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Robust-Locomotion-by-Logic: Perturbation-Resilient
Bipedal Locomotion via Signal Temporal Logic

Guided Model Predictive Control
Zhaoyuan Gu, Yuntian Zhao, Yipu Chen, Rongming Guo, Jennifer K. Leestma, Gregory S. Sawicki, and Ye Zhao

Abstract—This study introduces a robust planning framework
that utilizes a model predictive control (MPC) approach, en-
hanced by incorporating signal temporal logic (STL) specifica-
tions. This marks the first-ever study to apply STL-guided tra-
jectory optimization for bipedal locomotion, specifically designed
to handle both translational and orientational perturbations. Ex-
isting recovery strategies often struggle with reasoning complex
task logic and evaluating locomotion robustness systematically,
making them susceptible to failures caused by inappropriate
recovery strategies or lack of robustness. To address these issues,
we design an analytical robustness metric for bipedal locomotion
and quantify this metric using STL specifications, which guide
the generation of recovery trajectories to achieve maximum
locomotion robustness. To enable safe and computational-efficient
crossed-leg maneuver, we design data-driven self-leg-collision
constraints that are 1000 times faster than the traditional
inverse-kinematics-based approach. Our framework outperforms
a state-of-the-art locomotion controller, a standard MPC without
STL, and a linear-temporal-logic-based planner in a high-fidelity
dynamic simulation, especially in scenarios involving crossed-leg
maneuvers. Additionally, the Cassie bipedal robot achieves robust
performance under horizontal and orientational perturbations
such as those observed in ship motions. These environments are
validated in simulations and deployed on hardware. Furthermore,
our proposed method demonstrates versatility on stepping stones
and terrain-agnostic features on inclined terrains.

Index Terms—Signal temporal logic, Trajectory Optimization,
Bipedal locomotion, Push recovery, Robustness quantification.

I. INTRODUCTION

B IPEDAL robots possess superior physical capabilities
to perform agile maneuvers, offering great potential in

various outdoor applications that often involve complex terrain
or environmental perturbations [1]–[3]. Existing studies have
demonstrated impressive locomotion performance through the
reactive regulation of angular momentum [4], [5] or the
predictive control of foot placement [6], [7]. Diverging from
these approaches, our research aims to provide formal guar-
antees on a robot’s ability to recover from perturbations via
temporal-logic-based formal control methods. To achieve this,
our research centers around designing formal requirements
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Fig. 1: Illustration of a bipedal walking robot synthesizing recovery maneuvers
based on signal temporal logic specifications (green formulas) when subjected
to unknown perturbations. (a) The robot takes wide steps or leg-crossing steps.
(b) The robot selects stepping stones to traverse the challenging terrain.

(i.e., task specifications) for bipedal locomotion push recovery,
and employing a signal temporal logic (STL)-based trajectory
optimization (TO) to offer multifaceted formal guarantees.

In the domain of formal methods, STL [8], [9] is a math-
ematically precise language for defining specifications across
various task objectives. Following these task specifications,
a synthesized protocol ensures task completion by either
providing a feasible plan or reporting infeasibility. Notably,
STL admits quantitative semantics to assess the robustness
of specification satisfaction. In this work, by integrating STL
specifications into a TO, we solve optimal trajectories that
ensure task completion with enhanced robustness against dis-
turbances. As shown in Fig. 1, the STL-based TO achieves
robust locomotion tasks under environmental perturbations by
simultaneously (i) making decisions on the robot’s actions
(i.e., foot placements, center-of-mass apex state, and specific
stepping stone to step on) and (ii) synthesizing corresponding
continuous trajectories. To the best of the authors’ knowledge,
this work is the first study to leverage an STL-based TO for
bipedal locomotion.

The proposed framework is shown in Fig. 2. As a core
component of the framework, a model predictive controller
(MPC) online executes the TO. In the TO, STL-based task
specifications are encoded as an objective function to enhance
task satisfaction and locomotion robustness. For bipedal lo-
comotion, our task specifications are comprised of formally
described objectives such as maintaining stability in a planning
horizon and constraining foot placement regions. In addition
to the STL specifications, the TO ensures safety against
self-collision via a set of data-driven kinematic constraints.
Solving the TO generates an optimal reduced-order plan that
contains the center of mass (CoM) and swing-foot trajectories,
including the optimized walking step durations. From these
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Fig. 2: Block diagram of the proposed STL-MPC framework. (a) The STL specification φloco specifies robust locomotion tasks such as recovery within
two steps after perturbation. (b) A set of neuron-network-based constraints is trained with kinematics data to enforce the leg self-collision. (c) The proposed
STL-MPC encodes the STL specification as a cost function and solves subsequent reduced-order keyframes at 50 Hz. (d) A whole-body passivity-based
controller tracks the desired trajectory at 2000 Hz. (e) Hardware walking experiments on our bipedal robot Cassie.

trajectories, a full-body motion is derived through inverse
kinematics and tracked by a passivity-based low-level con-
troller. We thoroughly evaluate the proposed framework in
simulations involving perturbations to both the robot’s body
and the terrain. Hardware experiments are conducted on a
Computer-Aided Rehabilitation Environment (CAREN) [10]
and a bump emulation (BumpEm) system [11].

This work is an evolved study from our previously published
conference paper [12] with detailed mathematical formula-
tion, extensive simulation, and hardware experiments. This
work is also distinct from our previous study [13] in the
following aspects. First, instead of a hierarchical task and
motion planning (TAMP) framework using abstraction-based
LTL [13], this study employs an integrated TO that encodes
STL specifications. The LTL-based planner employs a hierar-
chy to decouple the discrete decision-making and continuous
motion planning, which may induce an infeasibility issue when
executing the high-level task plan at the low-level motion
planner. STL stands out as it allows real-valued dense-time
signals [14]. This property eliminates the mismatch between
high-level discrete action sequences and low-level continuous
motion plans. Specifically, the TO is solved in a MPC fashion
with continuous foot trajectory updated at 50 Hz, whereas
LTL makes decisions on discrete foot locations only once per
walking step. This dense-time decision-making feature allows
the TO to achieve reactive planning without the middle-level
behavior trees proposed in [13], thus simplifying the LTL-
based hierarchical framework.

Second, this proposed method integrates the STL task speci-
fication inside TO as an objective function, enabling the TO to
provide a least-violating solution when the STL specification
cannot be strictly satisfied. Conversely, the LTL-based planner
in [13] enforces the specification satisfactions strictly and
cannot handle large perturbations beyond a predefined bound.

Third, the proposed optimization adopts more accurate kine-

matics constraints and a faster online workflow to ensure leg
self-collision avoidance. Instead of calculating the distances
between a set of points on the robot [13], we approximate the
leg geometry with capsules and train multi-layer perceptrons
to capture the minimum distances between these capsule pairs.

We summarize our core contributions as follows:

• This work is the first study to incorporate STL-based
formal methods into TO for legged locomotion. We
design an STL task specification to achieve safe bipedal
locomotion under perturbation.

• We propose a Riemannian robustness metric that evalu-
ates the walking trajectory robustness based on reduced-
order locomotion dynamics. The Riemannian robustness
is seamlessly encoded as an STL specification and is
optimized in the TO for robust locomotion.

• We design a rapid data-driven self-collision avoidance
workflow to enable safe crossed-leg maneuvers. We in-
tegrate multi-layer perceptrons (MLPs) that approximate
the distances between collision-prone body geometries as
kinematic constraints in the TO.

• We conduct extensive experiments to demonstrate that our
STL-based TO outperforms state-of-the-art methods from
multiple perspectives: (i) Our framework utilizes crossed-
leg maneuvers to achieve a more robust performance
than a foot placement controller that uses an angular-
momentum-based linear inverted pendulum (ALIP) [5];
(ii) Our STL-based TO outperforms the mixed-integer
programming (MIP) encoding method in terms of com-
putational speed; (iii) The STL-based TO shows a higher
perturbation resistance capability compared with a stan-
dard MPC without STL and a linear-temporal-logic-based
(LTL-based) planner [13]; (iv) Our framework exhibits
remarkable generalizability across various challenging
terrains, including stepping stones and dynamic moving
surfaces with rotational perturbations.
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This paper is organized as follows. Sec. II reviews re-
lated works on bipedal locomotion push recovery and formal
methods. Sec. III introduces the system dynamics and the
concept of keyframe-based locomotion. Sec. IV ourlines the
fundamentals of STL. Sec. V presents our specification design
for locomotion tasks, followed by the problem formulation of
the proposed STL-based TO in Sec. VI. The experiment setup
is detailed in Sec. VII. Simulation and hardware results are
shown in Sec. VIII and Sec. IX, respectively. We discuss the
limitation and future directions in Sec. X. Finally, we conclude
the paper in Sec. XI.

II. RELATED WORK

A. Planning and Control for Bipedal Push Recovery

Recovery from external perturbations has been a significant
focus in bipedal robot locomotion [15], [16]. Various strategies
such as hip, ankle, foot placement, and gait switching [17]
have been explored to handle external perturbations [18], [19].
Notably, stepping strategies have shown superior performance
in managing strong disturbances, by identifying robust step
locations. For example, Englsberger et al. [20] develop a foot
placement method based on the capture point that integrates
center of mass (CoM) vertical motion and angular momentum.
Feng et al. [21] apply differential dynamic programming
for nominal trajectory design, complemented by a quadratic
program (QP) to optimize the foot placement for tracking
control. Xiong et al. [22] propose a method to modify the
foot location, leveraging a hybrid reduced-order model (RoM)
and its step-to-step dynamics. These varied stepping strategies
highlight the importance of proactive planning and adaptive
control in robust bipedal locomotion.

Our work focuses on the stepping strategy because the
bipedal robot Cassie has limited centroidal momentum due
to its small torso and relatively weak ankle actuation. Further-
more, our method has a significant emphasis on generating
safe swing-leg trajectories and avoiding leg self-collisions
in complex scenarios such as leg-crossing. Our approach is
notably different from the work of Gibson et al. [23], where
they formulate a model predictive controller (MPC) based
on an angular momentum linear inverted pendulum (ALIP).
Several major differences are worth noting. First, unlike ALIP-
MPC, our method formally incorporates high-level task speci-
fications. Second, our method allows for varying step durations
that are better suited for disturbance recovery. Moreover,
ALIP-MPC focuses on using terrain information to assist
locomotion. Its performance is heavily dependent on the op-
erator’s ability to provide a real-time estimation of the terrain
information. Our framework focuses on recovery from terrain
perturbations. More importantly, our framework is terrain-
perturbation-agnostic, meaning that it handles perturbed terrain
without estimating environmental information. In this study,
we will use ALIP-MPC as a baseline and demonstrate the
enhanced blind walking performance of our approach.

While numerous studies have focused on the robustness
of locomotion under ad hoc horizontal perturbations, such
as ball hitting [24] or stick pushing [25], there is a notable
research gap in understanding how systematic environmental

characterizations, particularly omnidirectional perturbations,
impact the performance of push recovery. [26], [27] has pri-
marily explored the effects of terrain orientation and periodic
height variations on locomotion stability. In this study, we
explore omnidirectional perturbations, including orientational
ones, using the Computer-Aided Rehabilitation Environment
(CAREN) system [10] and comprehensively investigate the
impact of these perturbations on locomotion robustness.

Formally quantifying robustness, defined as the system’s
tolerance to disturbances [28], is essential for formulating
effective recovery strategies [29]. Previous research has largely
focused on assessing the robustness based on a RoM, either by
evaluating the deviation from a limit cycle [30] or a Poincaré
map [31]. Built on top of a similar concept, our work extends
the Riemannian robustness proposed by Zhao et al. [32],
which quantifies the Riemannian distance between reduced-
order trajectories within a CoM phase space. This approach
is particularly advantageous, as the Riemannian distance is
consistent with the inherent dynamics of inverted pendulum
systems and offers a more intuitive metric for measuring the
distance between two different CoM trajectories. By lever-
aging the concept of Riemannian robustness, we propose a
novel robustness-aware trajectory optimization (TO) aimed at
enhancing stability for bipedal push recovery.

B. Leg Self-Collision Avoidance

Push recovery methods of bipedal locomotion often employ
RoMs [33], which do not fully capture the configurations and
geometries of a robot’s leg links. This limitation becomes
critical in scenarios requiring self-collision avoidance. On the
other hand, a computational challenge arises when taking into
account full-body kinematic constraints online. To circumvent
this challenge, heuristic constraints on foot placements, such
as box constraints [21], [23], are commonly adopted. While
these constraints simplify the computational process, they limit
the range of collision-free motions and often rule out crossed-
leg maneuvers that are physically feasible. This crossed-leg
maneuver is an essential ingredient during highly dynamic
locomotion or in extremely constrained environments such as
stepping stones (see Fig. 1(b)).

To prevent self-leg-collision, Liu et al. [34] introduce a
control framework that considers self-collision in the context
of disturbances, but does not study advanced multi-step or non-
periodic recovery strategies. Marew et al. [35] present a whole-
body controller using Riemannian motion policies to avoid
self-collisions and recover from disturbances using crossed-leg
motions. Griffin et al. [25] adopt heuristic rules for selecting
convex step regions to achieve crossed-leg motions. Khazoom
et al. [6] propose a whole-body controller using control barrier
functions (CBF) that prevent self-collision at the low-level
tracking, but the controller can restrict the robot from reaching
the desired step location due to the CBF constraints. To ad-
dress the push recovery and self-collision avoidance problem
simultaneously, we design neural-network-based constraints
and integrate them into a TO. These constraints enable fast
and accurate calculation of collision distances, which facilitate
the implementation of our TO online in a MPC fashion.



4

C. Step Duration Adaptation

Step duration adaptation is gaining increasing attention in
the locomotion community as it reveals the capability of
improving the robustness of the stepping strategy [36], [37].
For instance, when a robot is perturbed towards a failure-prone
state, a reduced step duration can rapidly reset the robot’s state
and stop an aggressive acceleration. However, identifying an
optimal step duration presents a notable challenge because
introducing step durations as decision variables in a TO
typically results in a nonconvex problem. Consequently, step
duration is often empirically specified in existing methods
[23], [38]. However, such empirical methods limit the space
of feasible solutions and often lead to conservative motions.

Recent advancements have focused on optimizing step du-
ration by solving either a computationally expensive mixed-
integer program (MIP) [39], [40] or a linear complementarity
problem [41]. Alternative methods decouple the motion plan-
ning and duration adaptation, addressing them as two separate
steps. For example, Griffin et al. [42] propose to first plan
a swing-foot trajectory, and then adapt the duration of the
planned trajectory separately. Insights from human data [43]
indicate that the optimal recovery strategy alters durations for
multiple walking steps.

To optimize the step duration over a multi-step horizon,
numerous studies [44]–[46] manage to formulate and solve
nonlinear programs (NLPs), despite their nonconvex property.
[44] introduces hyperbolic step time variables in a nonlinear
MPC (NMPC). However, the NMPC considers only discrete
contact-switching instances, thus making it impossible to
impose constraints during the continuous swing phase, such
as self-collision avoidance constraints. [45] optimizes the time
step intervals in an NLP that effectively modulates the step
duration. To solve the optimal contact timing, we formulate our
step duration adaptation problem for multiple walking steps
using direct multiple-shooting, inspired by the work of [46].

D. Temporal-logic-based Formal Methods

Formal methods, such as temporal logic, are increasingly
popular in robotics because of their ability to reason about
both discrete actions and continuous motions [47]–[49]. In
high-level task planning, reactivity is critical to account for
environmental changes at runtime. To achieve reactive task
planning, linear-temporal-logic-base (LTL-based) reactive syn-
thesis [47], [50] has been widely explored. These methods
synthesize automata that generate safe and provably correct
robot actions in response to potentially adversarial environ-
mental events. Recent works [51]–[54] adopt LTL to synthe-
size reactive legged navigation plans over rough terrains. Our
earlier work [13] uses LTL to synthesize a safe automaton
(i.e., decision-maker) for locomotion push recovery tasks.

Although the automaton-based method provides a formal
guarantee of specification satisfaction, it requires a non-trivial
abstraction (i.e., system discretization), which does not scale
well to high-dimensional systems and is often limited to coarse
cell discretization of the system state space [55]. In addition,
unexpected changes or disturbances encountered at runtime

between two consecutive discrete events can cause failures in
the actions, and further pose risks to robot hardware [56].

Distinct from the conventional automaton-based approaches,
signal temporal logic (STL) [57] is an abstraction-free method
that can be formulated as an optimization for synthesizing safe
and correct locomotion plans. For instance, [58] formulates an
STL-based TO for high-dimensional nonlinear robotic manip-
ulators. [59] uses STL to tackle the multi-drone reach-avoid
problem. However, to the best of the authors’ knowledge, no
existing STL studies have focused on bipedal locomotion, such
as a Cassie robot with 20 degrees of freedom, let alone the
more challenging push recovery problem.

E. STL Specification Encoding Methods

STL specifications are encoded into an optimization prob-
lem in two major ways. A classic way to encode STL speci-
fications is to introduce binary variables into the optimization
problem [57], effectively constructing a MIP. However, these
MIP-based synthesis methods [60], [61] are often computa-
tionally expensive due to the exponential complexity with
respect to the number of binary variables involved, hampering
the real-time performance of reactive planning for complex
systems such as legged robots.

Another encoding approach [62], which excludes binary
variables completely, leverages a smooth approximation of a
task specification formula. This smooth approximation results
in a NLP, wherein the STL specification is encoded as either
an objective or a constraint. The benefit of this approach is
that it exploits the efficiency of gradient-based optimization
techniques to solve the synthesis problem, avoiding the diffi-
culty of handling binary variables. In this study, we adopt the
smooth encoding method and experimentally demonstrate its
computational advantage over the MIP method, specifically in
the context of bipedal locomotion.

III. SYSTEM DYNAMICS AND RIEMANNIAN ROBUSTNESS

A. Hybrid Reduced-order Model for Bipedal Walking

In this study, we propose a new reduced-order model ex-
tending the traditional linear inverted pendulum model (LIPM)
[33], [63] to model the center-of-mass (CoM) dynamics of a
bipedal robot with its swing-foot position and velocity. The
traditional LIPM has a point mass, denoted as the robot’s CoM,
and a mass-less telescopic stance leg that maintains the CoM
height. The locomotion dynamics are hybrid due to discrete
contact events. In between contacts, each walking step has the
following continuous dynamics:

ẋ = f j(x) + gj(x)τ ,

where x := [pCoM;vCoM] is the system state, pCoM,vCoM ∈
R3 are the position and velocity of the CoM in the local stance-
foot frame, respectively, as shown in Fig. 3. The superscript j
is the index of a walking step. τ is the input torque about the
CoM. Due to Cassie’s relatively small torso that is maintained
upright during walking, τ is close to zero. Assuming τ = 0,
the LIPM dynamics [33] with a constant height pCoM,z are[

p̈CoM,x

p̈CoM,y

]
= ω2

[
pCoM,x

pCoM,y

]
, (1)
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Fig. 3: Our reduced-order modeling of the Cassie robot as a 3D inverted
pendulum model with all of its mass concentrated on its CoM. The massless
telescopic leg maintains a constant CoM height. The swing foot position is
included in the proposed model to deal with leg self-collision avoidance.

where ω =
√

g/pCoM,z and g is the gravity constant. The
subscripts x and y mean the sagittal and lateral components
of the vector.

Conventionally, when the robot foot contact switches, a
reset map between two consecutive walking steps models
the change between the pre-contact state x− and the post-
contact state x+: x+ = ∆j→j+1(x

−). Given that the LIPM
incorporates only a singular point mass, this study does not
model the rigid-body impact dynamics associated with estab-
lishing and breaking contact. Also, we assume the velocity
transition between walking steps is smooth, although a non-
smooth version can be derived in a straightforward manner.
Due to the use of a local coordinate, the LIPM state reset map
follows the equations: p+

CoM = p−
CoM−p−

swing,v
+
CoM = v−

CoM,
where p−

swing ∈ R3 is the swing foot location before contact.
In this study, we design a variant of the traditional LIPM

that incorporates the modeling of the swing-foot position and
velocity. The swing leg is considered to be massless and
therefore does not affect the CoM dynamics. As a result,
the state vector is augmented as x̄ := [pCoM;vCoM;pswing],
pswing ∈ R3. We then define the swing foot velocity ṗswing as
the control input ū = ṗswing. As shown in Fig. 4, our model
has a medium complexity that lies between the traditional
LIPM and the full-order model. Such design comprises the
advantages of both: it provides a fast and analytical solution for
CoM dynamics while allowing full-body collision checking.

To find the numerical solution of the augmented LIPM
dynamics, we use a second-order Taylor expansion of (1). The
CoM state (i.e., position and velocity) can then be obtained
via numerical integration (e.g., Euler integration). Moreover,
we define y = [x̄; ū] ∈ R12 as the system output, which will
be used for signal temporal logic (STL) definition in Sec. IV.
Our addition of the swing-foot position pswing, together with
pCoM, uniquely determines the leg configuration of the Cassie
robot (e.g., via inverse kinematics), allowing us to plan a
collision-free trajectory using only the RoM in Sec. VI-C. The
augmented state is estimated from the joint encoder and an
IMU sensor in practice.

model complexity

linear inverted pendulum linear inverted pendulum 
with swing foot and 
self-collision checking

full-order model

Fig. 4: Our model has a medium complexity that lies between the linear
inverted pendulum model and the full-order model. It preserves the ability to
reason about leg collision of the full-order model, yet maintains the simplicity
of inverted-pendulum models that allow for online trajectory optimization.

At contact time, the new reset map x̄+ = ∆̄j→j+1(x̄
−)

uses the swing foot location to reset the system states and
transition to the next walking step:p+

CoM

v+
CoM

p+
swing

 =

p−
CoM − p−

swing

v−
CoM

−p−
swing

 . (2)

The hybrid system transitions when the system state reaches
the switching condition S := {x̄|pswing,z = hterrain}, where
hterrain is the terrain height.

Note that the position and velocity parameters above are
expressed in a local coordinate attached to the stance foot. At
a foot strike event, the swing foot transitions to become the
new stance foot instantaneously, and all local position variables
change accordingly. In the context of dynamic locomotion, the
double-support contact phase is often short (approximately 40
ms in our experiments), which supports the assumption of the
instantaneous contact switch in our study.

B. Keyframe-based Non-periodic Locomotion

In general, the bipedal locomotion process can be highly
non-periodic due to rough terrain or unexpected environmental
perturbations. To characterize this locomotion non-periodicity
in the reduced-order state space of the robot, we adopt the
concept of keyframe proposed in our previous work [32], [64].
As a critical locomotion state, the keyframe characterizes a
non-periodic walking step in a reduced-order space.

Definition III.1 (Locomotion keyframe). Locomotion
keyframe is defined as the robot’s CoM state (pCoM,vCoM)
at the apex, i.e., when the CoM is over the stance foot in the
sagittal direction (pCoM,x = 0), as shown in Fig. 9(a).

A keyframe may not be defined for every walking step,
where a walking step is defined as the smooth motion between
two consecutive contact events (see Fig. 7). For a periodic
walking gait, a keyframe state always exists in every walking
step. However, this property does not always hold under
external perturbations. For example, if the perturbation pushes
the CoM to move backward, the robot loses the momentum
to pass over the apex state (see Fig. 5(a, c)). Conversely, a
forward perturbation of the CoM might result in bypassing
the subsequent apex state entirely (see Fig. 5(b, d)). The
absence of apex states during non-periodic locomotion poses
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perturbation
nominal CoM trajectory

Fig. 5: This illustration depicts two scenarios where a keyframe is absent in
the state space, due to perturbations in the backward and forward directions.
We assume perturbation causes an instantaneous change to the CoM state,
leading to subsequent non-periodic walking patterns.

challenges to the control synthesis in our previous phase-
space planning method [13], which requires a keyframe for
every walking step to make discrete locomotion decisions. To
address this challenge, this study proposes a signal-temporal-
logic-based optimization method. This method enables robust
planning in the absence of a keyframe due to perturbations,
provided that a keyframe is eventually established within the
planning horizon (e.g., within two walking steps).

C. Robustness Quantification in the CoM State Space

The robustness measure is a crucial metric for quantifying
locomotion stability and resilience to environmental perturba-
tions. The robustness measure assesses the system’s ability to
tolerate perturbation-induced deviations from nominal states.

To quantify the robustness measure, we design a robust
region centered around a nominal keyframe state in a Rie-
mannian space, and will further integrate it as a cost function
within the trajectory optimization (TO) in Sec. VI. As shown
in Fig. 6, the Riemannian space [32] is a reparameterization of
the Euclidean CoM phase space using tangent and cotangent
locomotion manifolds, represented by a pair (σ, ζ). σ repre-
sents the tangent manifold along which the CoM dynamics
evolve, while ζ represents the cotangent manifold orthogonal
to σ. These manifolds can be derived analytically from the
LIPM dynamics in (1); the detailed derivation is in Appendix
A. Within the Riemannian space, we define a robust keyframe
region that enables stable walking. This region is referred to
as the Riemannian region.

Definition III.2 (Riemannian region). The Riemannian region
R is the area centered around the nominal keyframe state

y [m]

y [m/s]

x [m]

x [m/s]

nominal keyframe
tangent manifold
cotangent manifold
nominal CoM trajectory

sagittal phase space lateral phase space

right-stance
region

left-stance
region

Fig. 6: An illustration of a phase-space Riemannian partition and a periodic
walking trajectory.

(σnom, ζnom).

Rx := {(pCoM,x, vCoM,x)|σ(pCoM,x, vCoM,x) ∈ Σx,

ζ(pCoM,x, vCoM,x) ∈ Zx}
Ry := {(pCoM,y, vCoM,y)|σ(pCoM,y, vCoM,y) ∈ Σy,

ζ(pCoM,y, vCoM,y) ∈ Zy}

where Rx and Ry define the Riemannian region R in the
sagittal and lateral phase space, respectively. σ(·) and ζ(·) are
the tangent and cotangent manifolds. Σ = [σnom−δσ, σnom+
δσ] and Z = [ζnom− δζ, ζnom+ δζ] are the range of manifold
coefficients for σ and ζ, where δσ, δζ are the predefined
robustness margins.

The sagittal and lateral Riemannian regions in the phase
space are illustrated in Fig. 6 as shaded areas. The bounds of
these Riemannian regions are curved in the phase space and
they obey the LIPM locomotion dynamics. Notably, while two
Riemannian regions exist in the lateral phase space, only one
is active at any given time, corresponding with the stance leg
labeled in Fig. 6. In this study, we leverage the Riemannian
region to define the Riemannian robustness as a measure of
locomotion robustness.

Definition III.3 (Riemannian robustness). The Riemannian
robustness ρriem is the minimum signed distance of an actual
keyframe CoM state x to all the bounds of the Riemannian
regions. Namely, ρriem := min8l=1(rl(x)), where rl(x) is the
signed distance to the lth bound of the Riemannian regions,
as illustrated in Fig. 9(c). We have a total of 8 bounds, as the
sagittal and lateral Riemannian regions each have 4 bounds.

The definition above indicates that a keyframe inside a
Riemannian region has a positive robustness value, represent-
ing a stable walking step; conversely, a keyframe outside a
Riemannian region gets a negative robustness value, indicating
an unstable deviation from the nominal locomotion manifold.
Furthermore, a keyframe positioned at the geometric center
of a Riemannian region has the least deviation, i.e., the
maximum robustness. In the next section, our goal is to
leverage Riemannian robustness as an objective function and
use STL-based TO to plan robust trajectories for locomotion
push recovery. As a conceptual illustration, Fig. 7 shows one of
such robust trajectories in the lateral phase space. A disturbed
CoM state progresses through intermediate keyframes and
eventually recovers to a stable keyframe.
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Fig. 7: An illustration of a phase-space Riemannian region and the lateral
keyframe transition for disturbance recovery.

IV. PRELIMINARIES OF SIGNAL TEMPORAL LOGIC

As conventional trajectory optimization (TO) methods pri-
marily generate optimal robot motions based on state or
control objectives, they may encounter challenges when incor-
porating task specifications encoded by logical objectives. For
instance, the keyframe state (Def. III.1) is always achieved
when the CoM state is at an apex. For another example, a
robot is designed to eventually recover within a finite planning
horizon after being perturbed.

Signal temporal logic (STL) provides a framework to ex-
press these logical objectives in the form of task specifica-
tions, which are incorporated in a TO as objectives. This
specification-integrated TO effectively synthesizes control se-
quences that not only comply with task specifications but also
enhance the locomotion robustness of the resulting trajectory.
These unique features make STL an effective approach for
tackling complex locomotion tasks that involve logical objec-
tives, offering capabilities that cannot be easily achieved by
traditional TO methods.

A. Signal Temporal Logic: Syntax and Robustness Degree

STL [8] uses logical symbols of negation (¬), conjunction
(∧), and disjunction (∨), as well as temporal operators such
as eventually (♢), always (□), and until (U) to construct
specifications. A specification formula is defined with the
following syntax:

φ := π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
♢[t1,t2] φ | □[t1,t2] φ | φ1 U[t1,t2] φ2

(3)

where φ, φ1, and φ2 are STL specifications. π := (µπ(y) −
c ≥ 0) is a boolean predicate, where µπ : Rp → R is a vector-
valued function, c ∈ R, and the signal y(t) : R+ → Rp is a p-
dimensional vector at time t. For a dynamical system, a signal
y(t) is the system output (in our study, y = [x̄; ū] ∈ R12).

The time bounds of an STL formula are represented with
t1 and t2, where 0 ≤ t1 ≤ t2 ≤ tend and tend is the end of
a planning horizon. We denote a specific segment of a signal

disjunction

conjunction
STL parse tree

STL parse tree

robustness tree

robustness tree

Fig. 8: Composition of an STL formula φ and its robustness degree ρφ. Each
STL formula is represented in a tree whose child nodes combine in disjunction
(top row) or in conjunction (bottom row). The corresponding robustness trees
(on the right side) take the same structure, and combine with max and min
functions, respectively.

within the interval [t1, t2] as y([t1 : t2]). The STL semantics
(y, t) |= φ indicates that the segment of the signal y([t : tend])
satisfies φ. The validity of STL specification is inductively
defined using the rules in Table I.

TABLE I
VALIDITY SEMANTICS OF SIGNAL TEMPORAL LOGIC

(y, t) |= π ⇔ µπ(y(t))− c ≥ 0
(y, t) |= ¬φ ⇔ (y, t) ̸|= φ
(y, t) |= φ1 ∧ φ2 ⇔ (y, t) |= φ1 ∧ (y, t) |= φ2

(y, t) |= φ1 ∨ φ2 ⇔ (y, t) |= φ1 ∨ (y, t) |= φ2

(y, t) |= ♢[t1,t2]φ ⇔ ∃t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ

(y, t) |= □[t1,t2]φ ⇔ ∀t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ

(y, t) |= φ1U[t1,t2]φ2 ⇔ ∃t′ ∈ [t+ t1, t+ t2], (y, t
′
) |= φ2∧

∀t′′ ∈ [t+ t1, t
′
](y, t

′′
) |= φ1

STL provides a unique capability of admitting quantitative
semantics, which denotes the robustness degree [65] of how
strongly a formula is satisfied by a signal [14]. A positive
robustness value indicates satisfaction, and the magnitude
represents the margin of robustness against disturbances. In
a dynamic environment involving terrain perturbations, the
robustness degree indicates a margin of locomotion maneu-
verability (i.e., the degree of adaptability) to react without
violating robot task specifications [59]. When incorporating
the robustness degree into TO, it also helps to generate a mini-
mally specification-violating trajectory if the task specification
cannot be satisfied strictly [60]. Table II shows the semantics
of the robustness degree of STL.

TABLE II
ROBUSTNESS DEGREE SEMANTICS

ρπ(y, t) = µπ(y(t))− c
ρ¬φ(y, t) = −ρφ(y, t)
ρφ1∧φ2 (y, t) = min(ρφ1 (y, t), ρφ2 (y, t))
ρφ1∨φ2 (y, t) = max(ρφ1 (y, t), ρφ2 (y, t))

ρ
♢[t1,t2]φ(y, t) = max

t
′∈[t+t1,t+t2]

(ρφ(y, t
′
))

ρ
□[t1,t2]φ(y, t) = min

t
′∈[t+t1,t+t2]

(ρφ(y, t
′
))

ρ
φ1U[t1,t2]φ2 (y, t) =

max
t
′∈[t+t1,t+t2]

(min(ρφ2 (y, t
′
),

min
t
′′∈[t+t1,t

′
]
(ρφ1 (y, t

′′
))))
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In the implementation of STL specification, an STL formula
is represented by logical combinations of its subformulas. Such
logical combinations are organized in an STL parse tree [66],
[67]. Two simple STL parse trees are shown in Fig. 8: the
eventually operator ♢ integrates subformulas using disjunction,
whereas the always operator □ combines subformulas with
conjunction. A leaf node corresponds to a predicate π, and a
parent node represents the logical combination of its subtrees.
For complex specifications with cascaded STL logical oper-
ations, the corresponding STL parse tree has multiple layers
and can be constructed based on STL semantics in Table I.

Correspondingly, each STL parse tree is associated with a
robustness tree, inheriting the same tree structure. The robust-
ness tree is different from the STL parse tree in two ways.
First, STL parse tree nodes represent logical satisfactions
whereas robustness tree nodes represent robustness degrees.
Second, in the robustness tree, the combination of subtrees
uses min and max functions, replacing the logical symbol ∧
and ∨ in the STL parse tree, respectively. To represent the
robustness tree, we employ a pre-order traversal approach,
resulting in a vector ρφ(y, t) that encapsulates all tree nodes.
This pre-order traversal ensures that the robustness tree’s
root node is positioned as the first element of the vector,
represented by the scalar ρφ(y, t). Later, this ρφ(y, t) will
be encoded as decision variables in our TO and ρφ(y, t) will
be part of the cost function.

V. PROBLEM FORMULATION

In this section, we study the synthesis of locomotion control
using signal temporal logic (STL). Our objective is to plan a
control sequence for a reduced-order bipedal walking system,
ensuring locomotion resilience to environmental perturbations.
To accomplish this, the synthesized control sequence must be
both correct and dynamically-feasible. The notation of correct
indicates that the continuous-time trajectory satisfies a given
specification φ, and by dynamically-feasible, we mean that the
trajectory satisfies the reduced-order dynamics of the bipedal
system. In addition, we aim to enhance the robustness degree
of the task specifications as detailed later in this section.

To address this problem, we use the keyframe concept
described in Sec. III-B: the hybrid locomotion trajectory is
segmented by contact-switching events into multiple walking
steps, each parameterized by a keyframe state. The problem
then boils down to planning a series of keyframe states.
The sequence of keyframe states forms a hybrid trajectory
satisfying the desired specifications. We introduce the specifi-
cation design in the following subsection and the optimization
approach for keyframe synthesis in the next section.

A. Specification Design for Perturbation-resilient Locomotion
This subsection elaborates on the design of the STL loco-

motion specification φloco and explains the stability guarantee
it provides. We interpret locomotion stability as a liveness
property in the sense that a keyframe with positive Riemannian
robustness will eventually occur in the planning horizon.

Keyframe specification: To enforce properties on a
keyframe, we first describe it using an STL formula φkeyframe,
checking whether or not a signal y(t) is a keyframe.

sagittal walking direction

left-stance
region

right-stance
region

(a)

y [m]

y [m/s]

x [m]

x [m/s]

keyframe
tangent manifold
cotangent manifold

(b)

sagittal phase space lateral phase space(c)

F F

x
yx

apex

z

Fig. 9: Illustration of the locomotion specifications. (a) The highlighted state
in the middle (i.e., the apex state) is the keyframe of a walking step. (b)
Cassie’s foot is specified to step inside the lateral bounds of the treadmill.
(c) The grey areas are the predefined Riemannian regions in the sagittal and
lateral phase spaces. The signed distances to the bounds of the Riemannian
regions are indicated by the curved arrows.

Bipedal locomotion inherently has a fixed event sequence,
alternating between keyframe and contact-switching events.
However, the timing of these events is not fixed in non-periodic
walking. For example, the keyframe event kj must exist in the
jth walking step (between two contact events Cj and Cj+1),
but the time of the keyframe occurrence can vary, depending
on the center of mass (CoM) state within the walking step.
Consequently, we cannot predetermine a certain timestep to
be the keyframe state. This is a logical constraint where a
traditional optimization constraint fail to model. On the other
hand, STL is suitable to solve this issue by applying a logical
formula by checking each timestep whether it is a keyframe.

According to the keyframe definition (Def. III.1), the
keyframe state at apex happens when the CoM surpasses
the foot contact in the sagittal direction, formally specified
as an STL formula: φkeyframe := (µπ

CoM,x(y) = 0), where
µπ
CoM,x(y) = pCoM,x. In the implementation, since the STL

predicate does not support equality constraints, we use two
inequality conditions, i.e., φkeyframe := (µπ

CoM,x(y) ≤ 0) ∧
(µπ

CoM,x(y) ≥ 0), to check whether or not pCoM,x = 0.
Riemannian robustness: The robustness of a walking step is

measured as the minimum Riemannian distance between the
keyframe and a set of bounds of the Riemannian region. To
achieve robust locomotion, the task specification ensures that
the signal y of a keyframe resides in the Riemannian region:

φriem =

8∧
l=1

(rl(y) ≥ 0) (4)

where rl(y) is the riemannian distance from the keyframe
to the lth bound of the Riemannian region, as introduced in
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Sec. III-C. Since our robustness is defined for both sagittal and
lateral CoM state space and the Riemannian region in each
state space has 4 bounds, we have 2× 4 = 8 bounds in total.
The φriem monitors whether or not the signal y is inside the
Riemannian region, and its robustness degree ρφriem evaluates
the robustness of the keyframe in Riemannian space.

Locomotion stability: To achieve locomotion stability, we
enforce a liveness property of the signal in the sense that
a steady-state keyframe will eventually be achieved in the
planning horizon, thus making sure the robot always recovers
to a steady-state gait. This is represented in a stability specifi-
cation: φstable = ♢[TN

contact,T
N+1
contact]

(φkeyframe ∧ φriem), where
the TN

contact and TN+1
contact are the time for N th and N + 1th

contact, and represent the time bounds of the last walking step
in the planning horizon.

Stability is achieved if the keyframe in the last walking
step falls inside the corresponding Riemannian robust region.
In our study, we need to examine only the last walking step
because in case stability is achieved in an earlier walking step
within the horizon, the robot will continue periodic walking
and the last walking step will trivially satisfy φstable.

Locomotion step width bound: For locomotion in a narrow
space (e.g., a treadmill with limited width), we use the safety
specification □φfoot as a limit of the foothold to land inside of
the treadmill’s edges. The operator □ without a time bound
means the specification should hold for the entire planning
horizon. We have φfoot = (µπ

left(y) ≥ 0) ∧ (µπ
right(y) ≥ 0),

where µπ
left = −pswing,y + eleft and µπ

right = pswing,y − eright
are the predicates for limiting the lateral foot location against
the left edge eleft and right edge eright of the treadmill.

STL formula composition: The compounded locomotion
specification is φloco = φstable∧ (□φfoot). The satisfaction of
the specification φloco is equivalent to the robustness degree
being positive:

(y, t) |= φloco ⇔ ρφloco(y, t) ≥ 0. (5)

In order to maximize the locomotion robustness, we use
the robustness degree ρφloco as an objective function in the
trajectory optimization (TO) in the following section.

Remark. The main contribution of our STL formulation is
its effectiveness and simplicity, allowing fast online reactive
planning and from this formulation emerges complex behav-
iors such as crossed-leg locomotion for perturbation recovery.

B. Specification Encoding via Smooth Approximation

The STL specifications defined above are encoded into a
gradient-based TO. To this end, this subsection introduces a
smooth operator to allow a smooth gradient in the TO for
efficient computation.

A traditional approach of encoding an STL formula in a TO
problem employs the big-M formulation [14]. In this formu-
lation, signal satisfactions are associated with binary variables
via inequality constraints, i.e., True equals 1 and False
equals 0. To guarantee the satisfaction of the STL formula,
additional equality constraints assert the binary variables equal
to 1. This encoding method introduces extra binary variables,

thus forming a mixed-integer program (MIP), which has a
complexity exponential to the number of binary variables.

This study adopts an alternative encoding technique using
the smooth approximation of the robustness degree. The
robustness degree ρφ(y) is originally non-smooth because
of the min and max operators in its expression. A non-
smooth function can lead to zero gradients in the TO, causing
ill-conditioned issues. The smooth-operator encoding method
replaces the non-smooth operators with smooth approximated
operators. Consequently, the new robustness degree ρ̃φ be-
comes a smooth nonlinear function that can be optimized via
efficient nonlinear programming solvers.

Specifically, we replace the non-smooth min and max
operators with their smooth counterpart m̃in and m̃ax.

m̃in([ρ1, ..., ρm]T ) = − 1

k1
log(

m∑
i=1

e−k1ρi)

m̃ax([ρ1, ..., ρm]T ) =
Σm

i=1ρie
k2ρi

Σm
i=1e

k2ρi

where k1, k2 > 0 are tunable parameters, m ∈ Z+ is the num-
ber of parameters in the min/max operator, ρ is the robustness
degree, and e is the Euler’s number. The smooth operators
have a property of under-approximation, meaning that the
approximated robustness degree ρ̃φ is strictly smaller than ρφ.
This specific choice of the smooth operator renders a property
of soundness: ρ̃φ(y, t) ≥ 0 ⇒ ρφ(y, t) ≥ 0 ⇔ (y, t) |= φ.
We refer the interested reader to [68] for further details.

VI. MODEL PREDICTIVE CONTROL FOR PUSH RECOVERY

A. Optimization Formulation

A model predictive control (MPC) is formulated to solve a
sequence of optimal states and controls (i.e., signals) that sat-
isfy the specifications φloco, system dynamics, and kinematic
constraints within a finite-time horizon H. Specifically, this
MPC simultaneously determines foot placements, swing foot
trajectories, and step durations in both normal and perturbed
walking situations. Solving foot placement and swing foot
trajectory simultaneously in an integrated formulation reduces
the potential infeasibility that can arise in a hierarchical
optimization approach, where the foot placement is determined
first and the swing foot trajectory is solved separately.

We formulate the MPC problem as a nonlinear program:

min
X,U ,T

wL(U)− ρ̃φloco(X,U) (6)

s.t. x̄j
i+1 = f(x̄j

i , ū
j
i , T

j), i ∈ H \ S, j ∈ J (7)

x̄+,j+1 = ∆̄j→j+1(x̄
−,j), j ∈ J (8)

gcollision(x̄i) ≥ ϵ, i ∈ H (9)

gduration(T
j) ≥ 0, j ∈ J (10)

hinitial(x̄0) = 0, (11)
htransition(x̄i) = 0, i ∈ S (12)

where H is a set of indices that includes all time steps in
the horizon. We design H to span from the acquisition of
the latest measured states till the end of the next N walking
steps, with a total of M time steps. Fig. 10 gives an example
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Fig. 10: The planning horizon starts from the current measured state (pink).
An example of N = 2 walking steps and 7 knot points per walking step is
illustrated. The time axis (top) and the phase space plot (bottom) represent
the same CoM trajectory.

of a planning horizon with N = 2. S is the set of indices
containing the time steps of all contact switch events, S ⊂ H.
J = {0, . . . , N} is the set of walking step indices. The decision
variables include X = {x̄1, . . . , x̄M}, U = {ū1, . . . , ūM},
and T = {T 0, . . . , TN}. T is a vector defining the individual
step durations for all walking steps.

L(U) =
∑M

i=1 ||ūi||2 is a cost function penalizing the
control with a weight coefficient w. The robustness degree
ρ̃φloco(X,U) represents the degree of satisfaction of the signal
(X,U) with respect to the locomotion specification φloco.
ρ̃φloco is a smooth approximation of ρφloco using smooth op-
erators [68]. The exact, non-smooth version ρφloco has discon-
tinuous gradients, which can cause the optimization problem
to be ill-conditioned. Maximizing ρ̃φloco(X,U) encourages
the keyframe towards the center of the Riemannian region, as
discussed in Sec. IV. For the MPC objective (6), the selection
of w is a tradeoff between satisfying signal temporal logic
(STL) specification and minimizing control effort. Specifically,
a smaller w allows more aggressive control for rapid recovery
from disturbance. In contrast, a larger w penalizes more on
control effort but less on the center of mass (CoM) deviation.

To satisfy the linear inverted pendulum model (LIPM)
dynamics (1) while adapting step durations T , we use a
second-order Taylor expansion to derive the approximated
discrete dynamics (7). (8) defines the reset map from the foot-
ground contact switch. (9) represents a set of self-collision
avoidance constraints, which ensures a collision-free swing-
foot trajectory. The threshold ϵ is the minimum allowable
distance for collision avoidance. The gcollision is a set of
multilayer perceptrons (MLPs) learned from leg configuration
data, as detailed in Sec. VI-C. (10) clamps step durations
T within a feasible range. By allowing variations in step
durations, we enhance the perturbation recovery capability of
the bipedal system [36]. (11) are the equality constraints of the
MPC: hinitial denotes the initial state constraint; htransition is
the guard function posing kinematic constraints between the
swing foot height and the terrain height, pswing,z = hterrain,
for walking step transitions at contact-switching indices in S.

B. Step Duration Adaptation

We adapt the durations of walking steps to enhance the
perturbation recovery capability of the bipedal system.

For our MPC, we follow the direct multiple shooting method
[46]. This method introduces additional decision variables T
to represent the durations of the future N+1 walking steps. We

clamp the step duration T j within a time bound [Tmin, Tmax]
through the constraint (10) for the following reasons: (i) the
upper bound Tmax is useful to prevent a fall due to a slow
stepping frequency in dynamic walking; (ii) the lower bound
Tmin is useful to avoid an exceedingly fast leg motion that is
beyond the physical capability of the robot.

Note that, as the robot state approaches the contact event, the
remaining duration Tremain of the current walking step keeps
reducing, and declines its flexibility to change. To address this
issue, we fix the current step duration T 0 to the latest solved
solution while still solving the future N step durations once
Tremain reduces to less than a threshold.

C. Data-driven Self-collision Avoidance Constraints

To calculate the collision status using only the reduced-
order model, we adopt MLPs that learn the mapping from
Cassie’s LIPM state [pCoM;pswing] to the shortest collision
distances between leg geometry pairs that are under high risk
of collision. These MLP constraints are particularly useful
for planning crossed-leg motions. We encode the MLPs as
constraints of the MPC to ensure collision-free trajectories.

The geometry of Cassie’s leg can be approximated by three
capsules attached to its shin, tarsus, and Achilles rod, respec-
tively. According to Cassie’s leg configurations, collision risks
are high amongst the following 6 capsule pairs: left shin to
right shin (LSRS), left shin to right tarsus (LSRT), left shin
to right Achilles rod (LSRA), left tarsus to right shin (LTRS),
left tarsus to right tarsus (LTRT), and left Achilles rod to right
shin (LARS). The remaining 3 pairs will not collide within
the range of joint motions. Accordingly, 6 MLPs computing
the shortest collision distances between these capsule pairs
are generated. Each MLP consists of 2 hidden layers with 24
neurons implemented using PyTorch [69]. Instead of training
one MLP to represent the minimum distance among all capsule
pairs, we use separate MLPs for each pair because the former
requires a larger network structure but yields worse accuracy.

We generate the training dataset such that each data point
corresponds to a particular robot configuration, containing
the feature (the LIPM state) and the label (six analytically-
computed distances [d1, d2, ..., d6]). A total of 106 config-
urations centering around the robot’s standing configuration
are collected in the dataset. The training takes less than 2
hours in total with an Intel® Core™ i7-12700H CPU. The
MLPs achieved an accurate prediction performance, yielding
a maximum absolute error of 0.03 m and an average absolute
error of 0.002 m. The evaluation speed of the MLPs exceeds 1
MHz, as compared to less than 1 kHz for a traditional method
requiring iterative inverse kinematics. The accuracy and speed
of the MLPs facilitate the online execution of our MPC.

VII. EXPERIMENTAL SETUP

We provide implementation details, parameter setup of our
signal-temporal-logic-based model predictive controller (STL-
MPC), and experimental configurations in this section.

Our STL implementation leverages STLPY [66], a Python-
based STL library. STLPY facilitates the integration of signals
into the MPC as decision variables, denoted by y(t) =
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Fig. 11: The anatomy of Cassie’s leg. The Achilles rod, shin, and tarsus are
used for collision checking because they have a higher risk of collision.

(x(t),u(t)), which are optimized for specification satisfaction
and robustness maximization.

The STL-MPC is formulated as a nonlinear program using
pydrake [70] and solved by a sequential quadratic program-
ming (SQP) algorithm using SNOPT [71]. The planning hori-
zon includes a current walking step and N = 2 future walking
steps, as shown in Fig. 10. Each walking step is assigned
with 7 knot points, leading to a total of M = 21 time steps.
To prioritize STL satisfaction, we set w = 0.01, indicating a
small control effort penalty. The minimum distance between
collision pairs ϵ = 0.03 m. The walking step duration range
in (10) is designed according to human biomechanics data
[72]: [Tmin, Tmax] = [0.3, 0.5] s. Here, Tmin represents a
physical limitation of how fast a step can be. Conversely, Tmax

reflects a design consideration, where a larger step duration
implies a less dynamic movement. We choose Tmax = 0.5
s to encourage a higher stepping frequency and enable more
dynamic behaviors against perturbations. The desired gait is a
periodic motion with 0.4 s step duration and 0.6 m/s center of
mass (CoM) apex velocity. The robot commanded under our
controller is capable of walking up to 1 m/s [5]. We choose
0.6 m/s to have a better buffer against forward perturbation
that increases the robot’s forward velocity. The robot’s yaw
direction (i.e., heading direction) is regulated to maintain
straight walking, via an estimated state from the IMU sensor.

Simulation experiments are conducted in Matlab Simulink
[73], a high-fidelity simulator based on Cassie’s full-body dy-
namics. Perturbations are introduced in the form of impulses,
i.e., a magnitude of force applied for a short time period.
Throughout the simulation, self-collision is actively checked
via a daemon function considering full-body kinematics and
the approximated capsule geometry of the robot. Note that this
daemon collision checking function runs in the background
of the simulator and is different from the data-driven self-
collision constraints proposed in Sec. VIII-A. Additionally, the
robot state is monitored at every simulation step to detect robot
failures. Specifically, failures include scenarios when: (1) the
robot falls; (2) any joint angle exceeds its predefined limit;
(3) a collision is detected; and (4) the robot drifts too much
in the lateral direction. Failures effectively reflect extreme
perturbations that are beyond the robot’s ability to recover.

Fig. 12: Illustration of the self-collision landscape with left leg fixed at multi-
ple configurations. The green points in the figure correspond to configurations
in the second row. The collisions are highlighted in the red-circled area.

For all of our hardware tests, a high-level STL-MPC planner
and a low-level controller operate simultaneously on two
separate onboard computers. They communicate via a UDP
protocol implemented in ROS2 [74]. During each planning
cycle, the STL-MPC solves a trajectory optimization (TO)
problem as described in Sec. VI and sends the solution to the
low-level controller. The STL-MPC then reinitializes the same
problem based on the latest state measurements. At the low
level, a passivity-based controller [75] tracks the high-level
trajectory. As a fail-safe mechanism to handle MPC failures,
the low-level controller falls back to the previous plan. This
controller also sends real-time estimates of the system state to
the high-level planner. The high-level planner runs on an Intel
i7-1260P CPU at 50 Hz for the task specification φloco, while
the low-level controller runs on the other PC at 2 kHz.

VIII. SIMULATION RESULTS

A. Leg Workspace Study for Collision Avoidance

We evaluate the allowable range of motion of the robot’s
swing leg under the set of trained collision constraints pro-
posed in Sec. VI-C.

Given Cassie’s bilateral symmetrical design, we designate
Cassie’s left leg as the stance leg and its right leg as the
swing leg, without loss of generality. We fix Cassie’s left
foot at five distinct locations, including its nominal stand-
ing position at [0, 0.1305,−0.9] m relative to the pelvis,
and four other positions that are horizontally displaced by
0.1 m to the left (+y), right (−y), front (+x), and back
(−x), respectively. Meanwhile, we move Cassie’s right foot
to scan continuously within a 1 × 0.8 m2 rectangle in the
xy plane centered at [0,−0.1305,−0.9] m relative to the
pelvis, which is a nominal standing position for the right foot.
For each configuration during the scanning process, a set of
6 collision distances is evaluated by the trained multilayer
perceptrons (MLPs). The minimum distance from the set,
dmin = min(d1, d2, d3, ..., d6), as well as its associated ge-
ometry pair is recorded. At each configuration, one particular
pair is exhibiting the highest risk of collision and effectively
constraining the swing foot’s range of motion. The resulting
data is illustrated in Fig. 12 (a)-(e) as five 2D landscape plots.
The red color indicates a small dmin, which translates to a
higher collision risk. We select a risky configuration from each
of the five scenarios and show it along with the landscape.
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Fig. 13: (a) Snapshots of Cassie performing a crossed-leg maneuver for
push recovery. (b) The MLP-approximated collision distances are accurate
compared with the ground truth, and the planned leg trajectory is safe against
the threshold ϵ = 0.03. (c) An overhead view of the CoM trajectory and foot
placements when a lateral perturbation induces a crossed-leg maneuver.

All the landscapes show a consistent trend of increasing
collision risk as the right foot moves closer to the left
foot, reflected by the dark red zones around the left foot.
Additionally, all plots contain patterns of clustered red zones,
suggesting that different collision pairs are active for each
cluster. Notably, Fig. 12(c) depicts a larger expanse of the red
zone than other landscapes. This observation is consistent with
our expectation that an inward stance-leg configuration poses
a higher collision risk and enforces more restrictive spatial
constraints on the swing leg.

B. Self-collision Avoidance for Push Recovery

We demonstrate the planner’s ability to avoid leg collisions
in a critical push recovery setting, where a perturbation forces
the robot to execute a crossed-leg maneuver. The perturbation
is set up such that the robot’s center of mass (CoM) is
forcefully pushed towards the stance leg. In this circumstance,
the only viable recovery strategy is to cross the leg. The model
predictive control (MPC) with collision constraints generates a
trajectory, as shown in Fig. 13(a), where the swing leg adeptly
maneuvers around the stance leg and lands at a crossed-leg
recovery point. The robot extricates (i.e., uncrosses) in the next
step following a curved collision-free trajectory. Fig. 13(b)
compares the ground truth and the multilayer perceptron
(MLP)-approximated collision distances during the crossed-
leg maneuver. The leg distances stay above a pre-specified
threshold of ϵ, which protects against approximation and
tracking error. An overhead view comparing perturbed and
unperturbed CoM trajectories is shown in Fig. 13(c).

C. Computation Speed Comparison between Smooth Encod-
ing Method and Mixed-Integer Program

To encode signal temporal logic (STL) specifications into
our trajectory optimization (TO) formulation, we adopt a
smooth-operator method [62] that allows a smooth gradient for
efficient computation. Specifically, we replace the non-smooth
min and max operators in the robustness degree (as defined
in Table II) with their smooth counterpart m̃in and m̃ax, as
detailed in Sec. V-B.

We benchmark the solving speed of the smooth-operator
method [62] (ours) with a traditional mixed-integer program
(MIP) method [57]. Similar to our smooth method, the
MIP solves the signal y and durations of N walking steps.
Our smooth-operator method formulates a nonlinear program
(NLP) solved by SNOPT [71], while the MIP formulation
is solved with Gurobi [76]. To make a fair comparison, we
disable the nonlinear collision constraints in our NLP and have
only linear constraints when evaluating both methods.

t
[s
]

m ms

Fig. 14: A comparison of the traditional MIP method and our smooth method
shows the planning time to solve trajectories for N -walking-step horizons.
The smooth method is faster and more consistent over all horizons.

We compare the solving speed of both methods for an
N -walking-step horizon, where N = {2, 3, 4}. The results
are shown in Fig. 14. On average, the MIP method is 5–
10 times slower than the smooth-operator method, and as
the number of walking steps N increases, the performance
difference becomes increasingly pronounced. This is due to the
combinatorial complexity of the MIP. In contrast, the smooth-
operator method exhibits solving times that are not only faster
but also more consistent, as indicated by the narrower range
between the minimum and maximum solving times, with each
solving time typically falling within ±50% of the median time.

D. Stepping Stone Maneuvering
To demonstrate the signal-temporal-logic-based model pre-

dictive controller (STL-MPC)’s ability to handle a broad set of
task specifications, we study locomotion in a stepping-stone
scenario as shown in Fig. 15.

To restrict the foot location to the stepping stones, we
augment the locomotion specification φloco with an additional
specification φstones that encodes stepping stone locations.
φstones specifies that the foot placement is within one of
the stones. Each stone is a fixed-size rectangle generated at
a random horizontal position and yaw orientation. For each
rectangular stone, a stance foot pstance is bounded inside its
four edges, represented as a stone specification:

φo
stone =

4∧
i=1

(µo
i (pstance) ≥ 0), (13)
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(a) (b)

Fig. 15: Illustration of maneuvering over two stepping-stone scenarios. (a)
STL-MPC solves dynamically feasible trajectories that satisfy an additional
foot-on-stones specification. (b) STL-MPC successfully plans crossed-leg
maneuvers to recover from perturbation.

where o ∈ {1, . . . , O}, O ∈ Z is the total number of stepping
stones, and µo

i is the signed distance from the stance foot to
the ith edge of the oth stone. For the MPC to plan a N -step
trajectory, it needs to make decisions for N foothold locations:

φstones =

N∧
j=1

(□[T j ,T j ]

O∨
o=1

φo
stone). (14)

The augmented specification φ′
loco is the compound of the

original locomotion specification φloco and the newly-added
stepping stone specification:

φ′
loco = φloco ∧ φstones. (15)

We test STL-MPC using φ′
loco in two scenarios, both with a

series of stepping stones, as shown in Fig. 15. Given the initial
position and the arrangement of the stepping stones, the MPC
repeatedly solves a trajectory horizon and advances the global
state by one walking step along the predicted trajectory. For the
second scenario in Fig. 15(b), the STL-MPC demonstrates the
ability to cross legs in response to a lateral perturbation. This
result demonstrates our planner’s capability to simultaneously
satisfy complex task-level objectives (e.g., maintain balance)
and respect physical requirements (e.g., step on stones).

E. Omnidirectional Perturbation Recovery

We examine the robustness of the STL-MPC framework
through an ensemble of push-recovery tests conducted in sim-
ulation, where horizontal impulses are systematically applied
to Cassie’s pelvis. The impulses are exerted for a fixed duration
of 0.1 s but vary in magnitude, direction, and timing. Specif-
ically, the impulses have: 9 magnitudes evenly distributed
between 80 N and 400 N; 12 directions evenly distributed
between 0◦ and 330◦; and 4 locomotion phases indexed as a
percentage s = 0%, 25%, 50%, 75% through a full walking
cycle. Collectively, this experimental design encompasses a
total of 432 distinct trials. For a baseline comparison, the same
perturbation procedure is applied to an angular-momentum-
based reactive controller (ALIP controller) [5].

In Fig. 16, we compare the maximum allowable impulse
the STL-MPC can withstand to that of the baseline ALIP con-
troller. The STL-MPC (captured by the blue region) demon-
strates superior perturbation recovery performance across the
vast majority of directions and phases, as reflected by the blue
region encompassing the red region for the ALIP controller.
The improvement is particularly evident for directions around
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Fig. 16: The maximum allowable force exerted on the pelvis from which the
robot can safely recover within two steps in all 12 directions. The perturbations
happen at different phases s during a left leg stance. Values on the left half
result in crossed-leg maneuvers, and values on the right half correspond to
wide-step recoveries. We benchmark with an ALIP controller in Sec. VIII-B
and an LTL-based controller in Sec.VIII-F.

0◦, wherein crossed-leg maneuvers are induced for recovery.
This superior performance is due to the STL-MPC’s capability
to generate safe crossed-leg behaviors via the self-collision
avoidance constraints; the ALIP controller, on the other hand,
cannot avoid self-leg collisions. For perturbations around 180◦,
both frameworks generate wide side-steps for recovery and
exhibit comparable performance.

F. Benchmarking with Two Baseline Planners

To highlight the superior performance of our method, this
section compares the task planning performance between our
STL-MPC, a linear-temporal-logic-based (LTL-based) plan-
ning framework [13], and a baseline MPC without STL.

To explore the maximum allowable force the LTL-based
method can endure compared with our STL-MPC, we conduct
the same omnidirectional perturbations applied in Sec. VIII-E
and record the robot’s keyframe state after perturbation. We
mark the maximum allowable force for the LTL-based method
in the yellow regions of Fig. 16. The limits for the LTL-based
method are smaller than those of the STL-based method. Any
force beyond the maximum allowable perturbation magnitude
would cause an LTL planner failure. Compared to the LTL
method, our STL-MPC can solve a recovery trajectory even
when a perturbed state is outside the Riemannian region, which
increases its robustness against perturbations.

In another benchmarking, we compare a traditional TO with
our STL-guided TO. STL enables straightforward encoding of
logical tasks, such as identifying a keyframe based on a certain
system condition and specifying the keyframe to eventually
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Fig. 17: Comparison of the robustness degrees between the solutions of our
STL-MPC and a baseline MPC without STL. (a) Robustness degrees ρφloco (a
notation of ρ is used in the figure for simplicity) within two walking steps after
the perturbation of different magnitudes are collected. Each subfigure shows
the results with perturbations from a specific direction. The distribution of the
robustness degrees of the two methods is shown in a violin plot with marked
minimum, median, and maximum. STL-MPC offers solutions with higher
robustness under all directions of perturbations. (b) A specific perturbation
case where our STL-MPC recovers successfully while the baseline MPC fails.
The region with negative robustness, which indicates a failure to satisfy the
specification, has been marked in red.

reach a Riemannian region. Conversely, traditional methods
cannot encode such logic-based specifications effectively.

To highlight the performance improvement from the logical
task encoding, we implement a baseline MPC. Compared with
the STL-MPC, the only difference is that the basedline MPC
does not encode STL specifications. Instead, the baseline MPC
simply constrains the CoM state at the end of the horizon
(i.e., the contact switching time) to be within a predefined
box-shaped region. In this experiment, we perturb the Cassie
robot in four different directions at locomotion phase 0% for
0.1 s, employing 10 force magnitudes ranging from 10 N to
100 N. The performance of the two planners is assessed via
robustness degrees ρφloco of the solved trajectory within the
two walking steps following the perturbation. The distribution
of the collected robustness degrees for each perturbation
direction is shown in Fig. 17. The baseline MPC demonstrates
a lower robustness degree across all directions, indicating a
reduced ability to recover from disturbance. Moreover, we
identify scenarios that intuitively showcase the performance
difference. For example, the perturbation of 0◦ with force
magnitude 165 N applied at phase 0% leads to a failure of
the baseline MPC, whereas STL-MPC manages to recover.

The performance improvement offered by the STL-MPC is
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Fig. 18: “Bode Plot” of recovery capability w.r.t dynamic rigid ship surfaces.
(a) illustrates the ship motions, where we oscillate the ship surfaces in pitch
and roll axes. (b) and (c) shows a different view of the roll and pitch
perturbations, respectively. (d) and (e) show the tolerable magnitudes and
frequencies of STL-MPC compared with the ALIP baseline along the roll
and pitch axis, respectively. Note that, the failure cases are not shown in the
figure, and the frequency axis is in the logarithmic scale.

attributed to the direct encoding of the robustness metric into
the cost function (6). Moreover, our STL specification enables
a broad set of solutions because it allows a flexible keyframe
that can be achieved at different time steps given different
perturbation scenarios. Although removing the encoding of ro-
bustness metric marginally boosts the solving speed to 60 Hz,
the standard MPC obtains a lower robustness degree and worse
performance. Additionally, the baseline MPC constrains only
the final contact-time state, leading to conservative solutions.

G. Orientation Perturbation of Dynamic Rigid Surfaces

To further evaluate the capability of our framework to
handle more challenging terrain perturbations, we simulate
dynamic rigid surface perturbations [26], [27], as commonly
observed from ship motions in a marine environment. This
case study allows us to demonstrate our framework’s terrain-
agnostic recovery ability. The study from [77] reveals the
motion of a ship can be characterized by decoupled linear
translations and rotational sinusoidal waves. We set up a
dynamic rigid surface simulation in the aforementioned MAT-
LAB Simulink and oscillate the ship surface in sinusoidal
waves along roll and pitch axes, respectively (as shown in
Fig. 18 (a)-(c)). The surface tilting angle follows θroll =
Aroll sin(2πfrollt) and θpitch = Apitch sin(2πfpitcht), where
Aroll, Apitch are the magnitude, and froll, fpitch are the oscil-
lation frequency. We combinatorially test 26 different values of
Apitch, evenly distributed between 6◦ and 30◦, and 20 different
frequencies fpitch, logarithmically distributed between 0.07Hz
and 0.7Hz. In total, we have 520 distinct oscillations along
the pitch axis. The same setup is employed for the roll axis.

We show the simulation results in Fig. 18(d)-(e); we name
it “Bode Plot” of recovery capability because we show the
magnitude of the maximum allowable terrain angle w.r.t a
range of frequencies in the logarithmic scale. The blue and
red areas represent the tolerable magnitudes for our STL-MPC
and the ALIP controller, respectively. Notably, our method has
a larger tolerance to pitch oscillations. The failure cases in
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Fig. 19: The success rate matrix of the robot recovering from horizontal
perturbations across various stationary surface inclinations. For each surface
inclination, perturbations of 100 N are applied from 12 directions at the
locomotion phase s = 0%.

pitch oscillation are primarily attributed to the loss of contact
when the terrain moves downward in the vertical direction.
This case frequently happens when the robot moves far away
from the rotation center of the terrain. According to our
observations, our STL-MPC framework allows more variation
in CoM height to adapt to the terrain height movement and
firmly maintain ground contact. However, the ALIP controller
is prone to losing contact and slipping. For the roll oscillations,
our STL-MPC and the baseline ALIP controller achieve a
similar level of performance. This is attributed to the proximity
of the footholds to the rotation axis, which reduces the
influence of roll oscillations on the CoM velocity, therefore not
inducing significant lateral velocity shifts that can be decently
handled by our STL-MPC. Instead, most failure cases are
attributed to the slip from large tilting roll angles, and the
slip does not leverage the advantage of our method. Therefore,
both methods achieve a similar performance.

H. Horizontal Perturbation on Inclined Stationary Surfaces

To explore the robustness of our STL-MPC across var-
ious terrain orientations, we set up horizontal perturbation
experiments on a stationary inclined platform. In each trial,
the platform’s pitch and roll angles [θpitch, θroll] are fixed to
specific values, and a horizontal perturbation is introduced
upon stable walking. A total of 49 surface inclination scenarios
are tested, with θpitch and θroll varying from −12◦ to 12◦ in 4◦

increments. For each surface inclination, perturbations of 100
N from 12 directions (the same as ones used in Sec. VIII-E)
are individually tested. The perturbation recovery success rate
for each inclination setup is shown in Fig. 19 as a heat map.

As expected, there is a general trend of declining success
rate as the platform’s inclination increases. Moreover, the STL-
MPC performs better in uphill scenarios than downhill ones,
reflected by the cells of higher success rate with positive
pitch angles. A downhill scenario poses a greater challenge
due to the terrain-agnostic nature of the STL-MPC, which
always plans the foot contact position to be at the same
height as the stance foot. Consequently, there remains a gap
between the actual swing foot height and the ground at the
expected contact timing of each walking step, and transitioning
to the next walking step requires the controller to blindly

step down further to make a contact, potentially leading to
kinematic reachability issues or instability due to delayed
contact. Additionally, it is observed that the STL-MPC has a
satisfactory robust performance to roll inclinations, attributed
to its ability to initiate collision-free crossed-leg maneuvers.
Overall, the STL-MPC demonstrates robust push recovery
performance across a range of surface inclinations.

IX. HARDWARE RESULTS

A. Omnidirectional Horizontal Perturbation on CAREN
Following the setup of the omnidirectional perturbation sim-

ulation in Sec. VIII-E, we conduct a comprehensive hardware
experiment on the bipedal robot Cassie to demonstrate the
robustness achieved by our signal-temporal-logic-based model
predictive controller (STL-MPC). The experiment employs a
Computer-Aided Rehabilitation Environment (CAREN) [10],
as shown in Fig. 20. The CAREN system comprises a treadmill
mounted in a 6-degree-of-freedom Stewart platform, enabling
walking surface translations and rotations along all axes.

In our experiments, we systematically apply omnidirectional
horizontal terrain perturbations (no terrain height variation).
The hardware experiment incorporates a combination of per-
turbation features: three magnitudes (horizontal translations of
10, 15, and 20 cm), twelve directions, and four locomotion
phases. The directions and phases are the same as those used
in the simulation. To synchronize the timing of perturbations
with Cassie’s non-periodic walking phases, we employ a force
plate underneath the treadmill to measure the vertical ground
reaction forces and detect gait contact events, which are then
used to estimate the phase of the walking cycle based on a
nominal step duration.

Our STL-MPC successfully recovers from all perturbations
with one exception. This outlier involves a perturbation at the
75% phase and 180◦ direction, with the maximum translation
distance of 20 cm. This particular case is challenging because
it requires a crossed-leg maneuver and a subsequent large wide
step. This recovery sequence is infeasible within the tread-
mill’s width, which is a limitation from the spatial layout of
the CAREN instead of our framework. Among all successful
trials, we show four perturbation recoveries in Fig. 20. These
perturbations are applied in four directions at phase s = 75%
of a walking step with a 15 cm translation magnitude.

To further analyze the perturbation response, we illustrate
the CoM phase space plots, as depicted in Fig. 21. These plots
superimpose the estimated center of mass (CoM) state of the
hardware with the STL-MPC’s planned CoM trajectory, show-
casing both sagittal and lateral phase space for three distinct
perturbation scenarios. The first plot shows the CoM’s periodic
motion in normal walking conditions, where no perturbation is
applied. We then examine scenarios with perturbations applied
at phase s = 75% of a walking step, specifically focusing
on 0◦ and 180◦ directional perturbations. The 0◦ perturbation
induces a crossed-leg maneuver, corresponding to the CAREN
moving leftward (as shown in the third row of Fig. 20). The
180◦ perturbation causes the STL-MPC to choose a wide-
step recovery strategy. Both scenarios reveal that recovery is
achieved within two walking steps, as indicated by the CoM,
which returns to a periodic orbit after two walking steps.
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Fig. 20: We test our STL-MPC framework on the CAREN system. The Stewart platform provides perturbations at a controlled timing with a specified
direction and magnitude. The Cassie robot recovers from perturbations in all four directions using diverse recovery strategies. For example, the leftward
CAREN perturbation (third row) induces a crossed-leg maneuver. The phase-space trajectory of this crossed-leg maneuver is shown in Fig. 21(b).

A noteworthy observation from the 0◦ perturbation scenario
is a sagittal velocity decrease, attributed not to the perturbation
itself but to the required crossed-leg maneuver. To avoid
collision between legs during the maneuver, the swing foot
must be positioned significantly ahead of the stance foot. This
foot placement selection compromises the sagittal velocity
tracking, but it is necessary to maintain stability in the lateral
direction. This scenario shows the complexity of executing
such a maneuver and exemplifies the STL-MPC’s planning
capability to strategically prioritize subtasks (i.e., maintaining
sagittal CoM velocity vs. maintaining lateral CoM stability)
to achieve overall task success. In contrast, the wide step
maneuver does not result in a sagittal velocity decrease, due
to the less restrictive kinematic condition in the sagittal plane.

Our results show the STL-MPC framework’s robustness
against perturbations, particularly for those in lateral directions
that induce leg-crossing behaviors.

B. Large Horizontal Perturbation on a BumpEm System

Given the CAREN system’s limitation in generating sub-
stantial perturbations, we decide to further challenge the STL-

MPC framework to explore its boundaries of robustness. To
this end, we employ a powerful perturbation emulator, the
bump emulation (BumpEm) [11], which allows us to generate
large and accurate impulses from direct cable pulling. As
shown in Fig. 22(a), the pulling direction is predetermined
by wiring the cable through the pulley mounted on the
handrail. Notably, perturbations from the CAREN and the
BumpEm differ fundamentally: the BumpEm exerts forces at
the robot’s pelvis, whereas the CAREN generates terrain-based
disturbances taking effect through the foot-ground contact.
Although the BumpEm and CAREN experiments have dif-
ferent perturbation mechanisms aforementioned, we observe
similar recovery patterns in both experiments: pulling the
pelvis toward one direction induces a similar recovery strategy
of moving the CAREN platform in the opposite direction.

We apply horizontal perturbations to Cassie’s pelvis in 8
directions at the initial phase s = 0% of a walking cycle. To
prevent over torque the pulling motor, we keep the pulling
force small by setting a longer pulling duration of 0.2 s. For
each direction, we increase the pulling force until the robot
fails to maintain balance. The maximum tolerable force is
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Fig. 21: The planned CoM trajectory by STL-MPC and the real hardware
data. The figure shows the control result for 3 CAREN perturbation scenarios:
normal walking, left perturbation, and right perturbation.
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Fig. 22: (a) The experiment setup of the BumpEm. The BumpEm is a pulling
tower that comprises a motor pulling the string attached to the Cassie robot.
The pulling direction is configured via the routing around the pulley. The
force on the string is accurately controlled using the feedback from the force
sensor. Each impulse lasts for 0.2 s. (b) The maximum force the STL-MPC
can resist for each direction.

illustrated in Fig. 22(b). The maximum tolerable impulses
observed on hardware have similar values with the impulses
used in simulation in Sec. VIII-E. In simulation, the forces are
roughly double the magnitude compared to the ones used on
hardware but are applied for half the duration. For BumpEm
perturbations in the lateral direction, crossed-leg maneuvers
are also observed when we perturb Cassie with 130 N from
0◦ direction, as shown in Fig. 23.

C. Orientational Perturbation on CAREN

This experiment demonstrates the resilience of our frame-
work against continuous orientational perturbations. Leverag-

ing the CAREN system, we simulate ship-like tilting motions
that incorporate dynamic rotations along both the pitch and roll
axes, similar to the ones applied in the ship motion simulation
in Sec. VIII-G. During the experiment, the roll and pitch axes
undergo smooth sinusoidal oscillations while the Cassie robot
walks forward on the split-belt treadmill.

Remarkably, our framework withstands up to a 5◦ oscilla-
tion of 0.25 Hz around a single axis, i.e., either roll or pitch
axis. Note that, 5◦ is the limit for safe CAREN operation. To
introduce more challenging platform motions, we simultane-
ously rotate both axes, assigning distinct frequencies for each
axis to avoid the synchronization of their sinusoidal waves and
enable a more diverse set of motion patterns. Specifically, we
set 0.25 Hz for the pitch axis and 0.16 Hz for the roll axis. As
shown in Fig. 24(c), our framework is capable of withstanding
dual-axis ship motions up to 4◦.

The hardware experiments reveal that the robot frequently
adopts crossed-leg recovery strategies to resist roll oscillations
(Fig. 24(a, c)), underscoring the significance of this maneuver
for enhancing the overall robustness. Furthermore, we observe
a notable adaptation in step duration that correlates with
changes in terrain pitch; the step duration decreases during
ascents and increases as the robot descends, showcasing the
terrain-agnostic locomotion capability of our STL-MPC.

X. DISCUSSIONS

Although not detailed in this paper, our planning framework
is inherently capable of adapting to rough terrain because
both the center of mass (CoM) height and the swing foot
height are part of the decision variables in the state vector
x̄. These decision variables can be optimized in the trajectory
optimization (TO) if a terrain height map is known. Navigating
rough terrain necessitates a few additional constraints. Specif-
ically, the swing foot’s height at the moment of contact will
be adjusted to match the terrain’s elevation. Also, the model
predictive control (MPC) requires an additional kinematic
reachability constraint between the CoM and the stance foot,
accommodating variations in the CoM height.

For signal temporal logic (STL), the literature presents
various methods of incorporating the robustness degree into a
TO, as an objective function [58], [68], as a constraint [78], or
both [62]. Incorporating the robustness degree as a constraint
(5) provides a correct-by-construction property, i.e., the solu-
tion is guaranteed to satisfy the specification. However, this
approach is more susceptible to numerical failures, especially
in scenarios with large disturbances. Consequently, we choose
to integrate the robustness degree into the objective function,
which yields a satisfactory success rate of the numerical
solve. This formulation is practically beneficial for hardware
implementations. In large perturbation scenarios, our result
generates a slightly violating solution, whereas the constrained
formulation fails to solve.

To increase the solving efficiency of the TO, we exploit the
warm start feature of the SNOPT solver. This feature allows
for an initial guess for the decision variables, wherein we
utilize the solution from the preceding problem as the initial
guess for the subsequent one. Another solving speed boost
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Fig. 23: Cassie recovers from a CoM perturbation applied by the BumpEm pulling tower. The perturbation is of 130 N magnitude at 180◦ direction. The
STL-MPC planner reacts with a crossed-leg maneuver, followed by a wide step, and finally recovers to stable normal walking.
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Fig. 24: (a) The roll oscillation up to 5◦. (b) The pitch oscillation to 5◦. (c)
Oscillation along both the roll and pitch axes up to 4◦.

is derived from employing the analytical gradients of multi-
layer perceptrons. By supplying these analytical gradients, we
obviate the need for the solver to approximate the gradient
via finite differentiation. The analytical gradient is 100 times
faster than the solver’s built-in finite differentiation.

One of the limitations of our method lies in the proposed
reduced-order model. Although the proposed model enhances
the traditional linear inverted pendulum by incorporating the
kinematic information of the swing foot, it does not consider
the feasibility of the swing-leg dynamics. Therefore, the plan-
ner may generate a motion for the swing leg that exceeds the
controller’s tracking ability. To mitigate this issue, our TO is
properly constrained for the swing foot. Namely, we penalize
the swing foot displacement between two consecutive time
steps to promote trajectory smoothness and impose reachabil-
ity constraints on the swing foot position to enhance feasibility.

For our future work, we plan to explore diverse recovery
strategies for further improvement of locomotion robustness.
Research by [43] reveals that humans exhibit jumping be-
haviors (an agile CoM vertical motion) to counteract severe
perturbations. This insight lays the groundwork for our future
studies, where we will examine the feasibility of integrating
such dynamic recovery strategies into our robotic systems.

XI. CONCLUSIONS

This study presented a novel approach to enhancing bipedal
locomotion robustness through the integration of signal tempo-
ral logic (STL) into a model predictive control (MPC) frame-
work. This framework increased the locomotion performance

of Cassie by 81% in terms of maximum impulse tolerance dur-
ing leg-crossing scenarios. Extensive simulation and hardware
experiments verify the robustness of our framework against
omnidirectional terrain perturbations. The achieved results
demonstrate great potential to apply the proposed STL-guided
MPC framework to other robotics fields such as navigation
and whole-body loco-manipulation.

APPENDIX A
ANALYTICAL MANIFOLDS FOR THE RIEMANNIAN REGION

The Riemannian manifolds in Def. III.2 are analytical
solutions derived as the linear inverted pendulum model
(LIPM) dynamics in (1). The center of mass (CoM) dynamics
p̈CoM,dir = ω2pCoM,dir, where dir = {x, y} for sagittal and
lateral, respectively. We omit the direction dir in the following
derivation. Solving the equation above, we derive an analytical
solution: pCoM(t) = pCoM(0)cosh(ωt) + 1

ωvCoM(0)sinh(ωt)
and vCoM(t) = ωpCoM(0)sinh(ωt) + vCoM(0)cosh(ωt). The
pCoM(0) and vCoM(0) are the initial CoM state of a nominal
walking step, which is shown in Fig. 6, and we represent them
as p0 and v0. pCoM(t) and vCoM(t) are the CoM state at time
t, denoted as pt and vt.

The solution is represented as:[
pt
vt

]
=

[
p0 v0/ω
v0 ωp0

] [
cosh(ωt)
sinh(ωt)

]
(16)

which implies:[
cosh(ωt)
sinh(ωt)

]
=

1

ωp20 − v20/ω

[
ωp0 v0/ω
−v0 p0

] [
pt
vt

]
(17)

From cosh(x)2 − sinh(x)2 = 1, we have (ωp0pt −
v0vt/ω)

2−(−v0pt+p0vt)
2 = (ωp20−v20/ω)

2. After organizing
the terms to one side, we get:

0 = p20(2v
2
0−v2t +ω2(p2t −p20))−v20p

2
t +v20(v

2
t −v20)/ω

2 =: σ
(18)

The nominal manifold (i.e., σ = 0) and its initial CoM state
p0, v0 is a design choice. For our experiment, we choose the
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nominal manifold based on a periodic walking gait with apex
velocity 0.6 m/s, and p0, v0 as the CoM state at the contact-
switching time. The σ indicates the deviation of the CoM state
pt, vt from the nominal manifold.

For the derivation of the cotangent manifold, we use the
property that tangent and cotangent manifolds are orthogonal.
By taking the derivative of (18), we have: dσ = ∂σ

∂pt
dpt +

∂σ
∂vt

dvt, where ∂σ
∂pt

= 2pt(ω
2p20 − v20) and ∂σ

∂vt
= −2vt(p

2
0 −

v20/ω
2). The normal vector of σ is calculated through its

gradient (2pt(ω
2p20 − v20),−2vt(p

2
0 − v20/ω

2))T , which is
orthogonal to its tangent vector. Since ζ is orthogonal to σ,
the normal vector of ζ is the tangent vector of σ:

dζ =
∂ζ

∂pt
dpt +

∂ζ

∂vt
dvt

where ∂ζ
∂pt

= 2vt(p
2
0 − v20/ω

2) and ∂ζ
∂vt

= −2pt(ω
2p20 − v20).

Via the equations above, we further obtain:

dvt
dpt

= − vt
ω2pt

⇒ ω2

∫ vt

v0

dvt
vt

= −
∫ pt

p0

dpt
pt

Then we have

ln(
vt
v0

)ω
2

+ ln(
pt
p0

) = 0 ⇒ (
vt
v0

)ω
2 pt
p0

= 1

The cotangent manifold is defined as

ζ := ζ0(
vt
v0

)ω
2 pt
p0

where ζ0 is a constant nonnegative scaling factor and ζ is
the phase progression value. (p0, v0) is the initial condition at
ζ = ζ0.
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