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Abstract. In this work, we introduce a method for predicting environ-
ment steppability – the ability of a legged robot platform to place a
foothold at a particular location in the local environment – in the image
space. This novel environment representation captures this critical geo-
metric property of the local terrain while allowing us to exploit the com-
putational benefits of sensing and planning in the image space. We adapt
a primitive shapes-based synthetic data generation scheme to create ge-
ometrically rich and diverse simulation scenes and extract ground truth
semantic information in order to train a steppability model. We then in-
tegrate this steppability model into an existing interleaved graph search
and trajectory optimization-based footstep planner to demonstrate how
this steppability paradigm can inform footstep planning in complex, un-
known environments. We analyze the steppability model performance to
demonstrate its validity, and we deploy the perception-informed foot-
step planner both in offline and online settings to experimentally verify
planning performance.

Keywords: quadruped, contact planning, steppability, graph search,
trajectory optimization

1 Introduction

Motion planning in off-road, complex environments necessitates a model of the
local terrain. For wheeled systems, these terrain representations have been care-
fully studied through the aid of programs such as the DARPA Learning Ap-
plied to Ground Vehicles (LAGR) [1] program and the U.S. Army Research Lab
Robotics Collaborative Technology Alliance (RCTA) [2]. As a result, high perfor-
mance image space-based detection and planning methods have been developed
that enable reliable real world deployment [3, 4].

However, the same can not be said for legged robot systems. For a legged
platform, the morphological affordances are different than wheeled platforms.
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As a result, the environment representations should be different as well. Despite
this, commonly used environment models for legged systems fail to fully exploit
the capabilities of the platform. In certain cases, the representation itself can be
limiting through its need for expensive processing [5]. In other situations, the
representation can fail to account for the unique affordances that legged systems
provide such as stepping over small obstacles or jumping [6].

In this study, we explore how to embed the geometric characteristic of the
local terrain’s ability to support a stable foothold — a property which we term
steppability — within the efficient perception space. In order to do so, we adapt
prior techniques for generating synthetic data in order to train a semantic seg-
mentation model to predict this steppability property. Then, we integrate this
notion of steppability into our search and optimization-based contact planner in
the form of a visual search heuristic to enable online, reactive planning.

Fig. 1: Visualization of predicted steppability labels overlaid on irregular step-
ping stones. Green regions are steppable, meaning we can plan footholds at that
location, yellow regions are passable, meaning that we can not plan footholds at
that location but can plan swing trajectories over it, and red regions are non-
passable, meaning that we can not plan footholds at that location and we also
can not plan swing trajectories over it. All four images above show the same
environment with (a) - (c) providing side views and (d) providing a top view.

In summary, our main contributions are:

1. Introduction of a novel image space-based legged environment representation
of steppability

2. Adaptation of a primitive shapes-based synthetic data generation technique
to the task of learning steppability

3. Integration of the learned steppability model into an interleaved search and
optimization foothold planner

4. Experimental validation of the learned steppability representation through
a perception-informed foothold planner in simulation
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2 Related Works

2.1 Traversability for legged platforms

For the task of legged locomotion, it is important to capture several aspects
of the local environment, one being what much of the literature refers to as
traversability. Terrain traversability can be viewed as a continuous score assigned
to a subsection of the local environment that reflects the quality of a potential
foothold in that location. Traversability is often calculated as a function of terrain
properties such as gradients [6, 7], height discontinuities [8], and curvature [9].
Traversability has also been learned through neural networks [5, 10].

This metric is also typically stored in a 2D cost map that is either searched
[11,12] or optimized [13] over when it comes to planning. While such a represen-
tation simplifies downstream decision making, converting raw sensor data such
as point clouds or depth images into a local Cartesian frame grid requires sev-
eral pre-processing steps including clustering, projection, and normal estimation
which can often require GPU acceleration to run online. Such approaches can
also lose environment information regarding overhanging obstacles due to the
2.5D height map representation.

Some approaches do leverage the image space for terrain processing, but
purely for the task of terrain class identification [14]. This motivates a deeper
investigation into image space-based representations for legged platforms.

2.2 Steppability for legged platforms

While the continuous scoring of terrain is an important metric for footstep plan-
ning, the discrete decomposition of the local environment into steppable and
non-steppable regions is also relevant. The level of granularity can differ across
approaches, with some just making a binary classification between these two
labels [10, 15] while others further decompose the environment into gait- or
behavior-specific regions such as jumping [16]. While the label scheme in [16]
is similar to the one presented in this proposed work, all methods discussed
here maintain a robot-centric 2D grid-based representation. Another common
approach is to decompose the environment into a set of polygons [17–20] that
represent support regions for footholds. Such a representation fits nicely into
optimization frameworks for footstep planning.

The representations shown here play essential roles in impressive locomotion
tasks, but the requisite processing and computation can bottleneck the autonomy
pipeline and prohibit deployment.

2.3 Planning in Perception Space

A perception and planning paradigm that is of key importance to this proposed
work is that of Planning in Perception Space (PiPS) [21]. A perception-space ap-
proach to planning eschews pre-processing steps for perception data and instead
acts directly on the raw data representations that an external sensor provides.
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In the case of laser or Lidar scans, this means keeping the range data in an
egocentric reference frame and recasting the task of local perception-informed
navigation as a robot-centric decision-making process.

To date, PiPS has provided strong benefits for fast depth space collision-
checking [21], collision-free local robot navigation [22–24], and task and motion
planning [25, 26]. The PiPS approach has also proven effective for end-to-end
learning for footstep planning [27,28]. However, these methods ultimately eschew
any intermediate environment representation which can make planning results
harder to interpret and reason about.

While PiPS can faciliate certain local robot processes, the perception space
has its drawbacks as well. The rich nearby depth information is offset by sparse
environment information at further distances which limits the spatio-temporal
horizons in which planning in the perception space can be performed.

3 Methodology

3.1 Dataset Generation

First, we will detail how we generate the simulation scenes that we use to extract
the synthetic steppability data. Here, we adapt a primitive shapes-based tech-
nique that was previously used for manipulation tasks [29,30]. In this work, the
authors hypothesize that the geometry of graspable objects can be decomposed
into a set of primitive shapes where each primitive shape class has a particular
family of effective grasps. The ground truth labels of these objects can then be
ascertained through the color of the primitives within the simulation scene. We
perform a similar process here, but instead utilize class labels concerning step-
pability. The synthetic scenes used for training data are assembled according to
a key set of design parameters that we detail now. Example scene data including
depth images, ground truth labels, and model predictions is shown in Figure 3.

Primitive Shape Classes We use nine primitive shape classes to build scenes:
Cuboid, Cylinder, Ramp, Sphere, Semisphere, Pipe, Pole, Tube, and Floor. The
Cuboid and Ramp classes are parameterized by length l, width w, and height h,
the Cylinder class is parameterized by x-dimensional radius rx, y-dimensional
radius ry, and height h, the Sphere and Semisphere classes are parameterized
by radius r, and the Pipe, Pole, and Tube classes are parameterized by length l
and radius r. The floor class is non-parametric in that all of its instances are 4
m × 4 m. Visualizations of each shape class along with design parameter ranges
are shown in Table 1.

Primitive Shape Steppability Policies Each primitive shape class is as-
signed a mesh-based steppability policy that defines which faces of the shapes
should be assigned which labels. The three labels used are:

– Steppable (Green): can support a stable foothold
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Table 1: Primitive Shape Classes and Visualizations
Primitive

Shape Class
Geometry

Visualizations
Label

Visualizations
Parameter

Range (unit: m)

Cuboid
l ∈ [0.2, 1.0]
w ∈ [0.1, 0.50]
h ∈ [0.05, 0.25]

Ramp
l ∈ [0.2, 1.0]
w ∈ [0.1, 0.50]
h ∈ [0.05, 0.25]

Cylinder
rx ∈ [0.10, 0.50]
ry ∈ [0.10, 0.50]
h ∈ [0.05, 0.25]

Sphere r ∈ [0.025, 0.05]

Semisphere r ∈ [0.025, 0.05]

Pipe
l ∈ [0.10, 0.50]

r ∈ [0.025, 0.05]

Pole
l ∈ [0.10, 0.50]

r ∈ [0.025, 0.05]

Tube
l ∈ [0.50, 1.0]

r ∈ [0.025, 0.05]

Floor N/A

– Passable (Yellow): can not support a stable foothold, but can be stepped
over by a foot swing trajectory

– Non-passable (Red): can not support a stable foothold and can not be
stepped over by a foot swing trajectory

For Cuboids, Ramps, and Cylinders, the top face is labeled as steppable due
to its flat horizontal geometry. If the height of the primitive exceeds a maximum
swing height for the robot leg, in this work defined as hmax = 0.10 m, then
all vertical faces are labeled as non-passable. Otherwise, the vertical faces are
labeled as passable. For Spheres and Semispheres, the entire primitive is labeled
as non-passable if the diameter and radius respectively exceed hmax. Otherwise,
the entire primitive is labeled as passable. For Pipes, Poles, and Tubes, the entire
primitive is labeled as non-passable if the z−dimension of its pose exceeds hmax.
Otherwise, the entire primitive is labeled as passable. Lastly, floors are labeled
as completely steppable.
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Primitive Shape Pose The six-dimensional pose of each primitive shape can
be set according to desired scene attributes. For instance, scenes can be set to
feature clusters of primitive shapes localized within a particular region of the
scene, the primitives can be scattered all throughout the scene, or the poses can
be overwritten to accept manually defined entries if the user wants to create more
contrived scenes that include structures such as staircases or stepping stones. The
z-dimension of all shapes is restricted so that all shapes are placed on support
surfaces, and the orientations of Cuboids, Ramps, and Cylinders are restricted
to ensure that the face labeled as steppable remains as the top face in the scene.

Camera pose The six-dimensional pose of the camera placed within each sim-
ulation scene can also be parameterized to emulate expected real-world circum-
stances for onboard sensing. Given that our desired application is quadrupedal
locomotion, we set the camera at a height of z = 0.325 m and pitch it downwards
by 30◦ to approximate the pose of the depth camera attached to our quadrupedal
hardware platform. To capture multiple frames of a single scene, the camera is
set to follow a prescribed trajectory that approximates how a quadruped’s torso
would move through a real world environment. Gaussian noise is also applied to
all six pose dimensions to capture the jitter that the camera would experience
during locomotion in the real world.

Scene Environment Lastly, the overall synthetic environment that the prim-
itive shapes are placed within can also be controlled. In this work, we randomly
select between indoor environments that include walls and a ceiling and outdoor
environments that instead include an infinite horizon.

3.2 Model Training

For model training, we use the off-the-shelf DeepLabV3+ [31] model from the
Detectron2 deep learning library [32]. To construct the dataset, 600 scenes were
generated with 5 frames each, making for a total of 3, 000 images. In total,
dataset generation took roughly 12 hours. The generated data was put into
80%/10%/10% splits of 2,400, 300, and 300 images for training, validation, and
test subsets respectively. Model training took 65 minutes on an Intel Xeon W-
2223 CPU at 3.60GHz with an Nvidia T1000 GPU. Plots of training loss and
intersection-over-union can be seen in Figure 2.

3.3 Steppability-informed Contact Planning

Now, we detail how the proposed steppability model can be used to inform
footstep planning. We provide a brief overview of our existing contact planner
here, and more details can be found at [33].

We incorporate this steppability model into our existing interleaved graph
search and trajectory optimization-based footstep planner. To plan a discrete
sequence of footholds, we perform a search over a mode transition graph G =
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Fig. 2: Results of training. (a) Total training loss over the training iterations.
(b) Intersection-over-union (IoU) of all classes over the training iterations.

(V, E) [34]. Each vertex v ∈ V represents a partial stance in which a proper
subset of the quadruped’s feet are in contact with a unique combination of
steppable objects in the environment. Each vertex v represents a mode family
Ξ. Within each mode family, there is an infinite set of modes ξ ∈ Ξ where each
mode ξ represents a particular set of positions along the steppable objects where
contact is made. A set of continuously varying coparameters χ parameterize
these contact positions.

Each edge e ∈ E represents a transition between two partial stances which
itself is a full stance in which all feet are in contact. For a transition between
source mode ξi = ⟨Ξi, χi⟩ and destination mode ξi+1 = ⟨Ξi+1, χi+1⟩, the graph
edge e = (ξi, ξi+1) is assigned the weight

∆c(ξi, ξi+1) =

DΞi,Ξi+1(χi,χi+1)+

dCoM(ξi, ξi+1)+

dτ (ξi, ξi+1)+

dstep(ξi, ξi+1)

(1)

where the distribution DΞi,Ξi+1(χi,χi+1) captures the kinodynamically-aware
cost of transitioning from ξi to ξi+1, dCoM(ξi, ξi+1) is the Euclidean distance be-
tween nominal CoM positions for ξi and ξi+1, dτ (ξi, ξi+1) is the deviation of nom-
inal CoM positions for ξi and ξi+1 from a guiding torso path, and dstep(ξi, ξi+1)
is a proposed steppability-informed weight. All terms are weighted by positive
scalars to assign relative importance.

This graph search returns a discrete sequence of footholds that are then
passed to a whole body trajectory optimization (TO) program to generate a full
trajectory. The optimal cost values obtained from this TO program are then
used to update the experience-based distribution DΞi,Ξi+1(χi,χi+1) which is
obtained offline.
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Fig. 3: Example outputs of learned steppability model. Top row: input depth
images to the model. Middle row: ground truth steppability labels of the cor-
responding column’s input depth image. Bottom row: model outputs for the
corresponding column’s input depth image.

3.4 Steppability heuristic

The mode transition graph is constructed under the assumption that we have ac-
cess to the poses of the objects in the environment that we want to plan footholds
on, but we assume that the poses of obstacles are unknown. We then rely on
this perception-informed steppability term for reactive obstacle avoidance.

Prior to triggering the mode transition graph search, the learned model is
queried to obtain the current steppability mask Istep. This mask contains step-
pability labels for the current view of the environment. Then, during the graph
search, when a new edge is visited, the stance foothold positions of the edge’s
transition can be projected into the steppability mask to ascertain information
regarding the quality of the candidate foothold positions.

From the graph edge e, we extract the world frame positions pl
c ∈ R3 ∀l ∈

[1, 4] of the center of each of the four transition footholds. To determine the
correct pixel to query for its steppability label, we then perform pinhole camera
projection xl

c

ylc
w

 = K ·
[
Rt

CW ttCW

]
·
[
pl
c

1

]
, (2)

where
[
xl
c ylc w

]T
are homogeneous image coordinates, K ∈ R3×3 is the in-

trinsic camera calibration matrix, and Rt
CW ∈ R3×3, ttCW ∈ R3 are the rotation

and translation from the world frame to the camera frame at time t. Finally, the
homogeneous image coordinates of the candidate footholds are obtained through
the simple conversion

xl
c :=

[
xl
c/w

ylc/w

]
. (3)
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Based on the steppability label returned for the foothold pixel xl
c, we assign a

weight of

dlstep(ξi, ξi+1) =


1000, if Istep(xl

c) → non-passable

100, if Istep(xl
c) → passable

5, if xl
c not in frame

1, if Istep(xl
c) → steppable

. (4)

Given that we do not wish to plan footholds on such regions, we could dis-
card any footholds with non-passable or passable labels. However, this could
potentially eliminate feasible footholds that are simply obscured by passable
or non-passable features in the environment. Therefore, we opt to administer
higher penalties for such labels but still allow for these footholds to be selected
in the event that they are essential to reaching the goal. Similarly, we allow for
footholds to be planned outside of the current camera view.

Lastly, the total steppability weighting term is taken as the sum across all
footholds

dstep(ξi, ξi+1) =
∑
l

dlstep(ξi, ξi+1). (5)

To account for the finite size of the quadruped’s feet, we perform an inflation
step modeled off of [14] where we additionally check the steppability labels of
world frame positions that are offset from pl

c in the x− and y−direction by the
radius of the foot and add these to the total steppability weight.

3.5 Trajectory Optimization

Our lower-level TO problem solves over the robot state x = [h,qb,qj ], the robot
input u = [f ,vj ], and the coparameters χi+1 of the destination mode family.
The TO formulation for generating a whole-body trajectory to transition from
ξi = ⟨Ξi,χi⟩ to ξi+1 = ⟨Ξi+1,χi+1⟩ is written as:

min
x,u,χi+1

∥x[N ]− xdes[N ]∥2Qf
+

N−1∑
k=0

(
∥x[k]− xdes[k]∥2Q + ∥u[k]∥2R

)
subject to

(Mode i) F ξi(q[k]) = 0 (6a)

(Mode i+ 1) F ξi+1(q[N ],χi+1) = 0 (6b)

(Dynamics) ẋ[k] = fcent(x[k],u[k]) (6c)

(Friction) fl[k] ∈ Fl(µ,q) ∀l ∈ Ci (6d)

fl[k] = 0 ∀l /∈ Ci (6e)

(Collision) g(q[k]) ≥ 0 ∀k ∈ [0, N ] (6f)

where fcent are the centroidal dynamics described in [33] and [35], Fl(µ,q) rep-
resents the friction cone which depends on the friction coefficient µ and robot
pose q, and Ci represents the set of stance feet for ξi.
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4 Experimental Results

4.1 Offline experience accumulation for irregular terrain traversal

For our first experiment, we demonstrate the benefits of integrating the pro-
posed steppability-based search heuristic into our contact planner. To do so, we
perform a series of offline planning trials both with and without the steppability
term active in the graph search. Each individual planning trial is comprised of a
single graph search over candidate footholds and a sequence of trajectory opti-
mization subproblems aimed to synthesize swing trajectories between footholds.
If an intermediate subproblem fails, then the trial is terminated early, remaining
subproblems are left unattempted, and the experience-based cost distributions
along the traversed graph edges are updated.

Offline trials are run in the environment shown in Figures 1 and 5, character-
ized by irregularly posed planar regions along with spherical obstacles which we
aim to avoid planning footsteps on while attempting to reach the desired goal
region (shown as a transparent green sphere in Figure 5).

(a) Results for experience accumulation without steppability heuristic.

(b) Results for experience accumulation with steppability heuristic.

Fig. 4: Offline planning results for Section 4.1. On the left side, results of all
planning trials run (a) without and (b) with the steppability heuristic active in
the graph search. On the right side, graph search and trajectory optimization
solve times for each trial are shown.
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Results for the offline trials are shown in Figure 4. Left plots showcase the
results of intermediate trajectory optimization subproblems along with total
path costs for the planning trials that successfully reach the goal region. Right
plots showcase the computation times of both the graph searches and trajectory
optimization subproblems associated with each trial.

Without the steppability term (Figure 4a), the planner must ascertain the
obstacle locations solely through the experience heuristic. This can be viewed
as as a form of proprioceptive sensing where the graph search only comes to
avoid the obstacles through the high costs of the offending trajectories informing
the graph’s corresponding edge weights. In this setup, the planning framework
requires 30 offline planning trials to discover successful contact sequences.

With the steppability term (Figure 4b), the planner has a weighting term
on the graph edges that can act as a form of exteroceptive sensing. Based on
the current view of the environment, this steppability term guides the graph
search away from footholds that overlap with obstacles. The impact of this term
can be seen in that the planner can immediately identify successful contact se-
quences, requiring no offline planning in order to successfully reach the goal. This
indicates that the steppability term greatly expedites offline experience accumu-
lation process by providing a form of proactive foot-level collision avoidance at
no cost to graph search timing.

Fig. 5: Online tracking performance of offline reference trajectory in simulation.

While graph search times across all planning trials were minimal, never ex-
ceeding a tenth of a second, the solve times for the swing trajectory subproblems
remain prohibitive, capable of taking more than 20 seconds for a single contact
transition. These significant solve times are largely in part due to the highly non-
linear collision avoidance constraint. Only obstacles sufficiently close to the robot



12 Max Asselmeier et al.

are activated in this constraint for any given subproblem, leading to maximal
solve times in more dense environments, as is to be expected.

Lastly, Figure 5 showcases the online tracking performance of the reference
trajectory received from the contact planner. For this task, we use a model pre-
dictive control (MPC)-based whole body controller (WBC) modeled off of [36].
Overall, the tracking performance in simulation is suitable for online deployment,
and the reference trajectory successfully guides the platform the other side of
the stepping stones layout. The Z Position figure includes moments where the
robot’s end effectors slip off of the intended planar regions, evidenced by their
Z-coordinate dropping below 0.05 m. However, these slips were not catastrophic
and the trajectory tracking was still successful.

4.2 Regular terrain traversal within a reactive navigation
framework

While the environment in Section 4.1 that the proposed contact planning frame-
work is deployed in might be small, the depth images used as inputs to our
steppability model are only capable of providing dense depth information within
a range of 1 − 3m. Therefore, we do not want to rely on this perception data
over large spatio-temporal scales in the first place. This can be observed in Fig-
ure 1a where the distance between consecutive points grows as the points get
further away from the robot and camera. Additionally, Section 4.1 demonstrates
that the lengthy trajectory optimization solve times prevent us from running our
planner in a purely online fashion, and these computational trends only worsen
as the size of the environment in which planning is performed increases. This
motivates the utilization of a reactive hierarchical navigation framework in which
planning is frequently performed on the constantly updating local environment.
In this section, we detail the integration of our contact planner into a navigation
framework as previously described and experimentally demonstrate the benefits
of planning within such a framework.

We utilize an event-based navigation framework in which certain environmen-
tal triggers, namely when the robot has reached the boundary of its previously
perceived local environment, send a re-plan request to our contact planner. An
example of this process is visualized in Figure 6 where we perform planning over
regular terrain, exemplified by a flight of stairs. In frame (a), the initial planning
request is sent to the contact planner and a whole body trajectory is synthesized
within the local portion of the environment. Note that the global goal region,
depicted as a transparent green sphere, lies beyond the local environment in
frame (a), necessitating future re-planning to reach it. Frames (a)-(f) show the
online tracking of the initially generated trajectory. At frame (g), tracking has
been completed and more of the environment has been revealed, including a tall
pillar that must be avoided. A re-planning request is triggered and frames (g)-(i)
show the online tracking of the new trajectory, allowing the robot to reach the
global goal region.
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Fig. 6: Contact planning performed over regular terrain (stairs) within an online
navigation framework. An inertial coordinate frame is shown at the bottom left of
each image, and the global goal region is depicted as a transparent green sphere.
During the tracking of the initially generated trajectory, shown in frames (a)-(f),
the remaining portion of the environment is revealed to the planner, allowing it
to re-plan at frame (g) in order to reach the global goal region.

4.3 Sloped terrain traversal through disturbance-based re-planning

Section 4.2 showcased the ability to re-plan in the event of successfully planning
through the robot’s local environment. In this section, we introduce another key
event that requires re-planning, online disturbance recovery, and demonstrate
how our novel steppability heuristic facilitates in the detection of these distur-
bances.

In frames (a) and (b) of Figure 7, we perform planning in a sloped local
environment. However, in frame (c), during trajectory tracking, we spawn a
new obstacle in the path of the robot. Given that our contact planner can not
perform fully online navigation, it is critical that we have a means to validate
the trajectory that is currently being tracked against the potentially changing
local environment. During trajectory tracking, we project upcoming footholds
into the current steppability mask to check if the foothold is still steppable. If
an upcoming foothold is deemed not to be steppable, a re-planning request is
triggered. Frame (c) shows that when this new obstacle is spawned, the current
steppability mask labels the region is non-passable, and the previously planned
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foothold that now overlaps with this obstacle is deemed infeasible. Trajectory
tracking is subsequetly stopped at frame (d) to ensure that the robot does not
collide with the new obstacle, and a new trajectory is generated at frame (e)
that accounts for the new obstacle. Then, this new trajectory is tracked during
frames (e)-(i), allowing the robot to finally reach the global goal region.

Fig. 7: Contact planning performed in the presence of an online disturbance in
the form of a newly spawned obstacle. An inertial coordinate frame is shown at
the bottom left of each image, the accompanying steppability mask at each frame
is shown at the top left of each image, and the global goal region is depicted
as a transparent green sphere. When the new obstacle is spawned in frame (c),
the steppability mask identifies it and labels it as non-passable, triggering a re-
planning request in response to the changed environment.
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5 Conclusion

In this work, we introduce a novel image space-based method of predicting the
steppability properties of the local environment for footstep planning. We adapt
primitive shapes-based techniques from the domain of dexterous manipulation
in order to efficiently generate diverse synthetic data for training a semantic seg-
mentation model to perform steppability prediction, and we deploy this steppa-
bility model in our existing interleaved search and optimization contact planner
in the form of a deep visual search heuristic. Through offline planning trials and
online reactive navigation, we demonstrate how this steppability heuristic allows
for expedited offline experience accumulation, proactive collision avoidance, and
reactive recovery from disturbances.

In the future, we aim to validate the performance of our perception-informed
contact planner on an integrated real-world quadrupedal system. To do so, we
plan on generating synthetic data from higher fidelity simulation environments
and bridging the sim-to-real gap by incorporating a bi-directional domain align-
ment process that merges simulation and real world data distributions by both
corrupting simulation data and denoising real world data. We also seek to bench-
mark our steppability model against classical point cloud processing-based rep-
resentations to better understand the speed and accuracy trade-off that our
learned steppability model provides.
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