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Abstract— This paper proposes an optimization-based task
and motion planning framework, named “Logic Network
Flow”, to integrate signal temporal logic (STL) specifica-
tions into efficient mixed-binary linear programmings. In this
framework, temporal predicates are encoded as polyhedron
constraints on each edge of the network flow, instead of as
constraints between the nodes as in the traditional Logic Tree
formulation. Synthesized with Dynamic Network Flows, Logic
Network Flows render a tighter convex relaxation compared to
Logic Trees derived from these STL specifications. Our formu-
lation is evaluated on several multi-robot motion planning case
studies. Empirical results demonstrate that our formulation
outperforms Logic Tree formulation in terms of computation
time for several planning problems. As the problem size scales
up, our method still discovers better lower and upper bounds
by exploring fewer number of nodes during the branch-and-
bound process, although this comes at the cost of increased
computational load for each node when exploring branches.

I. INTRODUCTION

Task and motion planning (TAMP) with temporal logic
provides formal guarantees for provably correct robot plans
and task completion [1]. Particularly, TAMP with Signal
Temporal Logic (STL) constraints is often formulated as
an optimization problem solved by mixed-integer linear
program (MILP) [2], [3]. However, this STL-based planning
problem is theoretically intractable due to its NP-hard na-
ture. In practice, although MILP solvers, e.g., via branch
and bound (B&B), can solve in a reasonable computation
time, they still suffer from the worst-case (i.e., exponential)
complexity. To take a step toward circumventing these worst-
case scenarios, this study presents a novel MILP formulation
by transforming STL specifications into a form of network
flow to render a tighter convex relaxation for the MILP. This
formulation offers a promise in improving the efficiency of
the B&B process, which can further facilitate the solve of
STL-based optimization problems more efficiently.

STL offers an expressive task-specification language for
specifying a variety of temporal tasks, and provides a pow-
erful framework to integrate discrete and continuous actions.
Planning of dynamical systems under STL specifications has
been widely explored for robot manipulation [4], [5], loco-
motion [6], and multi-agent systems [3], [7]. As an evaluation
of the task completion, a robustness metric is introduced
[8] to facilitate the search for the optimal solution. An
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Fig. 1: An example of an Logic Tree (Left) and an Logic Network Flow
(Right) for φ = ((zπ1 ∧ zπ2 ) ∨ (zπ3 ∧ zπ4 )) ∧ ((zπ5 ∧ zπ6 ) ∧ (zπ7 ∨
zπ8 )) ∧ (zπ9 ∨ zπ10 ∨ zπ11 ).

approximation to robustness has been designed [9]–[11] to
entirely avoid mixed-integer programming through gradient-
based optimization. This “smooth” method improves compu-
tational speed but sacrifices the completeness of the results
that is guaranteed by MILP.

To improve computational efficiency when solving MILP
with STL constraints, existing efforts have focused on either
reducing the problem size [12] or tightening the convex
formulation [13]. In particular, [14] discussed several ap-
proaches for designing MILP formulations with tight convex
relaxations. In addition, [13] introduced a compact formu-
lation named graph-of-convex-set to solve hybrid motion
planning problems leveraging a structure similar to network
flows, which is a classical model developed for urban traffic
flow management [15].

In this paper, we reformulate the problem to achieve a
tighter convex relaxation inspired by [13]. Our main con-
tributions include converting temporal logic specifications
into a Logic Network Flow that encodes STL constraints.
As shown in Fig. 1, temporal logic predicates are placed on
the edges of a Logic Network Flow (right) instead of on
the leaf nodes of a Logic Tree (left), which is designed in
previous literatures [16], [17]. Our formulation is evaluated
on multi-robot coordination and searching tasks. Simulation
studies show that through integrating Logic Network Flows
with dynamics encoded as Dynamic Network Flows [18], our
formulation can discover tighter lower and upper bounds via
exploring fewer numbers of nodes during the B&B process
compared to [16], [17]. The trade-off is that solving a single
node tends to be more computationally expensive. In future
works, we aim to reduce the computation time on single
nodes with techniques such as parallel computing.

II. BACKGROUND

A. Temporal Logic Preliminaries

We consider a discrete-time nonlinear system in form of

xt+1 = f(xt,ut) (1)



TABLE I: Validity semantics of Signal Temporal Logic

(x, t) |= φ1 ∧ φ2 ⇔ (x, t) |= φ1 ∧ (x, t) |= φ2

(x, t) |= φ1 ∨ φ2 ⇔ (x, t) |= φ1 ∨ (x, t) |= φ2

(x, t) |= ♢[t1,t2]φ ⇔ ∃t′ ∈ [t+ t1, t+ t2], (x, t
′
) |= φ

(x, t) |= □[t1,t2]φ ⇔ ∀t′ ∈ [t+ t1, t+ t2], (x, t
′
) |= φ

(x, t) |= φ1U[t1,t2]φ2 ⇔ ∃t′ ∈ [t+ t1, t+ t2], (x, t
′
) |= φ2

∧ ∀t′′ ∈ [t+ t1, t
′
](x, t

′′
) |= φ1

where xt ∈ X ⊆ Rnx × Bnz represents the state vector,
consisting of continuous variables of size nx and binary
variables of size nz; ut ∈ U ⊆ Rnu represents the control
input of size nu, with B = {0, 1} and t = 0, 1, . . . , T
denoting the time indices. Given an initial state x0 ∈ X0

and the control input at each step, a run of the system is
expressed as ξ = (x0u0)(x1u1) · · · via rolling out Eqn.
(1).

In this paper, we focus on bounded-time signal temporal
logic (STL) formulas built upon convex predicates. That
said, the maximum trajectory length T to determine logic
satisfiability is finite. We recursively define the syntax of
STL formulas as follows [19]: φ := π | ¬φ | φ1 ∧
φ2 | φ1 ∨ φ2 | ♢[t1,t2] φ | □[t1,t2] φ | φ1 U[t1,t2] φ2, where
the semantics consists of not only boolean operations “and”
(∧) and “or” (∨) but also temporal operators “always” (□),
“eventually” (♢), and “until” (U). φ, φ1, φ2 are formulas, and
π is an atomic predicate X → B whose truth value is defined
by the sign of the convex function gπ : X → R. In this paper,
we assume that the convex function is a combination of linear
functions, which can be expressed as gπ(t) = (aπ)⊤xt+bπ .
A binary predicate variable zπt ∈ B is assigned to each
predicate at timestep t such that:

(aπ)⊤xt + bπ ≥ 0 ⇔ zπt = 1,

(aπ)⊤xt + bπ < 0 ⇔ zπt = 0
(2)

A run ξ that satisfies an STL formula φ is denoted as ξ |=
φ. The satisfaction of a formula φ having a state signal x
beginning from time t is defined inductively as in Table I.

B. Logic Tree

Logic Tree, also referred as STL Tree [12], STL Parse
Tree [20], and AND-OR Tree [3], is a hierarchical data
structure encapsulating STL formulas to facilitate efficient
optimization solve. Here we first provide its definition and
an example of translating an STL formula to a Logic Tree:

Definition 1. A Logic Tree (LT) Tφ constructed from an
STL specification φ is defined as a tuple (◦,Π,N , τ), where:

• ◦ ∈ {∧,∨} denotes the combination type;
• Π = {π1, . . . , π|Π|} is the set of |Π| predicates associ-

ated with each leaf node in the tree Tφ. Each leaf node
is assigned a variable zπi to indicate its validity.

• N = {Tφ0 , Tφ1 , . . . , Tφn} represents the set of n+ 1
internal nodes having at least one child, where the root
node is denoted by Tφ = Tφ0 . Each node is associated
with an STL formula φi and a combination type ◦.
Similarly, each internal node is assigned a variable zφi

to indicate the formula’s validity.

Fig. 2: The Logic Tree for ♢[0,2](□[0,1]π), given in Example 1.

• τ = {tφ0 , tφ1 , . . . , tφn} ∪ {tπ1 , . . . , tπ|Π|} is a list
of starting times corresponding to each of the STL
formulas at the internal nodes and predicates at the leaf
nodes.

Example 1. Consider a specification ♢[0,2](□[0,1]π) whose
corresponding LT is shown in Fig. 2. This tree has 10 nodes
including 6 leaf nodes and 4 internal nodes. The root node
has a combination type of disjunction corresponding to the
operator ♢ in formula and three second-level conjunction
nodes correspond to the operator □ in the formula.

To encode temporal logic constraints represented by the
LT into an optimization formulation, [16] and [17] propose
a MILP, where all variables assigned to the internal nodes
zφi ,∀i ∈ {0, . . . , n} are continuous variables and all vari-
ables zπi ,∀i ∈ {1, . . . , |Π|} on the leaf nodes are binary
variables.

For each internal node with a conjunction combination
type: φ = ∧pi=1φi where φi is either a formula or a predicate
of the child nodes, the following constraints are enforced:

zφ ≤ zφi , i = 1, . . . , p, zφ ≥ 1− p+

p∑
i=1

zφi (3)

Similarly, for each internal node with a disjunction com-
bination type: φ = ∨qi=1φi , the following constraints are
applied:

zφ ≥ zφi , i = 1, . . . , q, zφ ≤
q∑
i=1

zφi (4)

On the root node, zφ0 = 1 must hold to satisfy the STL
specification. Notably, although zφi are continuous variables,
constraints (3) and (4) guarantee that zφi remain binary as
long as zπi take binary values.

In summary, the LT-based optimization formulation is to
solve planning problems subject to the dynamics constraint
(1) and the temporal logic specification φ, while minimizing
the objective function f(xt,ut). After constructing the LT
Tφ, the optimization can be formulated as:

minimize
xt∈X ut∈U

zπi∈B zφi∈[0,1]

f(xt,ut)

s.t. (1), x0 ∈ X0

(2), ∀ π ∈ Π

(3) (4), ∀ Tφi ∈ N
zφ0 = 1

(5)



C. Branch and Bound
The problem formulation proposed in this study is a

mixed-binary linear program (MBLP), which is known to be
NP-complete [21], and Branch and Bound (B&B) is a well-
received method to solve MBLPs. For a feasible optimization
problem, B&B converges to the global optimum; otherwise,
it provides a certificate of infeasibility. In this section, we
briefly introduce B&B, and refer readers to [22] for a more
detailed description.

Consider a MBLP with continuous variables x ∈ Rnx , bi-
nary variables z ∈ Bnz , and an optimal objective value LP ∗.
B&B maintains a search tree, where each node corresponds
to a linear programming (LP) problem. These LP problems
on nodes are created by relaxing some binary variables
z[j], j = {1, . . . , nz} to continuous variables, and imposing
bounds on them. The root node of the tree is a linear program
LP0 that relaxes all binary variables to continuous variables.

Each LPi in the search tree is associated with a lower
bound, LPi, on its optimal objective value LP ∗

i . Heuristics
are applied to effectively obtain lower bounds. The B&B
algorithm also keeps an incumbent solution, LP , which is
the best objective value found so far. This value also serves
as an upper bound on LP ∗. If no feasible solution has been
found up to the current iteration, LP is set to +∞. The
success of B&B relies on efficiently pruning the search tree
using both upper and lower bounds, which occurs when LPi
is a tight lower bounds of LP ∗

i , and LP is a tight upper
bound of LP ∗ [22].

The relaxation gap of B&B is defined as Ga = |LP −
LP |/|LP |, where LP is the best lower bound among all
LPi. Ga is used to measure the tightness of bounds and the
solver will terminate when Ga = 0. In particular, the root
relaxation gap is defined as Gr = |LP − LP0|/|LP |.

III. PROPOSED METHOD

A. Logic Network Flow
In this paper, we propose a new formulation to encode

signal temporal logic specifications, named Logic Network
Flow (LNF), which comes with a tighter convex relaxation.
We first provide the definition for LNFs.

Definition 2. A Logic Network Flow Fφ from the specifi-
cation φ is defined as a tuple (G,P,Π, τ), where:

• G = (V, E) is a directed graph with a vertex vs ∈ V
be the source vertex and a vertex vt ∈ V be the target
vertex.

• Π = {π1, . . . , π|Π|} is the set of |Π| predicates associ-
ated with each leaf node in the tree Tφ (same to Def.
1). We define ωflow ∈ R|Π| as a vector of values of all
elements in Π.

• P is a collection of sets of ne (ne ≤ |Π|) predicates
that must hold true to pass through each edge e ∈ E ,
defined as Pe := {πi|πi ∈ Π, zπi = 1} ∈ P .

• τ = {tπ1 , . . . , tπ|Π|} is a list of starting times corre-
sponding to each predicate in Π.

For a vertex v ∈ V in an LNF, let E in
v denote the set of

incoming edges to v, and Eout
v the set of outgoing edges

Fig. 3: An illustration of the strategy to translate conjunction and disjunction
combination types from an Logic Tree to an Logic Network Flow in
Algorithm 1.

Algorithm 1 BUILDNODE

Input: An LT node Tφi , a vertex v, an outgoing edge e of
v, and a predicate set Pe for edge e.
Output: A vertex v, an outgoing edge e of v, and a predicate
set Pe for edge e.

1: if Tφi = πψ is a leaf node then
2: Add πψ to Pe.
3: return v, e, Pe
4: if ◦(Tφi) = ∧ then
5: for each child Tφj of Tφi do
6: v, e, Pe = BUILDNODE(Tφj , v, e, Pe)
7: return v, e, Pe
8: if ◦(Tφi) = ∨ then
9: (Assume n to be the number of subnodes of Tφi )

10: Duplicate e, Pe for n− 1 times, denote as ej , Pe,j ,
where j = 1, . . . , n.

11: for each child Tφj of Tφi do
12: v, eo,j , Po,j = BUILDNODE(Tφj , v, ej , Pe,j)
13: Initialize a new vertex vφi

, an outgoing edge eφi
,

and a set Peφi
= ∅ for the edge eφi

14: Assign E in
vφi

= {eo,j , j = 1, . . . , n}.
15: return vφi

, eφi
, Peφi

.

from v. We present Algorithm 1, a recursive algorithm that
translates an LNF from an LT. A similar approach can also
be used to construct LNFs directly from STL specifications.
To initialize the recursion process in Algorithm 1, we input
a source vertex vs, a “dangling” outgoing edge e ∈ Eout

vs
without the other end, and an empty predicate set Pe = ∅
associated with the edge e. Subsequently, we run the pro-
gram: BUILDNODE(Tφ0 , vs, e, Pe), which returns the target
vertex vt. Fig. 1, 3 and 4 show a few examples of converting
LNFs to LTs for nodes with conjunction and disjunction
combination types.

B. Optimization Formulation

Given a Fφ, we propose an optimization formulation with
a tighter and more compact convex relaxation, similar to the
approach in [13], since an LNF can be considered as a special
instance of graph-of-convex-sets. For each edge e ∈ E in
the LNF shown in Fig. 4, we associate a binary variable
ye ∈ B indicating if this edge is traversed by the flow ωflow,
and a multi-dimensional continuous vector ωe ∈ [0, 1]|Π|

defined as follows: if ωflow passes through the edge e, we
require ωe[i] = 1 for πi ∈ Pe where πi is the ith predicate
in Π; otherwise, we set ωe = 0. The relationship between
ye and ωe can be imposed through convex hull constraints
[14]. We define He ∈ R2|Π|×|Π|, he ∈ R2|Π|, such that
Heωe ≤ he captures a closed predicate polyhedron within



Fig. 4: An example of an LT transformed into an LNF by applying
Algorithm 1. Each edge in the LNF possesses a binary variable yi and
a vector variable ωi, given in Example 4.

which ωe remains. The convex hull constraint is expressed
as follows so as ye = 0 ⇒ ωe = 0 can be inferred:

Heωe ≤ yehe (6)

For each vertex v ∈ V with the input edges E in
v ⊂ E and

the output edges Eout
v ⊂ E , flow conservation constrains are

enforced for both ye and ωe:∑
e∈Ein

v

ye =
∑
e∈Eout

v

ye,
∑
e∈Ein

v

ωe =
∑
e∈Eout

v

ωe (7)

In addition, in-flow constraints are imposed to ensure that
one unit of flow is injected into the source vertex and the
quantity of flow to any vertex is less than one unit:∑

e∈Eout
vs

ye = 1,
∑
e∈Eout

vs

ωe = ωflow,
∑
e∈Ein

v

ye ≤ 1 (8)

Notably, if G is not acyclic, the inequality constraints in
(8) are necessary to prevent cycles in G from happening.
However, since the directed graph G in an LNF is acyclic,
it is unnecessary to add this constraint to our formulation
presented in the Sec. III-D. The proof follows directly from
topological sorting, which is omitted here for brevity.

Example 2. The LNF in Fig. 4 consists of 4 edges and 3
vertices including vs and vt. The variables in the LNF are
[y1, y2, y3, y4], yi ∈ [0, 1], and [ω1,ω2,ω3,ω4], ωi ∈ [0, 1]5.
Edge 1 is associated with the predicate set P1 = {zπ1}, so we
enforce ω1[1] ≤ y1. Similar constraints are applied to Edge 2
and Edge 3. For Edge 4, with predicate set P4 = {zπ4¬zπ5},
we enforce ω4[4] ≤ y4 and ω4[5] = 0. At the middle vertex,
we impose flow conservation constraints y1 + y2 = y3 + y4
and ω1+ω2 = ω3+ω4. For the source vertex vs, the in-flow
constraints are y1 + y2 = 1 and ω1 + ω2 = ωflow.

In summary, the LNF formulation ensures that a contin-
uous signal ωflow passes through the graph from the source
vertex to the target vertex. If ωflow reaches the target vertex,
the specification φ is satisfied. So far, we treat ωflow as the
in-flow to the LNF. In Sec. III-D, we will explain how ωflow

serves as a connection coupling the LNF with the dynamics
through Eqn. (2).

C. Incorporating Dynamics as Dynamic Network Flow

In this study, we abstract the dynamics constraint in (1)
using a Dynamic Network Flow (DNF) [18]. This approach is
employed such that, when integrating with LNFs, it preserves
the tightness of the convex relaxation from LNFs. We define
the state space X as a set of discrete points, and generate
the DNF connecting these discrete points through running

trajectory optimization offline. This framework also holds
the promise to synthesize with continuous state spaces.

To build a DNF, a set of discrete points S =
{p1, . . . ,pm}, pi ∈ X are selected on a map to represent
locations that the robots are required to visit based on STL
specifications. For each pair of points (pi,pj), a trajectory
with horizon K departing pi and arriving pj is constructed,
where K is the timestep to travel between qj and qj+1.

A DNF Gt = (Et,Vt) is composed of N ×|S| vertices for
a planning trajectory of a horizon N . Each vertex v ∈ Vt has
a subscript p representing a point p ∈ S and a superscript
t accounting for the time steps, i.e., all vertices affiliated to
p can be expressed in a sequence of vertices v1p, v

2
p, . . . , v

N
p

in the graph. If traversing from p to q takes K time steps,
edges are connected from vtp to vt+Kq , ∀t. Edges are also
connected from vtp to vt+1

p representing the robot staying still
at timestep t. We refer readers to [18] for detailed examples
of the DNFs.

For each edge e ∈ Et, the variable re ∈ [0, 1] represents the
flow carried by the edge. Meanwhile, the flow incurs a cost
cere proportional to the amount of flow re with coefficient
ce. Similarly, we impose flow conservation constraints on all
vertices and in-flow constraints on the source vertex ps:∑

e∈Ein
v

re =
∑
e∈Eout

v

re,∀v ∈ Vt,
∑
e∈Eout

ps

re = 1 (9)

D. Complete Formulation

In this subsection, we integrate LNFs with DNFs and
establish their connections. Recall that wflow, the flow in-
jecting to the LNF, is a vector of binary predicate variables.
Binary variable zπi with starting time at t holds true if
(aπi)Tp+ bπi ≥ 0, which is equivalent to a flow traversing
vtp. Therefore, we arrive to the following constraints connect-
ing re and zπi :∨

e∈Ein
vt
p

re ⇔ zπi = 1,
∧

e∈Eout
vt
p

¬re ⇔ zπi = 0 (10)

where the binary edge variables re in the DNF, or their con-
junctions and disjunctions, can be treated as the binary predi-
cate variables in the LNF. Given this connection between the
LNF and the DNF, the complete problem formulation of our
approach is stated as:

minimize
re∈[0,1] zπi∈B

ωe∈[0,1]|Π| ye∈B

∑
e∈Ed

cere

s.t. (1), x0 ∈ X0; (2), ∀π ∈ Π

(6), ∀e ∈ E ; (7), ∀v ∈ V
(8), (9), (10)

(11)

IV. EXPERIMENTS

In this section, we present two experiments to evaluate
the performance of the proposed optimization: (i) optimizing
the motions of a team of robots collaboratively moving on a
university campus for multiple delivery tasks; (ii) optimizing
the motions of several robots performing a searching task
with bipedal locomotion dynamics. Our experiments run on



Fig. 5: A discretized Georgia Tech map including 6 sites of interest shown
as red dots and 7 interval knots shown as black dots used in Sec. IV-A. It
takes each robot dT time to travel each blue line segment divided by black
dots in the graph. (Courtesy to Georgia Institute of Technology)

a computer with 12th Gen Intel Core i7-12800H CPU and
16GB memory. All the MIPs are solved using a commercial-
ized solver Gurobi 11.0. For all task specifications, we solve
Eqn. (11) by converting them into LNFs, and benchmark
Eqn. (5) by converting them into LTs.

A. Multi-agent Coordination Tasks

We deploy 4 mobile robots on a map to visit 6 sites of
interest, denoted by p1 to p6, and 7 interval nodes, as shown
in Fig. 5. The minimum time to execute a task at any site
is assumed to be dT = 1 min, and the planning horizon is
N = 30. The robots’ motions are modeled as 4 DNFs, each
encompassing (6 + 7)× 30 = 390 vertices and 1140 edges.
Random costs are assigned to the edges following a uniform
distribution between [0, 1], reflecting potential unexpected
factors that impact the operating power consumption such
as wind gusts. The random costs are also used to give more
comprehensive evaluations of computational performance
through means and variances.

In this example, tasks assigned to the robots are cate-
gorized into three different types. The first type consists
of delivery tasks, requesting one robot to pick up an item
at a site (e.g., p1) between time interval [t1, t2], and then
deliver it to another location (e.g., p2) after t intervals. The
specification is expressed as:

φp1→p2
deliver = ∨4

i=1(♢[t1,t2](□[0,2]z
i,p1
t ∧□[t,t+2]z

i,p2
t ))

The second type of tasks are designed as team tasks, which
demand two robots to visit a site (e.g., p1) simultaneously
between time interval [t1, t2], and to stay there for a duration
t. The specification is shown as:

φp1team = ♢[t1,t2](∨
4
i,j=1,i̸=j(□[0,t]z

i,p1
t ∧□[0,t]z

j,p1
t ))

The third type of tasks are charging duties, asking each robot
to visit a charging station (e.g., p5) every 10 ∼ 20 min of
operation. The specification is:

φp5charge = ∧4
i=1(♢[10,20](□[0,1]z

i,p5
t ))

The specifications are converted into LNFs and LTs. We
benchmark the performance of our optimization formulation
in Eqn. 11 with the one using LTs in Eqn. 5. The robots are
initially distributed at 4 random vertices. For each test, 10
sets of random costs are sampled and applied to DNFs. We
run the test on three different specifications with increasing
complexities: (i) φ1 = φp3team ∧ φp5charge; (ii) φ2 = φp3team ∧

Fig. 6: Left: Trajectory library for bipedal robot walking while avoiding
obstacles (shown in black circles). Any position on the map can be locally
connected to the vertices (shown by green dots) nearby, so it can be reached
by following the trajectories (shown by green lines). Right: Two examples
of globally optimal trajectories under two different random costs, both
satisfying φsearch. Red dots show the positions required for searching. The
orange, blue, and green curves represent the paths taken by each robot.

φp4→p6
deliver ∧ φp5charge; (iii) φ3 = φp3team ∧ φp4→p6

deliver ∧ φp2→p5
deliver ∧

φp5charge.

Table II reports the number of binary and continuous vari-
ables, and the number of constraints for each specification.
By tracing the Gurobi log file, we list the time when the
solver discovers the global optimal solution (labeled “T find
opt.”) and the number of nodes explored by the B&B before
then (labeled “# Node find opt.”). The whole optimization
process finishes when B&B proves the optimality of the
incumbent solution. The row “T prove opt.” and “# Node
prove opt.” respectively lists total time and the total number
of nodes explored when the optimality is proven. For the
bottom four rows of Table II, the values are shown in the
format of median ± median absolute deviation for the reason
that there is a large variance in solving times, particularly
when the problem becomes more complicated (because of
the exponential worst solving time). The row “Gr” records
the root relaxation gap between the relaxation of the MBLP
formulations and the global optimal solution as explained in
Sect. II-C. Fig. 7(1)-(3) display the means and variances of
the bounds in relation to the number of nodes explored.

Our results indicate that optimization with LNFs are more
effective than that with LTs in finding better upper and lower
bounds, which is evidenced by the significant reduction in
the number of nodes explored to achieve bounds of the same
quality. We attribute this to the tighter lower bounds, which
allow the B&B to prune the tree more efficiently and avoid
unnecessary branching by detecting earlier if certain nodes
are not worth further exploration. However, LNFs show an
advantage in computational speed only for φ1 and φ2. This is
because, as the logic specification becomes more complex,
LNFs introduce more continuous variables and constraints
compared to LTs, which result in larger convex relaxations
at each node of the B&B tree. For example, the average
solving speed per node in φ1 is only 4 times slower for
LNFs than LTs, but 14 times slower in φ3. Nonetheless,
there is a promise that techniques such as parallel computing
could reduce solving times for larger-scale convex programs,
potentially improving the scalability of LNFs as future work.



Fig. 7: Solved upper and lower bounds plotted against the number of nodes explored during the B&B process for four tasks, demonstrating the comparison
between LNFs and LTs. Shaded regions show the variance. Generally, LNFs discover the same bound by exploring less number of nodes. Four figures
on the top shows the upper bounds in percentage values, computed by (upper bound − global optimum)/global optimum × 100%. Four figures on the
bottom shows the lower bounds in percentage values, computed by (lower bound − global optimum)/global optimum × 100%. Subfigure (1) shows
φ1 = φp3

team ∧ φp5
charge; Subfigure (2) shows φ2 = φp3

team ∧ φp4→p6
deliver ∧ φp5

charge; Subfigure (3) shows φ3 = φp3
team ∧ φp4→p6

deliver ∧ φp2→p5
deliver ∧ φp5

charge;

Subfigure (4) shows φsearch = ∧7
j=1(♢[tj,1,tj,2]

(∨3
i=1(□[0,1]z

i,pj
t ))).

TABLE II: Computation results for planning robots’ motions in 10 trails

φp3
team ∧ φp5

charge

φp3
team ∧ φp4→p6

deliver

∧φp5
charge

φp3
team ∧ φp4→p6

deliver ∧
φp2→p5
deliver ∧ φp5

charge

∧7
j=1(♢[tj,1,tj,2]

(∨3
i=1(□[0,1]z

i,pj
t )))

Flow Tree Flow Tree Flow Tree Flow Tree

# of binary vars 124 228 300 633

# of cont. vars 20682 7048 42094 6989 66354 6962 462177 95678

# of constr. 17417 3385 39902 3739 65187 4093 415807 46037

Gr (%) 14 ± 5 51.9 ± 11.3 15.7 ± 4.3 54.4 ± 11.4 16.8 ± 4.4 55.2 ± 9.5 25.7 ± 5.2 56.6 ± 8.1

T find opt. (s) 5.5 ± 1.5 11.5 ± 8.5 44.0 ± 16.5 46.0 ± 41.0 138.5 ± 59.5 78.5 ± 41.0 58.0 ± 22.0 32.5 ± 16.0
# N find opt. (103) 0.3 ± 0.3 3.6 ± 1.7 0.6 ± 0.3 3.9 ± 3.6 0.8 ± 0.2 15.6 ± 8.0 0.5 ± 0.2 1.9 ± 1.1

T prove opt. (s) 7.8 ± 2.5 53.4 ± 22.0 231 ± 104 379 ± 257 1061 ± 494 897 ± 540 91 ± 34 153 ± 124

# N prove opt. (103) 0.9 ± 0.6 33.1 ± 19.4 7.3 ± 2.7 79.8 ± 22.9 10.8 ± 7.4 140.2 ± 632.9 1.0 ± 0.3 10.8 ± 6.1

B. Planning Robot Motions to Search over a Map

In this experiment, three bipedal robots are deployed to
search a 50×50 meters map containing 13 circular obstacles.
The task involves robots visiting several specified sites of
interest within a range of time specified in φ. To expedite
the runtime computation, we utilize an offline-generated
trajectory library to link these sites on the map. Those
trajectories are generated using linear inverted pendulum
dynamics [23] tailored for bipedal locomotion. The resulting
map is given on the left side of Fig. 6. When a search position
is notified to the robot during runtime, a short trajectory with
a horizon less than ten seconds is instantaneously planned
with less than 100 ms (through IPOPT) to connect the point
to the nearest node in the trajectory library.

In this example, 7 positions are chosen from the map and
the swarm is required to visit each position for at least one
time. The specification is notated as:

φsearch = ∧7
j=1(♢[tj,1,tj,2](∨

3
i=1(□[0,1]z

i,pj
t )))

Here we set dT = 4 sec and the planning horizon N = 45.
Similar to Sec. IV-A, three DNFs are constructed and random
costs are assigned to the edges in uniform distributions
of [0, 1]. The variant edge costs reflect different terrain
traversability. Two examples of solved paths with each of
the 7 search positions visited at least once by one robot are

shown on the right side of Fig. 6. The two examples differ
due to the different random traversability costs.

The 4th column of Table II shows the number of binary
variables, continuous variables and constraints, as well as the
computation results explained in Sec. IV-A. The subfigure (4)
in Fig. 7 displays the mean and variance curves of the bounds
versus the number of nodes explored. We observe a similar
dramatic decrease in the number of nodes required to achieve
the same upper and lower bounds. However, computational
speeds show greater variability because of the problem size.

V. CONCLUSION

This paper proposes the LNF, a novel method for encoding
STL specifications as an MBLP to enhance the efficiency of
the B&B process. While the initial results are promising,
several limitations remain in the current work. First, the
findings in this study are empirical: they lack a formal proof
to justify the improvement in tightening the bounds. Ad-
ditionally, LNFs tend to involve more continuous variables
and constraints, which increases computation time at each
node in the B&B search tree. In future work, we plan to
employ techniques like parallel computing to reduce the
computation time per node. Nevertheless, LNFs serve as
a valuable alternative to LTs and offer a promising future
direction to improving the computational speed of problems
with temporal logic specifications.
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