especially in scenarios involving crossed-leg maneu-
vers. Furthermore, it demonstrates versatility in tasks such as
locomotion on stepping stones, where the robot must select from
a set of disjointed footholds to maneuver successfully.

I. INTRODUCTION

This study investigates signal temporal logic (STL) based
formal methods for robust bipedal locomotion, with a specific
focus on circumstances where a robot encounters environ-
mental perturbations at unforeseen times.

Robust bipedal locomotion has been a long-standing chal-
lenge in the field of robotics. While existing works have
achieved impressive performance using reactive regulation
of angular momentum [1], [2] or predictive control of foot
placement [3], [4], few offer formal guarantees on a robot’s
ability to recover from perturbations, a feature considered
crucial for the safe deployment of bipedal robots. To this end,
our research centers around designing task specifications for
bipedal locomotion push recovery, and employing trajectory
optimization that assures task correctness and guarantees
system robustness.

Formal methods for bipedal systems have gained sig-
nificant attention in recent years [5], [6]. The prevailing
approach in existing works often relies on abstraction-
based methods such as linear temporal logic (LTL) [7]
with relatively simple verification processes, which abstract
complex continuous behaviors into discrete events and low-
dimensional states. However, challenges arise when ad-
dressing continuous, high-dimensional systems like bipedal
robots. As a distinguished formal logic, STL [8] offers
mathematical guarantees of specifications on dense-time,
real-valued signals, making it suitable for reasoning about
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Fig. 1: Block diagram of the proposed framework. (a) The signal temporal
logic specification φloco specifies the locomotion task. (b) A set of data-
driven kinematic constraints enforce the leg self-collision avoidance. (c)
The model predictive control-based trajectory optimization solves a stable
locomotion trajectory. (d) A whole-body controller tracks the desired
trajectory. (e) Perturbed walking experiments on our bipedal robot Cassie.

task logic correctness and quantifying robustness in complex
robotic systems.

Self-collision avoidance is another crucial component for
ensuring restabilization from disturbances, especially for
scenarios involving crossed-leg maneuvers [3], [4], [9] where
the distance between the robot’s legs diminishes, as shown in
Fig. 1(b). Several previous studies [2], [10] relied on inverted
pendulum models to plan foot placements for recovery but
often overlooked the risk of potential self-collisions during
the execution of the foot placement plan. On the other
hand, swing-leg trajectory planning that considers full-body
kinematics and collision checking is prohibitively expensive
for online computation.

In order to address these challenges, we design an
optimization-based planning framework, illustrated in Fig. 1.
As a core component of the framework, a model predictive
controller (MPC) encodes a series of STL specifications (e.g.,
stability and foot placements) as an objective function to
enhance task satisfaction and locomotion robustness. Fur-
thermore, this MPC ensures safety against leg self-collision
via a set of data-driven kinematic constraints.

Solving the MPC generates a reduced-order optimal plan
that describes the center of mass (CoM) and swing-foot
trajectories, including the walking-step durations. From this
MPC trajectory, a low-level controller derives a full-body



motion through inverse kinematics and then uses a passivity-
based technique for motion tracking. We summarize our core
contributions as follows:

• This work represents the first-ever step towards in-
corporating STL-based formal methods into trajectory
optimization (TO) for dynamic legged locomotion. We
design a series of STL task specifications that guide the
planning of bipedal locomotion under perturbations.

• We propose a Riemannian robustness metric that evalu-
ates the walking trajectory robustness based on reduced-
order locomotion dynamics. The Riemannian robustness
is seamlessly encoded as an STL specification and is
therefore optimized in the TO for robust locomotion.

• We conduct extensive push recovery experiments with
perturbations of varying magnitudes, directions, and
timings. We compare the robustness of our framework
with that of a foot placement controller baseline [2].

This work is distinct from our previous study [11] in
the following aspects. (i) Instead of a hierarchical task
and motion planning (TAMP) framework using abstraction-
based LTL [11], this study employs an optimization-based
MPC that integrates STL specifications to allow real-valued
signals. This property eliminates the mismatch between high-
level discrete action sequences and low-level continuous
motion plans. (ii) The degree to which STL specifications
are satisfied is quantifiable, enabling the MPC to provide a
least-violating solution when the STL specification cannot be
strictly satisfied. The LTL-based planner in [11], on the other
hand, makes decisions only inside the robustness region,
which is more vulnerable in real-system implementation.

II. NON-PERIODIC LOCOMOTION MODELING

A. Hybrid Reduced-Order Model for Bipedal Walking

We propose a new reduced-order model (ROM) that
extends the traditional linear inverted pendulum model
(LIPM) [12], [13]. The LIPM features a point mass de-
noted as the center-of-mass (CoM), and a massless tele-
scopic leg that maintains the CoM at a constant height.
The LIPM has a system state x := [pCoM;vCoM], where
pCoM = [pCoM,x; pCoM,y; pCoM,z] and vCoM =
[vCoM,x; vCoM,y; vCoM,z] are the position and velocity of
the CoM in the local stance-foot frame, as shown in Fig. 2(a).
The LIPM dynamics are expressed as follows:[

p̈CoM,x

p̈CoM,y

]
= ω2

[
pCoM,x

pCoM,y

]
(1)

where ω =
√

g/pCoM,z and g is the acceleration due to
gravity. The subscripts x and y indicate the sagittal and
lateral components of a vector, respectively.

We design a variant of the traditional LIPM that ad-
ditionally models the swing-foot position and velocity
(Fig. 2(a)). In effect, the state vector is augmented as x̄ :=
[pCoM;vCoM;pswing],pswing ∈ R3, and the control input ū
sets the swing foot velocity ṗswing. Moreover, we define
y = [x̄; ū] ∈ R12 as the system output, which will be used
in Sec. III for signal temporal logic (STL) definitions.

At contact time, a reset map x̄+ = ∆̄j→j+1(x̄
−) uses the

swing foot location to transition to the next walking step:p+
CoM

v+
CoM

p+
swing

 =

p−
CoM − p−

swing

v−
CoM

−p−
swing

 (2)

This occurs when the system state reaches the switching
condition S := {x̄|pswing,z = hterrain}, where hterrain is
the terrain height. Note that the aforementioned position and
velocity parameters are expressed in a local coordinate frame
attached to the stance foot. The swing foot becomes the
stance foot immediately after it touches the ground.

Remark. Our addition of the swing-foot position pswing, to-
gether with pCoM, uniquely determines the leg configuration
of the Cassie robot (e.g., via inverse kinematics), allowing
us to plan a collision-free trajectory using only the ROM in
Sec. IV-B.

B. Keyframe-Based Non-Periodic Locomotion and Rieman-
nian Robustness

To enable robust locomotion that adapts to unexpected
perturbations or rough terrains, we employ the concept of a
keyframe (proposed in our previous work [14]) as a critical
locomotion state. The keyframe summarizes a non-periodic
walking step in a reduced-order space, and it addresses
the robot’s complex interaction with the environment. The
keyframe allows for the quantification of locomotion robust-
ness, which will be integrated as a cost function within the
trajectory optimization in Sec. IV.

Definition II.1 (Locomotion keyframe). Locomotion
keyframe is defined as the robot’s CoM state (pCoM,vCoM)
at the apex, i.e., when the CoM is over the stance foot in
the sagittal direction (pCoM,x = 0), as shown in Fig. 2(a).

To quantify the robustness of a non-periodic walking
step, we design a robust region centered around a nom-
inal keyframe state in a Riemannian space. The Rieman-
nian space [14] is a reparameterization of the Euclidean
CoM phase space using tangent and cotangent locomotion
manifolds, represented by a pair (σ, ζ). σ represents the
tangent manifold along which the CoM dynamics evolve,
while ζ represents the cotangent manifold orthogonal to σ.
These manifolds can be derived analytically from the LIPM
dynamics in (1); the detailed derivation is in [14]. Within
the Riemannian space, we define a robust keyframe region
that enables stable walking. This region is referred to as the
Riemannian region.

Definition II.2 (Riemannian region). The Riemannian re-
gion R is the area centered around a nominal keyframe
state (σnom, ζnom): Rd := {(pCoM,d, vCoM,d) |
σ(pCoM,d, vCoM,d) ∈ Σd, ζ(pCoM,d, vCoM,d) ∈ Zd}, where
d ∈ {x, y} indicates sagittal and lateral directions, re-
spectively. Σd = [σnom,d − δσd, σnom,d + δσd] and Zd =
[ζnom,d − δζd, ζnom,d + δζd] are the ranges of the manifold
values for σ and ζ, where δσd, δζd are robustness margins.



walking direction

left-stance
region

right-stance
region

(a)

y [m]

y [m/s]

x [m]

x [m/s]

keyframe
tangent manifold
cotangent manifold

(b) sagittal phase space lateral phase space

(c)

F F

x
yx

apex

z

Fig. 2: Illustration of the locomotion specifications. (a) The highlighted
state in the middle is the keyframe of a walking step. (b) The grey areas
are the Riemannian regions in the sagittal and lateral phase spaces. The
signed distances to the bounds of the Riemannian regions are indicated by
the arrows. (c) Cassie’s foot is specified to step inside the lateral bounds.

The sagittal and lateral Riemannian regions in the phase
space are illustrated in Fig. 2(b) as shaded areas. The bounds
of these Riemannian regions are curved in the phase space
because they obey the LIPM locomotion dynamics. Notably,
while two Riemannian regions exist in the lateral phase
space, only one is active at any given time, corresponding
with the stance leg labeled in Fig. 2(b).

Definition II.3 (Riemannian robustness). The Riemannian
robustness ρriem is the minimum signed distance of an actual
keyframe CoM state x to all the bounds of the Riemannian
regions. Namely, ρriem := min8l=1(rl(x)), where rl(x) is the
signed distance to the lth bound of the Riemannian regions,
as illustrated in Fig. 2(b). We have a total of 8 bounds as the
sagittal and lateral Riemannian regions each have 4 bounds.

Riemannian robustness represents the locomotion robust-
ness in the form of Riemannian regions. Any keyframe inside
the Riemannian region has a positive robustness value, which
indicates a stable walking step. In the next section, our goal
is to leverage Riemannian robustness as an objective function
and use STL-based optimization to plan robust trajectories
for locomotion recovery.

III. SIGNAL TEMPORAL LOGIC AND TASK
SPECIFICATION FOR LOCOMOTION

Signal temporal logic (STL) [15] uses logical symbols of
negation (¬), conjunction (∧), and disjunction (∨), as well
as temporal operators such as eventually (♢), always (□),
and until (U) to construct specifications. A specification is

defined with the following syntax:

φ := π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
♢[t1,t2] φ | □[t1,t2] φ | φ1 U[t1,t2] φ2

(3)

where φ, φ1, and φ2 are STL specifications. π := (µπ(y)−
c ≥ 0) is a boolean predicate, where µπ : Rp → R is a
vector-valued function, c ∈ R, and the signal y(t) : R+ →
Rp is a p-dimensional vector at time t. For a dynamical
system, the signal y(t) is the system output (in our study,
y = [x̄; ū] ∈ R12). The time bounds of an STL formula
are denoted with t1 and t2, where 0 ≤ t1 ≤ t2 ≤ tend and
tend is the end of a planning horizon. The validity of an STL
specification is inductively defined using the rules in Table I.

TABLE I
VALIDITY SEMANTICS OF SIGNAL TEMPORAL LOGIC

(y, t) |= π ⇔ µπ(y(t))− c ≥ 0
(y, t) |= ¬φ ⇔ (y, t) ̸|= φ
(y, t) |= φ1 ∧ φ2 ⇔ (y, t) |= φ1 ∧ (y, t) |= φ2

(y, t) |= φ1 ∨ φ2 ⇔ (y, t) |= φ1 ∨ (y, t) |= φ2

(y, t) |= ♢[t1,t2]φ ⇔ ∃t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ

(y, t) |= □[t1,t2]φ ⇔ ∀t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ

(y, t) |= φ1U[t1,t2]φ2 ⇔ ∃t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ2∧

∀t′′ ∈ [t+ t1, t
′
](y, t

′′
) |= φ1

STL provides the capability of quantifying robustness
degree [16] [17]. A positive robustness degree indicates
specification satisfaction, and its magnitude represents the
resilience to disturbances without violating this specification.
When incorporated into trajectory optimization as a cost,
the robustness degree allows for a minimally specification-
violating trajectory if the task specification cannot be sat-
isfied strictly [18]. Table II shows the semantics of the
robustness degree.

TABLE II
ROBUSTNESS DEGREE SEMANTICS

ρπ(y, t) = µπ(y(t))− c
ρ¬φ(y, t) = −ρφ(y, t)
ρφ1∧φ2 (y, t) = min(ρφ1 (y, t), ρφ2 (y, t))
ρφ1∨φ2 (y, t) = max(ρφ1 (y, t), ρφ2 (y, t))

ρ
♢[t1,t2]φ(y, t) = max

t
′∈[t+t1,t+t2]

(ρφ(y, t
′
))

ρ
□[t1,t2]φ(y, t) = min

t
′∈[t+t1,t+t2]

(ρφ(y, t
′
))

ρ
φ1U[t1,t2]φ2 (y, t) =

max
t
′∈[t+t1,t+t2]

(min(ρφ2 (y, t
′
),

min
t
′′∈[t+t1,t

′
]
(ρφ1 (y, t

′′
))))

The rest of this section introduces the locomotion specifi-
cation φloco, designed to guarantee stable walking trajecto-
ries. We interpret locomotion stability as a liveness property
in the sense that a keyframe with a positive Riemannian
robustness will eventually occur in the planning horizon.

Keyframe specification φkeyframe: To enforce properties
on a keyframe, we first describe it using an STL formula
φkeyframe, checking whether or not a signal y is a keyframe.
According to Def. II.1, the keyframe occurs when the CoM
is over the foot contact in the sagittal direction. Illustrated in
Fig. 2(a), this definition is formally specified as φkeyframe :=
(µπ

CoM,x(y) = 0), where the predicate denotes the sagittal
CoM position µπ

CoM,x(y) = pCoM,x.
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Fig. 3: The planning horizon starts from the current measured state (pink).
An example of N = 2 walking steps and 8 knot points per walking step is
illustrated for simplicity (our actual implementation has 10 knot points).

Riemannian robustness φriem: A stable walking step has
a keyframe with positive Riemannian robustness; i.e., the
keyframe resides in the Riemannian region, as defined in
Def. II.3. As shown in Fig. 2(b), we encode the Riemannian
robustness specification φriem such that it is True when a
CoM state x of a signal is inside the Riemannian region:
φriem :=

∧8
l=1(rl(x) ≥ 0), where rl(x) is the signed

distance from x to the lth bound of the Riemannian region
in the Riemannian space.

Locomotion stability φstable: To encode this property
using STL, we specify that the keyframe of the last
walking step falls inside the corresponding Riemannian
region. This stability property is encoded as φstable :=
♢[TN

contact,T
N+1
contact]

(φkeyframe ∧ φriem), where TN
contact and

TN+1
contact are the N th and N+1th contact times and represent

the time bounds of the last walking step in the planning
horizon.

Swing foot bound φfoot: For locomotion in a narrow space
(e.g., a treadmill, as shown in Fig. 2(c)), we use a safety
specification □φfoot to ensure the foothold lands inside of
the treadmill’s edges. The operator □ without a time bound
means the specification should hold for the entire planning
horizon. We define φfoot := (µπ

left(y) ≥ 0)∧(µπ
right(y) ≥ 0),

where µπ
left = −pswing,y+eleft and µπ

right = pswing,y−eright
are the predicates for limiting the lateral foot location against
the left edge eleft and the right edge eright of the treadmill.

Overall locomotion specification φloco: The compounded
locomotion specification is φloco = φstable ∧ (□φfoot).
Satisfying the specification φloco is equivalent to having a
positive robustness degree: (y, t) |= φloco ⇔ ρφloco(y, t) ≥
0. In order to maximize the locomotion robustness, we use
the robustness degree ρφloco as an objective function in the
trajectory optimization in the following section.

IV. MODEL PREDICTIVE CONTROL FOR PUSH RECOVERY

A. Optimization Formulation

We design a model predictive controller (MPC) to solve
a sequence of optimal states and controls (i.e., signals) that
simultaneously satisfy specification φloco, system dynamics,
and kinematic constraints within an N -step horizon.

The MPC functions as the primary motion planner of the
framework and operates in both normal and perturbed loco-
motion conditions. Our MPC is formulated as the following

nonlinear program:

min
X,U ,T

wL(U)− ρ̃φloco(X,U) (4)

s.t. x̄j
i+1 = f(x̄j

i , ū
j
i , T

j), i ∈ H \ S, j ∈ J (5)

x̄+,j+1 = ∆̄j→j+1(x̄
−,j), j ∈ J (6)

gcollision(x̄i) ≥ ϵd, i ∈ H (7)

gduration(T
j) ≥ 0, j ∈ J (8)

hinitial(x̄0) = 0, htransition(x̄i) = 0, i ∈ S (9)

where H is a set of indices that includes all time steps in
the horizon. We design H to span from the acquisition of
the latest measured states till the end of the next N walking
steps, with a total of M time steps. Fig. 3 illustrates a horizon
with N = 2. S is the set of indices containing the time
steps of all contact switch events, S ⊂ H. J = {0, . . . , N}
is the set of walking step indices. The decision variables
include X = {x̄1, . . . , x̄M}, U = {ū1, . . . , ūM}, and T =
{T 0, . . . , TN}. T is a vector defining the individual step
durations for all walking steps.

L(U) =
∑M

i=1 ||ūi||2 is a cost function penalizing the
control with a weight coefficient w. The robustness degree
ρ̃φloco(X,U) represents the degree of satisfaction of the
signal (X,U) with respect to the locomotion specification
φloco. ρ̃φloco is a smooth approximation of ρφloco using
smooth operators [19]. The exact, non-smooth version ρφloco

has discontinuous gradients, which can cause the optimiza-
tion problem to be ill-conditioned. Maximizing ρ̃φloco(X,U)
encourages the keyframe towards the center of the Rieman-
nian region, as discussed in Sec. III.

To satisfy the LIPM dynamics (1) while adapting step
durations T , we use a second-order Taylor expansion to
derive the approximated discrete dynamics (5). (6) defines
the reset map from the foot-ground contact switch. (7)
represents a set of self-collision avoidance constraints, which
ensures a collision-free swing-foot trajectory. The threshold
ϵd is the minimum allowable distance for collision avoidance.
The gcollision is a set of multilayer perceptrons (MLPs)
learned from leg configuration data, as detailed in Sec. IV-
B. (8) clamps step durations T within a feasible range.
By allowing variations in step durations, we enhance the
perturbation recovery capability of the bipedal system [20].
(9) are the equality constraints of the MPC: hinitial denotes
the initial state constraint; htransition is the guard function
posing kinematic constraints between the swing foot height
and the terrain height, pswing,z = hterrain, for walking step
transitions at contact-switching indices in S.

Upon the successful completion of a MPC optimization,
the solution is immediately sent to the low-level passivity-
based controller [21] for tracking and execution. The MPC
then reinitializes the same problem based on the latest state
measurements.

B. Data-Driven Self-Collision Avoidance Constraints

We design a set of MLPs to approximate the mapping from
reduced-order linear inverted pendulum model (LIPM) states
to the distances between geometry pairs that pose critical
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Fig. 4: (a) The robot kinematic anatomy for collision pair definitions. (b)
The MLP prediction of the minimum distance between Cassie’s two legs
with the left foot affixed to (0, 0) and the right foot moving in the xy plane.

collision risks. According to Cassie’s kinematic configuration
depicted in Fig. 4(a), these pairs include left shin to right
shin (LSRS), left shin to right tarsus (LSRT), left shin to
right Achilles rod (LSRA), left tarsus to right shin (LTRS),
left tarsus to right tarsus (LTRT), and left Achilles rod to
right shin (LARS). A total of 6 MLPs are constructed, each
approximating the distance between one geometry pair. The
MLPs are then encoded as constraints in the MPC to ensure
collision-free trajectories.

Each MLP consists of 2 hidden layers of 24 neurons and
is trained on a dataset with 106 entries obtained through
an extensive exploration of leg configurations. The MLPs
achieved an accurate prediction performance with an average
absolute error of 0.002 m, and an impressive evaluation
speed of over 1000 kHz, compared to 1 kHz using full-body
kinematics-based approaches for collision checking.

We illustrate the effectiveness of the MLPs through kine-
matic analysis of the collision-free range of motion of
Cassie’s swing leg during crossed-leg maneuvers. Specif-
ically, we consider a representative crossed-leg scenario
where Cassie’s left foot is designated as the stance foot and
affixed directly beneath its pelvis. We move Cassie’s right
leg within the xy plane at the same height as the stance
foot while recording the minimum value among all 6 MLP-
approximated distances.

The result is plotted as a heat map in Fig. 4(b), where
the coordinate indicates the location of the swing foot
with respect to the pelvis. As expected, the plot reveals a
trend of decreasing distance as the swing foot approaches
the stance foot. A contour line drawn at ϵd = 0.03 m
indicates the MLP-enforced boundary between collision-free
and collision-prone regions for foot placement. The collision-
prone region to the left of the plane exhibits a cluster of red
zones, each indicating a different active collision pair.

V. RESULTS

A. Self-Collision Avoidance during Leg Crossing

We demonstrate the ability of the signal temporal logic-
based model predictive controller (STL-MPC) to avoid leg
collisions in a critical push recovery setting, where a pertur-
bation forces the robot to execute a crossed-leg maneuver.
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Fig. 5: (a) Snapshots of Cassie performing a crossed-leg maneuver for
push recovery. (b) The MLP-approximated collision distances are accurate
compared with the ground truth, and the planned leg trajectory is safe against
the threshold ϵd = 0.03. (c) An overhead view of the CoM trajectory and
foot placements when a lateral perturbation induces a crossed-leg maneuver.

The MPC with collision constraints generates a trajectory
as shown in Fig. 5(a), where the swing leg adeptly maneuvers
around the stance leg and lands at a safe crossed-leg recovery
point. Similarly, the robot extricates itself from the crossed-
leg state in the subsequent step, following a curved trajectory
that actively avoids self-collisions. An overhead view com-
paring the perturbed and unperturbed trajectories is shown
in Fig. 5(c). Fig. 5(b) shows that the multilayer perceptron
(MLP)-approximated collision distances are accurate and that
the planned trajectory is safe against the threshold ϵd = 0.03.

B. Comprehensive, Omnidirectional Perturbation Recovery

We examine the robustness of the STL-MPC framework
through an ensemble of push-recovery tests conducted in
simulation, where horizontal impulses are systematically ap-
plied to Cassie’s pelvis. The impulses are exerted for a fixed
duration of 0.1 s but vary in magnitude, direction, and timing.
Specifically, impulses have: 9 magnitudes evenly distributed
between 80 N and 400 N; 12 directions evenly distributed be-
tween 0◦ and 330◦; and 4 locomotion phases at a percentage
s through a walking step, where s = 0%, 25%, 50%, 75%.
Collectively, this experimental design encompasses a total
of 432 distinct trials. For a baseline comparison, the same
perturbation procedure is applied to an angular-momentum-
based reactive controller (ALIP controller) [2].

In Fig. 6, we compare the maximum impulse the STL-
MPC can withstand to that of the baseline ALIP con-
troller. The STL-MPC demonstrates superior perturbation
recovery performance across the vast majority of directions
and phases, as reflected by the blue region encompassing
the red region. The improvement is particularly evident
for directions between 30◦ and 150◦, wherein crossed-leg
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Fig. 6: The maximum force exerted on the pelvis from which the robot
can safely recover within two steps in all 12 directions. The perturbations
happen at different phases s during a left leg stance. Values on the left half
result in crossed-leg maneuvers, and values on the right half correspond to
wide-step recoveries.

maneuvers are induced for recovery, and active self-collision
avoidance plays a critical role. This highlights the STL-
MPC’s capability to generate safe crossed-leg behaviors,
thereby significantly enhancing its robustness against lateral
perturbations. On the other hand, for perturbations between
210◦ and 330◦, both frameworks exhibit comparable perfor-
mance, generating wide side-steps for recovery. Note that we
use N = 2 walking steps as the MPC horizon, as existing
studies [22]–[24] indicate that a two-step motion is sufficient
for recovery to a periodic orbit.

Additionally, we observe the STL-MPC struggles most
when the perturbation happens close to the end of a walking
step at s = 75%, as indicated by the smaller region than
the baseline in the bottom right of Fig. 6. This is due to the
reduced flexibility to adjust the contact location and time
within the short remaining duration of the perturbed step.

C. Stepping Stone Maneuvering

To demonstrate the STL-MPC’s ability to handle a broad
set of task specifications, we study locomotion in a stepping-
stone scenario as shown in Fig. 7. To restrict the foot
location to the stepping stones, we augment the locomotion
specification φloco with an additional specification φstones

that encodes stepping stone locations. For each rectangular
stone, the presence of a stance foot pstance inside its four
edges is specified as φs

stone =
∧4

i=1(µ
s
i (pstance) ≥ 0) ,

where s ∈ {1, . . . , S}, S is the total number of stepping
stones, and µs

i is the signed distance from the stance foot
to the ith edge of the sth stone. Then the combined foot
location specification for N walking steps is:

φstones =

N∧
j=1

(□[T j ,T j ]

S∨
s=1

φs
stone)

(a) (b)

Fig. 7: Illustration of maneuvering over two stepping-stone scenarios. (a)
STL-MPC solves dynamically feasible trajectories that satisfy an additional
foot-on-stones specification. (b) STL-MPC successfully plans crossed-leg
maneuvers to recover from perturbation.

The augmented specification is the compound of the original
locomotion specification φloco and the newly-added stepping
stone specification: φ′

loco = φloco ∧ φstones.
We test STL-MPC using φ′

loco in two scenarios. The first
scenario has stepping stones generated at ground level with
random offsets and yaw rotations, as shown in Fig. 7(a).
The STL-MPC advances Cassie forward successfully. In the
second scenario, the STL-MPC demonstrates the ability to
cross legs in response to a lateral perturbation in Fig. 7(b).

D. Computation Speed Comparison between Smooth Encod-
ing Method and Mixed-Integer Program

To encode the robustness degree (as discussed in Sec. III)
of STL specifications into our gradient-based trajectory op-
timization (TO) formulation, we adopt a smooth-operator
method [25] that allows a smooth gradient for efficient
computation. Specifically, we replace the non-smooth min
and max operators in the robustness degree (as defined in
Table II) with their smooth counterpart m̃in and m̃ax, as
detailed in [25].

Fig. 8: A comparison of the traditional MIP method and our smooth method
shows the planning time to solve trajectories for N -walking-step horizons.
The smooth method is faster and more consistent over all horizons.

We benchmark the solving speed of the smooth method
with the traditional mixed-integer programming (MIP)
method [8]. The smooth method demonstrates a faster and
more consistent solving speed, and its time consumption is
nearer to linear with respect to the walking steps N .

VI. CONCLUSION

This study presents a model predictive controller using
signal temporal logic (STL) for bipedal locomotion push
recovery. Our main contribution is the design of STL
specifications that quantify the locomotion robustness and
guarantee stable walking. Our framework increased Cassie’s
impulse tolerance by 81% in critical crossed-leg scenarios.
Further research will be focused on hardware verification and
extensions to rough, dynamic terrain.
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