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Abstract— This study addresses the challenge of bipedal
navigation in a dynamic human-crowded environment, a re-
search area that remains largely underexplored in the field of
legged navigation. We propose two cascaded zonotope-based
neural networks: a Pedestrian Prediction Network (PPN) for
pedestrians’ future trajectory prediction and an Ego-agent
Social Network (ESN) for ego-agent social path planning.
Representing future paths as zonotopes allows for efficient
reachability-based planning and collision checking. The ESN is
then integrated with a Model Predictive Controller (ESN-MPC)
for footstep planning for our bipedal robot Digit designed by
Agility Robotics. ESN-MPC solves for a collision-free optimal
trajectory by optimizing through the gradients of ESN. ESN-
MPC optimal trajectory is sent to the low-level controller for
full-order simulation of Digit. The overall proposed framework
is validated with extensive simulations on randomly generated
initial settings with varying human crowd densities.

I. INTRODUCTION

Bipedal navigation in complex environments has garnered
substantial attention in the robotics community [1]–[5]. So-
cial navigation is a particularly challenging problem due
to the inherent uncertainty of the environment, unknown
pedestrian dynamics, and implicit social behaviours [6].
Recently, there has been an increasing focus on social
navigation for mobile robots in human environments [7]–
[10]. Nonetheless, the exploration of social navigation for
bipedal robots remains largely underexplored. This can be
attributed to the intricate hybrid, nonlinear, and high degrees-
of-freedom dynamics associated with bipedal locomotion.

In this study, we present an integrated framework for pre-
diction and motion planning for socially acceptable bipedal
navigation in human-crowded environments as shown in
Fig. 1. We propose a navigation framework composed of two
cascaded neural networks: a Pedestrian Prediction Network
(PPN) for pedestrians’ future trajectory prediction and an
Ego-agent Social Network (ESN) for ego-agent social path
planning. Our neural networks output reachable sets for
pedestrians and the ego-agent represented as zonotopes, a
convex symmetric polytope. Zonotopes offer efficient, yet
robust reachability-based planning, collision checking, and
uncertainty parameterization [11]–[14]. In this study, we use
zonotopes to detect and avoid collisions by checking for
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Fig. 1: Snapshot of the simulation environment with superimposed zono-
topes for the proposed reachability-based social navigation framework. The
environment is a 14 m × 14 m open space with 20 pedestrians.

intersections between the zonotopes corresponding to the
ego-agent and pedestrians.

Our framework integrates ESN in a model predictive con-
troller (MPC) as shown in Fig. 2. The ESN-MPC optimizes
over the output of the neural network, with reachability
and collision avoidance constraints. ESN-MPC incorporates
a reduced-order model (ROM) for the bipedal locomotion
process and then sends optimal commands, i.e., center of
mass (CoM) velocity and heading change, to the low-level
controller on Digit for full-body joint trajectory design and
control.

The main contributions of this study are as follows:

• A zonotope-based prediction and planning framework
for bipedal navigation in a social environment.

• Novel loss functions to shape zonotopes that represent
the future social trajectory of the ego-agent.

• A framework for hierarchically integrating the neural
networks with an MPC and a low-level passivity con-
troller for full-body joint control of Digit.

This article is outlined as follows. Section II is a literature
review of related work. Section III introduces the problem we
are seeking to solve. Then, the environment setup and zono-
tope preliminaries are in Section IV. Section V presents the
neural network architecture and loss functions. Section. VI
formulates the problem as an MPC. Implementation details
and results are in Section VII. Finally, Section VIII concludes
this article.



Fig. 2: Block diagram of the proposed framework. The framework is composed of two sub-networks: the Pedestrian Prediction Network (PPN) and the
Ego-agent Social Network (ESN) shown in green and cyan, respectively (Sec. V). Given an environment with observed pedestrians and a goal location,
PPN predicts the future pedestrians’ reachable set. ESN-MPC optimizes through ESN to generate collision-free trajectories for Digit (Sec. VI). The optimal
trajectory is then sent to the ALIP controller [15] to generate the desired foot placement for reduced-order optimal trajectory tracking. An ankle-actuated-
passivity-based controller [16], [17] is implemented on Digit for full-body trajectory tracking.

II. RELATED WORK

Navigating an environment with humans in a socially
compliant manner requires a proactive approach to motion
planning [7]–[9]. In [9], the authors use opinion dynamics
to proactively design motion plans for a mobile robot,
without the need for human prediction models. It relies
only on the observation of the approaching human position
and orientation to form an opinion that alters the neutral
path and avoids collisions with pedestrians. Gradient-based
trajectory optimization is introduced in [8] to minimize
the difference between the humans’ future path prediction
conditioned on the robot’s plan and the nominal prediction.
The studies of [7], [8] both assume that a minimally-invasive
robot trajectory, with minimal effect on surrounding humans’
nominal trajectory, is socially acceptable. In contrast, our
work aims to learn the socially acceptable trajectory from
human crowd datasets to minimize any heuristic biases on
what a socially acceptable trajectory is.

Our framework is inspired by the human trajectory predic-
tion community [18]–[21], where we aim to design a socially
acceptable trajectory for the ego-agent that mimics the path
learned from human crowd datasets. The work in [22]
proposes an obstacle avoidance learning method that uses
a Conditional Variational Autoencoder (CVAE) framework
to learn a temporary target distribution to avoid pedestrians
actively. However, during the learning phase, the temporary
targets are selected heuristically. In contrast, we aim to learn
such temporary waypoints from human crowd datasets to
capture a heuristic-free socially acceptable path. In [18], the
authors develop a simple yet, accurate CVAE architecture
based on Multi-Layer Perceptrons (MLP) networks to predict
crowd trajectories conditioned on past observations and in-
termediate endpoints. Our ESN follows a similar MLP-based
CVAE architecture, where the ego-agent path is conditioned
on the final goal location, surrounding pedestrians’ future
trajectories, and immediate change in the ego-agent state.
Utilizing a non-complex network architecture is pivotal for

Fig. 3: Illustration of the Linear Inverted Pendulum model for two consecu-
tive walking steps, with discrete states pq and pq+1 at the contact switching
time. The shaded yellow regions indicate the kinematics constraint on the
control input u detailed in Sec. VI-A.

enabling real-time planning and prediction when integrated
into gradient-based motion planning for the ego-agent.

The authors in [11] present a Zonotope Alignment of
Prediction and Planning (ZAPP) that relies on zonotopes
to enable continuous-time reasoning for planning. They
use trajectron++ [19] to predict obstacle trajectories as a
Gaussian distribution. They construct a zonotope over these
distributions, which leads to an overapproximation of the un-
certainties. We propose learning these distributions directly
as zonotopes, bypassing the initial step of predicting Gaus-
sian distributions for pedestrian motion. This approach is
computationally efficient and facilitates real-time integration
with an MPC.

III. PROBLEM FORMULATION

A. Robot Model

Consider a bipedal ego-agent with discrete step-by-step
dynamics xq+1 = Φ(xq,uq), where xq and uq are the state
and control input respectively at the contact switching time
of the qth walking step. The robot’s state x = (p, vloc, θ),
where p = (x, y) is the 2-D location in the global coordinate,
vloc is the local sagittal velocity, and θ the heading. The



control input is uq = (uf
q u∆θ

q ), where uf
q is the local

sagittal foot position relative to the CoM, and u∆θ
q is the

heading angle change as shown in Fig. 3.
The reduced-order model (ROM) used to design the walk-

ing motion of Digit is the Linear Inverted Pendulum (LIP)
model [23]. For the LIP model, we assume that each step
has a fixed duration T 1 [2], [24]. Then we build our model
on the discrete local sagittal dynamics (∆xloc

q , vlocq ) 2, where
∆xloc = xloc

q+1 − xloc
q and vlocq is the sagittal velocity at the

local coordinate for the qth walking step (see Fig. 3):

∆xloc(uf
q ) =

(
vlocq

sinh(ωT )

ω
+ (1− cosh(ωT ))uf

q

)
(1)

vlocq+1(u
f
q ) = cosh(ωT )vlocq − ω sinh(ωT )uf

q cos(θq) (2)

where ω =
√

g/H , where g is the gravitational constant
and H is the CoM height. Based on the local sagittal
dynamics (1) and (2), we add heading angle θq to control the
LIP dynamics in 2-D Euclidean space. The heading angle
change is governed by θq+1 = θq + u∆θ

q across walking
steps. Therefore the full LIP dynamics in 2-D Euclidean
space become:

xq+1 = xq +∆xloc(uf
q ) cos(θq) (3a)

yq+1 = yq +∆xloc(uf
q ) sin(θq) (3b)

vlocq+1 = cosh(ωT )vlocq − ω sinh(ωT )uf
q cos(θq) (3c)

θq+1 = θq + u∆θ
q (3d)

For notation simplicity, hereafter, we refer to (3) as:

xq+1 = Φ(xq,uq) (4)

B. Environment Setup and Problem Statement
The ego-agent is tasked to navigate to a known goal

location G in an open environment with m ∈ N observed
pedestrians treated as dynamic obstacles. The pedestrian state
T pk

[tp,t]
is the 2-D trajectory of pedestrian k observed over

the discrete time interval [tp, t]. The environment is partially
observable as only the pedestrians in a pre-specified sensory
radius of the ego-agent are observed. The path the ego-agent
takes should ensure navigation safety, and promote social
acceptability.

Definition III.1 (Navigation safety). Navigation safety is
defined as maneuvering in human crowded environments
while avoiding collisions with pedestrians, i.e., ∥pt−T pk

t ∥ >
d, ∀t, k, where d represent the minimum allowable distance
between the ego-agent and the pedestrians.

Definition III.2 (Socially acceptable path for bipedal sys-
tems). A path that a bipedal ego-agent takes in a human-
crowded environment is deemed socially acceptable if it has
an Average Displacement Error (ADE) < ϵ 3 when compared

1set to be equal to the timestep between frames in the dataset (0.4 s)
2the lateral dynamics are only considered in the ALIP model at the low

level since they are periodic with a constant desired lateral foot placement
(See Fig. 4)

3ϵ represents the allowable deviation from the socially acceptable path.
The Average Displacement Error denotes the average error between the
planned path and the ground-truth path.

to ground truth data in the same environment.

Based on the aforementioned definitions and environment
setup the problem we aim to solve is as follows:

Problem III.1. Given the discrete dynamics of the bipedal
robot xq+1 = Φ(xq,uq) and an environment state E =
(T pk

[tp,t]
,G), find a motion plan that promotes social accept-

ability for the bipedal ego-agent in a partially observable
environment containing pedestrians while ensuring naviga-
tion safety.

IV. PRELIMINARIES

To solve the social navigation problem defined above, we
propose a learning framework to learn socially acceptable
reachable sets parameterized as zonotopes (Sec. V-A). Prob-
lem.III.1 is then reformulated as a step-by-step MPC problem
with navigation safety constraints and implemented in real
time on our Digit humanoid robot [25] (Sec. VI-D). This
section begins by introducing the learning and environment
assumptions, and zonotope preliminaries.

1) Environment Assumptions and Observations: In this
work, we hypothesize that in a social setting, the information
accessible by the ego-agent that is used to determine its
future path T ego

[t,tf ]
= {xego

q , yegoq }tfq=t
4 are three fold: (i)

its final destination G = (xdest, ydest) (ego-agent intent),
(ii) the surrounding pedestrians’ past trajectory T pk

[tp,t]
=

{xpk
q , ypk

q }tq=tp for the kth pedestrian, and (iii) the ego-
agent’s social experience, i.e., its assumptions on how to
navigate the environment in a socially-acceptable manner.
We treat the social experience as latent information that is
not readily available in human crowd datasets. Therefore we
make the following assumption.

Assumption IV.1. Learning the future trajectory of an ego-
agent T ego

[t,tf ]
based on its final goal G and surrounding

pedestrians’ past trajectories T pk

[tp,t]
, will learn the ego-

agent’s social experience.

2) Zonotopes Preliminaries: A zonotope Z ∈ Rn is a
convex, symmetrical polytope paramterized by a center c ∈
Rn and a generator matrix G ∈ Rn×nG (see Fig. 5).

Z = Z(c, G) = {c+Gβ | ∥β∥∞ ≤ 1} (5)

The Minkowski sum of Z1 = Z(c1, G1) and Z2 =
Z(c2, G2) is Z1 ⊕ Z2 = Z (c1 + c2, [G1 G2]). To Check
collisions between two zonotopes, [26, Lemma 5.1] is used:

Proposition IV.2. ( [26, Lemma 5.1]) Z1 ∩Z1 = ∅ iff c1 /∈
Z(c2, [G1 G2]).

When n = 2 zonotopes can be represented as polytopes
using the half-space representation P = {x | Ax ≤ b},
where x ∈ P ⇐⇒ max(Ax − b) ≤ 0 and x /∈
P ⇐⇒ max(Ax − b) > 0. To convert a 2-D zonotope

4the subscripts tp, t, and tf represent a discrete time indices denoting
the past, current and future trajectories, respectively, where tp < t < tf .



Fig. 4: (a) shows the pedestrian prediction network, conditioned on the pedestrian endpoints and the immediate change in the ego-agent’s state. (b) shows
the ego-agent social network conditioned on the pedestrians’ future prediction, the immediate change in the ego-agent’s state, and the ego-agent’s goal
location. Dashed connections are used during training only.

from the center-generator representation to the half-space
representation, we use the following proposition:

Proposition IV.3. ( [14, Theorem 2.1]) Let C =[
−G[2, :] G[1, :]]

]
and lG[i] = ∥G[:, i]∥2 the half-space

representation of a 2-D zonotope:

A[i, :] =
1

lG[i]
·
[
C
−C

]
∈ R2nG×2 (6)

b = A · c+ |AG| 1m×1 ∈ R2nG (7)

In this work, zonotopes are used to describe the social
reachable set for the ego-agent. We seek to learn a sequence
of social zonotopes Zego

q , each of which contains two con-
secutive waypoints of the ego-agent’s future social trajectory
T ego
[t,tf ]

.

Definition IV.1 (Social Zonotope Zego
q ). A social zonotope

for the ego-agent’s qth walking step is Zego
q = L (cq, Gq),

such that T ego
[t,tf ]

∈
tf−1⋃
q=t

Zego
q .

V. SOCIAL ZONOTOPE NETWORK

A. Learning Architecture

We set up a conditional variational autoencoder (CVAE)
architecture to learn the ego-agent’s future trajectory condi-
tioned on the final destination goal, the immediate change in
the ego-agent’s state, and the surrounding pedestrians’ past
trajectories. The proposed architecture incorporates Multi-
Layer Perceptrons (MLP) with ReLU non-linearity for all
the sub-networks.

1) Pedestrian Prediction Network (PPN): The pedestrian
prediction network (shown in Fig. 4(a)) is inspired by
PECNet [18], where the endpoint of the pedestrian trajec-
tory T pk

tf
is learned first, and then the future trajectory is

predicted. Our proposed network deviates from PECNet in
three ways. First, the pedestrian future trajectory is also
conditioned on the immediate change in the ego-agent’s
state T ego

t+1 (shown in red in Fig. 4(a)). This coupling of
the pedestrian prediction and ego-agent planning networks
is intended to capture the effect of the robot’s control on
the future trajectories of the surrounding pedestrians [6],

[8], and enable bidirectional influence for the entire ego-
agent-pedestrian team. Second, the output of the network
is the pedestrian’s future reachable set parameterized as
zonotopes Zpk

[t,tf ]
rather than trajectories for robust collision

checking and uncertainty parameterization [11]–[13]. Third,
we replace the social pooling module with a simple ego-agent
sensory radius threshold for computational efficiency.

The pedestrians’ past trajectories T pk

[tp,t]
are encoded in

Eped as seen by the purple arrow in Fig. 4(a), while the
incremental change in the ego-agent state representing the
ego-agent control is encoded in Enxt as seen by the red
arrow in Fig. 4(a). This allows us to condition the prediction
of the pedestrians’ trajectory on the ego-agent’s control.
The resultant latent features Eped(T pk

[tp,t]
) and Enxt(T ego

t+1 )
are then concatenated and used as the condition features
Fcond. The pedestrian’s endpoint locations are encoded in
Eend as seen by the orange arrows in Fig. 4(a). The resul-
tant latent features Eend(T pk

tf
) are then concatenated with

Fcond as global features Fglobal and encoded in the latent
encoder Elatent. We randomly sample features from a normal
distribution N (µ,σ) generated by the Elatent module, and
concatenate them with Fcond. This concatenated information
is then passed into the latent decoder Dlatent. Then Dlatent

outputs the predicted endpoint that is passed again through
Eend. The output is concatenated again with Fcond and
passed to Pfuture to output the predicted zonotopes of the
pedestrians Zpk

[t,tf ]
.

2) Ego-agent Social Network (ESN): ESN architecture
is shown in Fig. 4(b). The surrounding pedestrians’ future
zonotope centers cpk

[t,tf ]
are aggregated through summation

to take into account the collective effect of surrounding
pedestrians while keeping a fixed architecture5 [19]. The
summed pedestrian features are then encoded in Efuture as
seen by the green arrows in Fig. 4(b). The goal location
for the ego-agent is encoded in Egoal, while the incremental
change in the ego-agent state is encoded in Enxt as seen
by the orange and red arrows respectively in Fig. 4(b). The
resultant latent features Efuture(

∑m
k=1 c

pk

[t,tf ]
), Egoal(G) and

Enxt(T ego
t+1 ) are then concatenated and used as the condition

5Other human trajectory learning modules include a social module to
take into account the surrounding pedestrians effect such as social non-local
pooling mask [18], max-pooling [20], and sorting [21].



Fig. 5: Our zonotope shaping loss functions. The loss aims to learn
interconnected zonotopes that engulf the ground truth path.

features Fego
cond for the CVAE. The ground truth of the ego-

agent’s future trajectory T ego
[t,tf ]

is encoded in Etraj as shown
by the cyan arrows in Fig. 4(b). The resultant latent features
Etraj(T ego

[t,tf ]
) are then concatenated with Fego

cond as global
features Fego

global and encoded in the latent encoder Elatent.
Similarly, we randomly sample features from a normal
distribution N (µ,σ) generated by the Elatent module, and
concatenate them with Fego

cond. This concatenated information
is then passed into the latent decoder Dlatent, resulting in
our prediction of the ego-agent’s future reachable set Zego

[t,tf ]
.

Remark 1. Including Enxt in both neural networks facili-
tates seamless integration with a step-by-step MPC, as the
MPC’s decision variables (∆pego) will be used as inputs to
Enxt as detailed in Sec. VI.

B. Zonotope Shaping Loss Functions

The zonotope shaping loss functions are used for both
PPN and ESN, where both outputs are parameterized as
zonotopes. The goal of these loss functions is three folds:
(i) penalize deviation of the centers of the zonotopes from
the ground truth future trajectory; (ii) generate intersecting
zonotopes for consecutive walking steps; and (iii) reduce the
size of the zonotopes to avoid unnecessary, excessively large
zonotopes. Based on these goals, the following is a list of
loss functions to shape the zonotopes (Fig. 5):

1) Average displacement error between the predicted cen-
ters and midpoint of the ground truth trajectory Tmid,i:

LADE =

∑tf−1
i=1 ∥Tmid,i − ci∥

tf − 1

2) Final displacement error between the last predicted
center and the final midpoint of the ground truth
trajectory:

LFDE = ∥Tmid,tf−1 − ctf−1∥

3) The midpoint between the current center and previous
center cpmid,i is contained in the current zonotope:

Lprev =

tf−1∑
i=0

ReLU(Ai · cpmid,i − bi)

4) The midpoint between the current center and the next
center cnmid,i is contained in the current zonotope:

Lnxt =

tf−1∑
i=0

ReLU(Ai · cnmid,i − bi)

5) Regulating the size of the zonotope, by penalizing the
norm of the generators such the neural network does
not produce excessively large zonotopes that contain
the ground truth trajectory:

LG = ∥lG[1]− d1∥+ ∥lG[1 :]− d2∥

where d1 and d2 are the desired lengths for the generators.
We sum the zonotope shaping losses listed above in a single
term LZ . Similar to PECNet [18], we use Kullback–Leibler
divergence to train the output of the latent encoder, aiming
to regulate the divergence between the encoded distribution
N (µ,σ)and the standard normal distribution N (0, I):

LKL = DKL

(
N (µ,σ)∥N (0, I)

)
The network is trained end to end using the following loss
function: L = LKL + LZ .

VI. SOCIAL MPC

To enable safe navigation in the human-crowded envi-
ronment, we propose to solve the following optimization
problem:

min
X,U

N−1∑
q=0

J(x,u) (8a)

s.t. xq+1 = Φ(xq,uq) (8b)
x0 = xinit, (xq,uq) ∈ XUq (8c)
xq+1 ∈ Zego

q+1(∆pego
q , Eq) (8d)

Zego
q+1(∆pego

q , Eq)
⋂

Zpkq

q+1 = ∅, ∀ kq (8e)

where the cost (8a) is designed to reach the goal and promote
social acceptability, subject to the ROM dynamics (8b)
(Sec. III-A). Constraint (8d) requires the ego-agent at the
next (q+1)th walking step to stay within the reachable set,
while constraint (8e) requires the ego-agent to avoid collision
with the pedestrians. Next, we introduce the kinematics,
reachability, and navigation constraints (Sec. VI-A-VI-B),
and finally reformulate the MPC in (8) with a detailed version
for implementation (Sec. VI-D).

A. Kinematics Constraints

To prevent the LIP dynamics from taking a step that is
kinematically infeasible by the Digit robot the following
constraint is implemented

XUq = {(xq,uq) | xlb ≤ xq ≤ xub and ulb ≤ uq ≤ uub}
(9)

where xlb and xub are the lower and upper bounds of xq

respectively, and ulb and uub are the bounds for uq (See
yellow shaded region in Fig. 3). The detailed parameters in
our implementation are specified in Table II.



B. Reachability and Navigation Safety Constraints
To enforce navigation safety (i.e., collision avoidance), we

require that Digit remains in the social zonotope Zego and
outside of the surrounding pedestrians reachable set Ẑpk .

1) Reachability constrains: For the robot’s CoM to re-
main inside the desired zonotope for the next walking step
Zego

q+1, we represent the zonotope using half-space represen-
tation as shown in Prop. IV.3. The constraint is reformulated
as such:

max(Aegopego − bego) ≤ 0 (10)

2) Navigation safety constraint: For pedestrian collision
avoidance, we require that the reachable set of the ego-
agent does not intersect with that of the pedestrians for the
corresponding step. Therefore, we create a new zonotope for
the ego-agent as Minkowski sum of the ego-agent’s zonotope
and the pedestrian’s zonotope centered around the ego-agent
Zmink = Z (cego, [Gego Gpk ]) to check for collision with the
pedesrians’ zonotope following Prop. IV.2. We then represent
Zmink using half-space representation and require that the
pedestrian is outside the combined set:

max(Aminkpk − bmink) > 0 (11)

C. Cost Function
The MPC cost function is designed to drive the ROM state

to a goal location G. The terminal cost penalizes the distance
between the current ROM state and the global goal state G.

JN (xN ) = ∥xN − xG∥2W1
+ ∥θN − θG∥2W2

(12)

where xG = (G, vterminal), and θG is the angle between the
ego-agent’s current position and the final goal location.

D. MPC Reformulation with Ego-agent Social Network
According to the aforementioned costs and constraints

for implementation, we reformulate our Ego-agent Social
Network MPC (ESN-MPC) shown in (8) as follows:

min
X,U

N−1∑
q=0

JN (xN ) (13a)

s.t. xq+1 = Φ(xq,uq) (13b)
x0 = xinit, (xq,uq) ∈ XUq (13c)
max(Aego

q+1p
ego
q+1 − begoq+1) ≤ 0 (13d)

max(Amink
q+1 pkq+1

− bmink
q+1 ) > 0, ∀ kq (13e)

VII. IMPLEMENTATION AND RESULTS

A. Training
The social path planner module introduced in Sec. V was

trained on the UCY [27] and ETH [28] crowd datasets with
the common leave-one-out approach, reminiscent of prior
studies [18]–[20]. The models were trained on a data set
that excludes UNIV from the training examples. We employ
a historical trajectory observation T pk

[−8,0] and a prediction
horizon T̂ ego

[0,8], each spanning a duration of 8 timesteps (3.2
s) and only consider neighboring pedestrians that are within
a radius of 4 m. The network architecture details are shown
in Table I.

TABLE I: Network architecture parameters

Pedestrian Prediction Network
Eped 16 → 32 → 16
Eend 2 → 8 → 16
Enxt 2 → 32 → 16
Pfuture 50 → 32 → 16 → 32 → 70
Elatent 48 → 8 → 16 → 32
Dlatent 48 → 32 → 16 → 32 → 2

Ego-agent Social Network
Egoal 2 → 8 → 16 → 2
Efuture 16 → 64 → 32 → 16
Enxt 2 → 64 → 32 → 2
Etraj 16 → 64 → 32 → 16
Elatent 36 → 8 → 50 → 16
Dlatent 36 → 128 → 64 → 128 → 70

TABLE II: ESN-MPC Parameters

parameter value parameter value
u∆θ
ub 15◦ u∆θ

lb −15◦

uf
ub 0.4 m uf

lb −0.1 m
d1 0.1 d2 0.005

vterminal 0 m/s nG 4
W1 3 W2 1

B. Pedestrian Simulation

We use SGAN (Social Generative Adversarial Network),
a state-of-the-art human trajectory model, for simulating
pedestrians [20]. SGAN is specifically designed to grasp
social interactions and dependencies among pedestrians. It
considers social context, including how people influence each
other and move in groups. This is important for creating real-
istic simulations of pedestrian motion. Employing a different
prediction model ensures a fair evaluation by eliminating any
inherent advantages of our proposed method [8].

In our simulation framework, SGAN incorporates both
the historical trajectories of pedestrians and the trajectory
of the ego agent. This approach enhances the realism of the
simulation by accounting for the interaction between the ego-
agent and pedestrians within the environment.

C. Testing Environment Setup

The environment for all the following tests is an open
space of 14 × 14 m2 as shown in Fig. 1 and Fig. 8, with
randomly generated pedestrians’ initial trajectory. We test
with 5, 15, and 30 pedestrians in the environment. The
goal location is G = (10, 10) m, and the ego-agent starting
position is uniformly sampled along the y-axis as such
x0 = (0,U[0,13], 0) with θ0 = 0. The MPC is solved with
a planning horizon of N = 4, and ESN-MPC parameters
are included in Table. II. Simulations and training are done
using a 16-core Intel Xeon W-2245 CPU and an RTX-5000
GPU with 64 GB of memory.

D. Low-level Full-Body Control

At the low level we use the Angular momentum LIP plan-
ner introduced in [15], and a Digit’s passivity controller [16]
with ankle actuation which we have previously shown to
exhibit desirable ROM tracking results [17]. Here we set the
desired walking step time and the desired lateral step width
to be fixed at 0.4 s and 0.4 m, respectively.



Fig. 6: Quantitative (a) and qualitative (b) results of ESN. (a) Shows the
displacement error between the prediction of ESN cego (centers of cyan
zonotopes in (b)) and the ground truth data T ego

mid (red dots in (b)). (b)
shows a snapshot of ESN output, where the ego-agent’s predicted zonotopes
(cyan) contain the ground truth ego-agent data (red). ESN is conditioned on
the goal position (yellow ⋆) and surrounding pedestrian future trajectories
(green). The data is collected based on the UNIV dataset with 7831 unique
frames. The solid line in (a) shows the average displacement error at each
prediction horizon.

Fig. 7: Full-order simulation results of Digit tracking the desired trajectory
from ESN-MPC. (a) shows Euclidean position tracking, (b) shows heading
tracking, and (c) shows the sagittal velocity tracking in local coordinates.

E. Results and Discussion

In Fig. 6(a) we show that ESN produces an ADE= 0.229
m over the prediction horizon of 7 timesteps6, and a Final
Displacement Error (FDE)= 0.52 m. Fig. 6(b) shows a
snapshot of the ESN social zonotope output Zego (cyan)
compared to the ground truth data T ego

mid shown in red.
Fig. 7 shows the tracking performance of integrating

ESN-MPC with the low-level full-body controller [15]–[17].
We show the global Euclidean position tracking Fig. 7(a),
heading angle tracking in Fig. 7(b), and local sagittal velocity
tracking in Fig. 7(c). Fig. 1 and Fig. 8 show snapshots of
the resultant trajectory at different walking steps.

In Fig. 9(a), all three crowd densities produce relatively
similar median velocities. At lower crowd density the ve-
locity is more consistent. As expected, Fig. 9(b) shows that
in less crowded areas, the ego-agent can reach the goal in

6The prediction horizon timesteps is 7 and not 8, since the displacement
error is calculated based on the middle points T ego

mid of T ego
[0,8]

fewer steps. With 30 pedestrians in the environment, it took
more steps on average to reach the goal while maintaining
a relatively similar velocity to the environments with fewer
crowds (see Fig. 9(a)). This indicates that our framework can
predict the future trajectory of the surrounding pedestrians,
and is not required to come to a sudden stop. ESN-MPC
produces a consistent and predictable behavior for the ego-
agent. Predictability of the ego-agent behavior in a social
context is desirable by pedestrians as it is perceived to be
less disruptive. With 5 and 15 pedestrians in the environment
our framework produced a 100% success rate by reaching the
goal in 100 walking steps, while it managed a 90% success
rate with 30 pedestrians as shown in Fig. 9(c). Due to the
larger number of constraints, the time it takes to solve ESN-
MPC decreases with increasing the number of pedestrians
(See Fig. 9(d)). However, even with 30 pedestrians, the
median of the frequency is higher than the required minimum
for Digit implementation as indicated by the dashed red
line in Fig. 9(d). Finally, ESN-MPC can maintain a safe
distance to the pedestrians in all three testing environments
as indicated in Fig. 9(e).

VIII. CONCLUSION

This study introduced a novel framework for bipedal robot
navigation in human environments, addressing a significant
gap in the field of locomotion navigation. The proposed
framework, which comprises the Pedestrian Prediction Net-
work (PPN) and the Ego-agent Social Network (ESN),
leverages zonotopes for efficient reachability-based planning
and collision checking. Integrating ESN with MPC for
step planning for Digit showed promising results for safe
navigation in social environments. Future work will explore
exploiting the zonotope parameterization for modeling ROM
and full-order model discrepancies, introducing locomotion-
specific losses to ESN training to facilitate safe hardware
experimentation, and quantifying social acceptability.
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