
Dynamic Gap: Safe Gap-based Navigation in Dynamic Environments

Max Asselmeier1, Dhruv Ahuja2, Abdel Zaro3, Ahmad Abuaish1, Ye Zhao1, and Patricio A. Vela1

Abstract— This paper extends the family of gap-based local
planners to unknown dynamic environments through generat-
ing provably collision-free properties for hierarchical navigation
systems. Existing perception-informed local planners that op-
erate in dynamic environments rely on emergent or empirical
robustness for collision avoidance as opposed to performing
formal analysis of dynamic obstacles. In addition to this, the
obstacle tracking that is performed in these existent planners is
often achieved with respect to a global inertial frame, subjecting
such tracking estimates to transformation errors from odometry
drift. The proposed local planner, dynamic gap, shifts the
tracking paradigm to modeling how the free space, represented
as gaps, evolves over time. Gap crossing and closing conditions
are developed to aid in determining the feasibility of passage
through gaps, and a breadth of simulation benchmarking is
performed against other navigation planners in the literature
where the proposed dynamic gap planner achieves the highest
success rate out of all planners tested in all environments.

I. INTRODUCTION

Collision avoidance is of utmost importance for safe robot
navigation. This task is typically handled by a local planner
which utilizes sensory information to evade obstacles. One
family of local planners is the gap-based planner [1], which
identifies passable regions, or “gaps”, and synthesizes motion
commands through them. With this emphasis on free space,
gap-based planners are an approach based on the affordances
of the environment [2], and they have shown great promise
with capabilities of respecting dynamic, visual, and geo-
metric constraints [3]–[7] as well as generating provably
collision-free trajectories [8].

Despite this success, gap-based planners have only been
extended to handling dynamic obstacle avoidance very re-
cently [9], a challenge that accurately reflects the unknown,
changing environments of the real world. Reactive plan-
ners designed for static environments are often deployed
in dynamic environments, relying on sufficient runtimes
to adapt to the evolving environment. However, explicitly
accounting for dynamic obstacles during planning allows for
more assured collision avoidance behaviors.

This paper details an extension to prior work on the poten-
tial gap planner [8] involving augmentations to the planning

1M. Asselmeier, A. Abuaish, Y. Zhao, and P.A. Vela are with the Institute
for Robotics and Intelligent Machines, Georgia Institute of Technology,
Atlanta, GA 30308, USA. mass@gatech.edu

2D. Ahuja is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30308, USA.

3A. Zaro is with the Department of Mechanical Engineering, University
of California, Berkeley, Berkeley, CA, 94720, USA.

The work of Max Asselmeier is supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-2039655.
Any opinion, findings, and conclusions or recommendations expressed in
this material are those of the authors(s) and do not necessarily reflect the
views of the National Science Foundation.

Fig. 1: Visualization of gaps and trajectories generated by dynamic gap.
The central blue circle depicts the ego-robot while the red circle depict
dynamic agents. The bold colored arcs labeled A-F are the instantaneous set
of detected gaps and the transparent arcs show the predicted gaps obtained
by propagating the gap dynamics models, shown as arrows, forward in time.
Dashed lines are the candidate trajectories synthesized towards the gap goals
shown in yellow. Gap F is predicted to close before the ego-robot can pass
through, so it is deemed infeasible and not used during trajectory synthesis.

framework to extend formal guarantees for safe navigation
to dynamic environments under particular assumptions. Ad-
ditional modules are also included to enable a more robust
translation of planning success to non-ideal environments.
This extension is referred to hereafter as dynamic gap and
can be visualized in Figure 1. Egocentric free space tracking
is integrated to predict how gaps will evolve over time,
and guidance law-based policies are employed to synthesize
collision-free trajectories that pass through moving gaps
under ideal conditions. Additional modules are then applied
to robustify planning performance in non-ideal conditions.

Our main contributions are summarized as below:
1) Proposing an alternative tracking paradigm which re-

volves around the tracking and prediction of free space
2) Adapting geometric and kinematic rules from guidance

laws to the realm of gap-based planning to aid in
dynamic gap propagation and feasibility analysis

3) Providing a proof of collision-free dynamic gap passage
under ideal conditions along with supplementary safety
modules for non-ideal conditions

4) Benchmarking against state-of-the-art local planners in
the Arena-Rosnav simulation environment

This planner is open-sourced1 within the Arena-Rosnav
benchmarking environment [10]–[13] and available to test.

1https://github.com/ivaROS/DynamicGap

https://github.com/ivaROS/DynamicGap

II. RELATED WORK

A. Perception Space and Gap-based Navigation
Most motion planners [14]–[16] opt to plan using Carte-

sian world frame environment representations such as cost
maps or voxel grids. These approaches contrast with the
perception-space approach to planning which involves keep-
ing sensory input in its raw egocentric form to take advantage
of the computational benefits that come with foregoing in-
tensive data processing. All local planning steps downstream
are then cast as ego-centric decision making processes.

Gap-based planners [1], [3]–[7], [9], [17]–[22] are an
example of perception space-based planners. They detect
regions of collision-free space defined by either leading
or trailing edges of obstacles which can be viewed as an
alternative way of discretizing the environment, here in
the egocentric polar space as opposed to common methods
such as occupancy maps. These planners then synthesize
local trajectories or reactive control inputs through these
gaps. Some attention has been given to gaps in dynamic
environments [9], [22], but these methods do not develop
their theory through a perception-informed approach, instead
opting to use ground truth agent pose information. In the
proposed work, explicit attention is paid towards how the
dynamics of gaps must be ascertained from scan data in order
to understand how the local gaps evolve over time.

B. Guidance Laws
Guidance laws comprise a set of kinematic equations and

feedback control laws that define collision course behavior
between a pursuer and a target. While commonly affiliated
with older forms of missile guidance, these laws have also
seen use in many robotics applications [23]–[25].

Among the more established guidance laws, the two
geometrical rules of pure pursuit and parallel navigation are
the most popular. The pure pursuit rule, sometimes referred
to as pursuit guidance, has the pursuer direct their velocity
vector towards the target at all times, always keeping the
target within the pursuer’s line of sight. Pure pursuit has
seen a great deal of attention due to its simplicity [26]–[28],
but this guidance law only leads to a collision if the pursuer
is capable of traveling at a speed faster than that of the target.

The parallel navigation, or constant bearing, rule [29], [30]
has the pursuer direct their velocity vector such that the
direction of the line of sight between the pursuer and target
remains constant while the distance between them decreases.
This geometrical rule is capable of yielding collision course
conditions even if the pursuer is traveling slower than the
target. Furthermore, for a non-maneuvering target, meaning a
target that is not changing its speed nor its heading direction,
parallel navigation is the optimal guidance law which yields
a minimum intercept time.

III. DYNAMIC GAP LOCAL PLANNING MODULE

A. Gap Detection, Association, and Estimation
1) Gap Detection and Simplification
As input to the planner, we assume access to a 360◦

laser scan L. Gap detection involves the parsing of this scan

L to obtain a set of detected gaps Gdet that describe the
instantaneous free space of the local environment, further
details regarding how this gap detection policy is defined can
be found at [8]. Once this set of gaps has been extracted from
the laser scan, an additional pass through Gdet is performed
to remove any redundant gaps and potentially merge adjacent
gaps together, yielding a set of simplified gaps Gsimp.

2) Gap Association
The set of simplified gaps Gsimp captures the immediate

free space, but we seek to understand how this free space
will evolve across our local planning horizon. Therefore,
additional steps must be taken to track gap points over time.

At this stage, each gap g ∈ Gsimp is characterized by a
left gap point pl = [xl, yl]

T and a right gap point pr =
[xr, yr]

T . Association is performed on the set of points from
the simplified gaps,

Psimp = {p0
l ,p

0
r, ...,p

N
l ,pN

r }.

The association step is represented as a rectangular assign-
ment problem, where the cost is equivalent to the distance
between points across consecutive steps, P t−1

simp and P t
simp.

This assignment problem is then solved with the Hungarian
Algorithm [31], producing a minimum distance mapping
between P t−1

simp and P t
simp. If the distance between two

associated points exceeds a threshold τassoc, then that point-
to-point association is discarded.

3) Gap Estimation
The point-to-point associations provide an insight into how

the set of gap points are changing over time. This evolution
is characterized with a second-order dynamics model with
respect to the rotating ego-robot frame.

The state vector is defined as:

X =

[
ps/e

vs/e

]
=

[
ps − pe

vs − ve

]
, (1)

where ps/e ∈ R2 and vs/e ∈ R2 represent the position and
velocity of the gap side s (left or right) relative to the ego-
robot e, respectively. The system dynamics are then:

Ẋ =

[
ṗs/e

v̇s/e

]
=

[
vs/e − ωe × ps/e

as/e − ωe × vs/e

]
, (2)

where ωe represents the angular velocity of the ego-robot and
as/e represents the linear acceleration of the gap side relative
to the ego-robot. We make a constant velocity assumption on
the gap points, which then simplifies Equation 2 to

Ẋ =

[
ṗs/e

v̇s/e

]
=

[
vs/e − ωe × ps/e

−ae − ωe × vs/e

]
. (3)

This model is estimated with an extended Kalman filter
given the nonlinear cross-product in Equation 3.

B. Gap Propagation

Within static environments, gap feasibility solely depends
on the geometric condition of whether or not the gap is
wide enough to fit the robot. For dynamic environments,
both geometric and kinematic considerations must be made
to determine whether or not the robot can pass through the

Goal World Map Global Planner

LEVEL

High

Scan
Gap

Detection
(Sec. III-A.1)

Gap
Estimation

(Sec. III-A.3)

Gap
Propagation
(Sec. III-B)

Gap Trajectory
Generation

(Sec. III-C.2)

Trajectory Scoring
and Selection

(Sec III-D)

Mid

Dynamic Gap

Gt Gt

Gt−1

Gfeas
t Tt

τ localt−1

Robot
State

MPC Trajectory Tracking
(Sec. III-E.1)

Projection Operator
(Sec. III-E.2) Robot

Low

Trajectory Tracker

vcmd
t vsafe

t

τ localt

τglobalt

Fig. 2: Overall workflow for the proposed navigation framework. Red blocks correspond to perceptual modules run at the rate of the laser scanner. Blue
blocks are the core planning loop, and green blocks are the lower-level trajectory tracking routine. Dashed outlines represent core contributions.

gap before the gap shuts. By pruning away infeasible gaps,
this step not only conserves energy of the robot, but it also
avoids potentially dangerous gaps through which it would be
difficult, if not impossible, for the robot to pass.

To understand the behavior of gaps over the time horizon
for which planning will be performed, gap models (Eq. 3) are
integrated forward under the constant velocity assumption. In
order to remove the ego-robot motion from the gap state and
solely analyze the motion of the gap itself, the gap-only dy-
namics are recovered from the prediction models by adding
the ego-robot’s velocity ve to the relative velocity estimate
vs/e to obtain the gap-only velocity vs. Gap propagation can
terminate prematurely in two ways:

1) The gap closes, meaning if a gap that is shrinking over
time reaches an angular span of 0 rad, and

2) The gap overlaps, meaning if a gap that is expanding
over time passes beyond an angular span of 2π rad.

At each time step t during integration, crossing and
expanding conditions are checked for each gap. These con-
ditions will now be further detailed.

1) Crossing condition
First, we define the unit norm bearing vector for the gap

side s at time t as ηt
s := pt

s/∥pt
s∥. Then, we can calculate

the clockwise angular gap span as

αt = arctan(
ηt
l · ηt

r

ηt
l × ηt

r

), (4)

which we use to define the bearing of the gap center as βt
c :=

βt
l − αt/2. This in turn allows us to obtain the unit norm

bearing vector for the gap center, ηt
c = [cos(βt

c), sin(β
t
c)]

T .
The left and right gap points have crossed each other if the
two following conditions are true:

(ηt
l · ηt−1

c > 0) ∧ (ηt
l · ηt−1

c > 0), (5)

meaning that the gap points form a convex polar arc, and

αt > π, (6)

meaning that the clockwise angular span from the left gap
point to the right gap point exceeds π. This scenario is
visualized in part (a) of Figure 3.

Fig. 3: (a) Crossing condition for a gap, where between timesteps t − 1
and t, the gap’s angular span reaches 0 rad. (b) Overlapping condition for
a gap, where the gap’s angular span reaches 2π rad.

2) Overlapping condition
A set of gap points have overlapped if the exact negation

of the crossing conditions are met, meaning that

(ηt
l · ηt−1

c < 0) ∧ (ηt
l · ηt−1

c < 0), (7)

and
αt < π. (8)

This scenario is visualized in part (b) of Figure 3. From this
gap propagation step, we obtain a gap lifespan tf .

C. Gap Feasibility Analysis

Now that we have determined how long each gap will
exist in the local environment for, we must determine if it is
kinematically feasible for the ego-robot to pass through such
gaps before they cease to exist.

1) Guidance Law Analysis
In this section, we outline the guidance law-based trajec-

tory generation scheme that dynamic gap employs in order
to determine if a gap is kinematically feasible.

We employ the parallel navigation policy [32], for which
we assume a constant gap goal point speed vg as well as
a constant ego-robot speed ve. This policy then dictates
the bearing θe in which ve will be applied. With relation
to Figure 4, the parallel navigation policy is defined as
β̇g = 0, ṙg < 0, where[

β̇g

ṙg

]
=

[
vg sin(θg)−ve sin(θe)

rg

vg cos(θG)− ve cos(θe)

]
, (9)

Fig. 4: Diagram for guidance law notation.

and rg := ∥pg∥. In order for β̇g = 0 to hold,

vg sin(θg) = ve sin(θe). (10)

In order for ṙg < 0,

ve cos(θe) < vg cos(θg). (11)

Therefore, for a constant speed ratio K := ve/vg , it follows
that the gap goal position can be attained if

sin(θe) =
sin(θg)

K
, (12)

and

cos(θe) >
cos(θg)

K
. (13)

If these conditions can be met, then the ego-robot will
intercept the goal position at the time

tintercept =
r0g
vg

· 1

K · cos(θe)− cos(θg)
, (14)

where r0g is equal to rg at t = 0. If these conditions can
not be satisfied, then the given gap is deemed infeasible
and discarded. If the conditions can be satisfied, but tf <
tintercept, meaning that the gap will cease to exist before the
ego-robot can intercept the goal position, then the gap is also
deemed infeasible and discarded.

2) Collision-free Trajectory Generation
If a gap is deemed feasible during the prior step, a

collision-free trajectory can be synthesized by having the
ego-robot direct its constant velocity along the bearing θe
for at least tintercept seconds.

3) Proof of Collision-Free Passage
We aim to prove that performing the policy of parallel

navigation towards the gap goal point pg yields collision-
free gap passage. Assumptions are as follows:

• Ideal robot model: first-order, point-mass, constant ve-
locity, holonomic system

• Constant velocity gap points
• Isolated gap: no other surrounding gaps will enter the

gap in focus during the local time horizon
Let the gap goal point pg and velocity vg be defined as a
convex combination of the left and right gap point states,

pg = κpl + (1− κ)pr,

vg = κvl + (1− κ)vr, κ ∈ [0, 1].
(15)

It follows that

β = arctan(pg) = arctan(κpl + (1− κ)pr). (16)

Without loss of generality (rotating the robot-centric frame
to align with the center of the initial gap), βg ∈ [βr, βl] given
that arctan is a monotonically increasing function. Following
the same argument for

γg = arctan(vg) = arctan(κvl + (1− κ)vr), (17)

it can be seen that γg ∈ [γr, γl]. Given that

γ = β + θ, (18)

it follows that θg ∈ [θr, θl]. From Equation 12,

θe = arcsin (
sin θg
K

), (19)

and given that arcsin is also a monotonically increasing func-
tion, this means that θe/g ∈ [θe/r, θe/l] where θe/g, θe/r, θe/l
are the bearings at which the ego-robot must direct its
velocity at to intercept the gap goal, left gap point, and
right gap point, respectively. This indicates that under the
parallel navigation policy, the ego-robot will intercept the
gap goal point between the left and right gap points, therefore
performing collision-free gap passage.

D. Trajectory Scoring

Each feasible gap gi produces a trajectory τi. In order
to determine which trajectory to track, each trajectory is
evaluated by an egocentric pose-wise cost based on prox-
imity to local obstacles and a terminal pose cost based on
proximity to a local waypoint along the global plan in order
to encourage progress toward the global goal.

The trajectory cost formulation is adapted from [8], with
one key different: pose-wise scoring requires a laser scan for
each timestep t along the trajectory. We do not have direct
access to this information, so we propagate gaps forward in
time and back out propagated scans in practice.

The highest-scoring candidate trajectory is passed on to
compared against the currently executing trajectory to deter-
mine if a trajectory change should occur.

E. Trajectory Tracking

Trajectories are generated for the ideal unit single-
integrator system. However, the simulation environment,
Arena-Rosnav, adopts the non-ideal double-integrator sys-
tem. The input to the system is the velocity command with a
constraint on the command rate, i.e., acceleration constraints.
Although reference acceleration commands can be extracted
from the trajectory to facilitate trajectory tracking using
feedforward control architecture, MPC is employed to track
the reference trajectory.

1) MPC Trajectory Tracking
For the double integrator system D(x,u), the state and

control are x = [px, py, vx, vy]
T and u = [ax, ay]

T respec-
tively. The state and control are uniformly discretized with
a time step dt = 0.5 over a maximum of N = 10 timesteps.

The MPC optimization program is given in 20.

∥x[N]{1:2}] − p[N]des∥2Qf
+ (20a)

min
X,U

N−1∑
k=0

(
∥x[k]{1:2} − p[k]des∥2Q + ∥u[k]∥2R

)
s.t.
(Dynamics) x[k + 1] = D(x[k],u[k]) (20b)

∀k ∈ {0, · · · , N − 1}
(Initial state) x[0] = x0 (20c)
(ZBF) Ax[j] ≤ b (20d)
(Velocity) |x[j]{3,4}| ≤ vmax (20e)
(Acceleration) |u[j]| ≤ amax (20f)

∀j ∈ {0, · · · , N}

where the decision variables X = [x[0], · · · ,x[N]]T and
U = [u[0], · · · ,u[N−1]]T , the desired poses at discrete time
k from the best trajectory τ tbest are denoted by p[k]des ∈ R2,
and the reduced projection of the first two elements of state
is denoted by x[k]{1,2}. The zeroing barrier function (ZBF)
constraint ensures that control commands lie within the inter-
val defined in Section III-C.3 for collision-free gap passage.
The optimization problem (20) is solved using quadratic
programming on MATLAB with an average compute time
of 6.7 msec, and the MATLAB-ROS Toolbox was then used
to communicate the MPC output to the system.

2) Projection Operator
As a last resort safety filter to handle non-ideal circum-

stances including discrete time implementation and second-
order dynamics, the proposed work also adapts the projection
operator module from [8].

IV. EXPERIMENTAL RESULTS

This planner is implemented as a C++ ROS node through
the move base package. All benchmarks are run on a Dell
Precision 3660 Tower with an Intel i9-12900K CPU with 24
cores. The planning loop can run at ≈ 50 Hz.

A. Experiment 1: Assumption-adhering Environments

First, we experimentally validate the proof of safe gap
passage under the previously stated ideal conditions. To
do so, a single gap is randomly generated and the paral-
lel navigation policy is employed to generate a trajectory
through the given gap. With the gap centered at the origin,
left gap points are uniformly sampled from βl ∈ [π2 ,

3π
2],

rl ∈ [0.25, 1.0] m. Right gap points are uniformly sampled
from βr ∈ [−π

2 , π
2], rr ∈ [0.25, 1.0] m. Left and right gap

point velocities are uniformly sampled from all directions
with magnitudes within the range [0.0, 1.0] m/s. A finite
robot radius of 0.20 m is also accounted for by artificially

Fig. 5: Visualization of four Monte Carlo variations of gaps from Experiment
1. Orange points and lines represent the left side of the gap while red points
and lines represent the right side. Solid points and lines represent the original
gap geometry whereas hollow points and dashed lines correspond to the
inflated version of the gap. Transparent points represent positions at prior
timesteps. The blue circle represents the robot along with its finite radius.

inflating gap points inwards during planning. A hand-selected
set of such gaps are shown in Figure 5.

For this experiment, 10, 000 trials were run: 6, 987 trials
end in the robot successfully passing through the gap, 2, 668
trials resulted in a kinematically infeasible gap due to the
velocity limits of the robot, and for the remaining 345 trials,
the robot was unable to pass through the gap given its finite
radius. No collisions occurred during any trials.

B. Experiment 2: Assumption-violating Environments

To contextualize dynamic gap’s performance and under-
stand the performance gap between ideal and non-ideal con-
ditions, the planner is integrated into the Arena-Rosnav [10]
benchmarking environment and compared against other state-
of-the-art local planners. In this experiment, the classical
motion planners DWA [33], TEB [15], and MPC [34] are
tested along with the learned planners RLCA [35] and Trail
[36]. Potential gap [8], the predecessor to dynamic gap, is
also tested.

Three environments are used, shown in column (a) of
Figure 6, referred to from top to bottom as empty, factory,
and hospital. With these environments, the authors aimed
to build a gradient of increasing environment structure to
evaluate each planner’s ability to not only navigate dynamic
obstacles, but also the static, non-trivial structure of these
worlds such as corridors, rooms, and atria.

Within each environment, 15 dynamic agents are placed
which maneuver between two manually defined waypoints
within the environment. For each planner/environment com-
bination, 25 trials are run, and results are reported by
environment in Figure 6. For all trials, planners are given
five minutes to reach the goal.

Empty: Given that this environment is solely comprised
of a single room, these trials can be used to evaluate each
planner’s pure dynamic obstacle avoidance mechanisms. In
this setting, the shortest path from start to goal is simply a

Fig. 6: . Benchmarking results from Arena-Rosnav. (a) Visualization of map with ego-robot and agents, (b) planning trial outcomes, (c) distribution for
number of collisions suffered per trial, and (d) average planning time per trial.

straight line. Due to the lack of complexity in this setting,
the variance in planning times is low, with most planners
being able to reach the goal within 30− 40 seconds.

All other benchmarks perform fairly well in this setting,
with success rates of 60− 80% across the board. Although,
the set of classical planners, namely TEB and DWA, do per-
form slightly better than the learned planners. One interesting
note from these trials was that for the RLCA benchmark, the
planner tended to come to a stop when the robot encroached
upon obstacles, relying on non-adversarial motions from the
nearby agents in order to avoid collisions.

The ability of dynamic gap to predict the feasibility of
local gaps before committing to them proved paramount
in avoiding collisions in this environment. The proposed
planner suffered no collisions over its trials, though this
“patience” did result in longer planning times overall.

Factory: The factory setting consists of one large room
with many smaller isolated static obstacles positioned within
it, resembling real-world artifacts such as tables or poles.

Here, the larger regions of free space allow for multiple
agents to pass through the same part of the environment
at one time. Because of this, more collisions are observed
in this environment than the empty environment. General
success rates for the benchmarks drops to roughly 50%, with
the exception of RLCA failing every trial and dynamic gap
registering an above average success rate of 72%. RLCA’s
performance can be explained in part by its neural network
composition: inputs to this model are a sliding window of
laser scan inputs, the relative goal position, and the robot’s
current state. While the scans provide a local environment
representation, the model largely opts to drive in a straight
line towards the goal. When structured obstacles such as
walls are positioned between the robot and the goal, the
planner struggles with maneuvering around such regions.

Hospital: The hospital environment exhibits many smaller
rooms connected through tighter passageways and corridors.

While the prior environments allowed for more clearance en
route to goal for planners, the primary failure mode observed
in the hospital setting was the benchmarks exceeding the
allotted time limit of five minutes rather than colliding with
obstacles in the environment.

As can be seen in column (c), far fewer collisions are reg-
istered in this environment because the corridors and small
rooms offered fewer opportunities for several agents to enter
the same region and collide. Given that this environment is
more sprawling, more variance is seen in planning times.

MPC and DWA stalled out on several trials when the
robot was attempting to pass through thin entryways between
rooms, eventually leading to a time out. Both TEB and
dynamic gap performed well in this setting with success
rates of 80% and 88%, respectively. The Trail benchmark
did exhibit smoother overall trajectories in this environment,
though the planner preferred to take wider turns around
corners, often times overshooting and running into walls.

V. CONCLUSION

In this work, the perception-informed gap-based planning
paradigm is extended to the case of the dynamic environ-
ment. In order to do so, gap dynamics models are estimated
and propagated forward in time to evaluate the feasibility
of gap passage, and guidance laws are employed to gen-
erate provably collision-free trajectories. Targeted modules
including scan propagation, MPC trajectory tracking, and
projection operator control modifications are employed to
bridge the gap between single gap safety guarantees and
multi-gap real world settings. In the future, the authors aim
to extended these safety guarantees to the nonholonomic
case and enable gap propagation to account for the potential
creation of gaps over the local planning horizon.

REFERENCES

[1] M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest
Gap based (CG) reactive obstacle avoidance Navigation for highly

cluttered environments,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010, pp. 1805–1812.

[2] J. J. Gibson, The Ecological Approach to Visual Perception. New
York: Psychology Press, Dec. 2014.

[3] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:
“Follow the Gap Method”,” Robotics and Autonomous Systems,
vol. 60, no. 9, pp. 1123–1134, 2012.

[4] M. Mujahed, D. Fischer, and B. Mertsching, “Admissible gap naviga-
tion: A new collision avoidance approach,” Robotics and Autonomous
Systems, vol. 103, pp. 93–110, May 2018.

[5] ——, “Safe Gap based (SG) reactive navigation for mobile robots,”
in 2013 European Conference on Mobile Robots, 2013, pp. 325–330.

[6] M. Mujahed and B. Mertsching, “A new gap-based collision avoidance
method for mobile robots,” in 2016 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2016, pp. 220–226.

[7] M. Mujahed, H. Jaddu, D. Fischer, and B. Mertsching, “Tangential
Closest Gap based (TCG) reactive obstacle avoidance navigation for
cluttered environments,” in 2013 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), Oct. 2013, pp. 1–6,
iSSN: 2374-3247.

[8] R. Xu, S. Feng, and P. A. Vela, “Potential Gap: A Gap-Informed
Reactive Policy for Safe Hierarchical Navigation,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 8325–8332, 2021.

[9] E. C. Contarli and V. Sezer, “Predictive Follow the Gap Method for
Dynamic Obstacle Avoidance,” in 2024 13th International Workshop
on Robot Motion and Control (RoMoCo), July 2024, pp. 237–242,
iSSN: 2575-5579.

[10] L. Kästner, T. Buiyan, X. Zhao, L. Jiao, Z. Shen, and J. Lam-
brecht, “Arena-Rosnav: Towards Deployment of Deep-Reinforcement-
Learning-Based Obstacle Avoidance into Conventional Autonomous
Navigation Systems,” Sept. 2021, arXiv:2104.03616 [cs].

[11] L. Kästner, T. Bhuiyan, T. A. Le, E. Treis, J. Cox, B. Meinardus,
J. Kmiecik, R. Carstens, D. Pichel, B. Fatloun, N. Khorsandi, and
J. Lambrecht, “Arena-Bench: A Benchmarking Suite for Obstacle
Avoidance Approaches in Highly Dynamic Environments,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 9477–9484, Oct.
2022, arXiv:2206.05728 [cs, eess].

[12] L. Kästner, R. Carstens, H. Zeng, J. Kmiecik, T. Bhuiyan, N. Khor-
sandi, V. Shcherbyna, and J. Lambrecht, “Arena-Rosnav 2.0: A Devel-
opment and Benchmarking Platform for Robot Navigation in Highly
Dynamic Environments,” July 2023, arXiv:2302.10023 [cs].

[13] L. Kästner, V. Shcherbyna, H. Zeng, T. A. Le, M. H.-K. Schreff, H. Os-
maev, N. T. Tran, D. Diaz, J. Golebiowski, H. Soh, and J. Lambrecht,
“Arena 3.0: Advancing Social Navigation in Collaborative and Highly
Dynamic Environments,” June 2024, arXiv:2406.00837 [cs].

[14] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998, publisher: Department of
Computer Science, Iowa State University.

[15] C. Rösmann, F. Hoffmann, and T. Bertram, “Timed-Elastic-Bands
for time-optimal point-to-point nonlinear model predictive control,”
in 2015 European Control Conference (ECC), 2015, pp. 3352–3357.

[16] D. Connell and H. M. La, “Dynamic path planning and replanning for
mobile robots using RRT,” in 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Oct. 2017, pp. 1429–1434.

[17] S. Feng, Z. Zhou, J. Smith, M. Asselmeier, Y. Zhao, and P. A.
Vela, “GPF-BG: A hierarchical vision-based planning framework for
safe quadrupedal navigation,” 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023.

[18] M. Mujahed and B. Mertsching, “The admissible gap (AG) method for
reactive collision avoidance,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 1916–1921.

[19] Z. Ullah, X. Chen, S. Gou, Y. Xu, and M. Salam, “FNUG: Imperfect
Mazes Traversal Based on Detecting and Following the Nearest-
to-Final-Goal and Unvisited Gaps,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5175–5182, Apr. 2022, conference Name:
IEEE Robotics and Automation Letters.

[20] M. Demir and V. Sezer, “Improved Follow the Gap Method for obsta-
cle avoidance,” in 2017 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), July 2017, pp. 1435–1440, iSSN:
2159-6255.

[21] S. Feng, A. Abuaish, and P. A. Vela, “Safer Gap: A Gap-based Local
Planner for Safe Navigation with Nonholonomic Mobile Robots,” Mar.
2023, arXiv:2303.08243 [cs, eess].

[22] H. Chen, S. Feng, Y. Zhao, C. Liu, and P. A. Vela, “Safe Hierarchical
Navigation in Crowded Dynamic Uncertain Environments,” in 2022

IEEE 61st Conference on Decision and Control (CDC), Dec. 2022,
pp. 1174–1181, iSSN: 2576-2370.

[23] “Implementation of the Pure Pursuit Path Tracking Algorithm.”
[24] L. Wellhausen and M. Hutter, “ArtPlanner: Robust Legged Robot

Navigation in the Field,” Field Robotics, vol. 3, no. 1, pp. 413–434,
2023.

[25] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments
Using Velocity Obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, pp. 760–772, July 1998.

[26] A. Bernhart, “Polygons of pursuit,” Scripta Mathematica, vol. 24, Jan.
1959.

[27] ——, “Curves of general pursuit,” Scripta Mathematica, vol. 24, Jan.
1959.

[28] A. Bruckstein, “Why the ant trails look so straight and nice,” The
Mathematical Intelligencer, vol. 15, pp. 59–62, Jan. 1993.

[29] V. Rajasekhar and A. G. Sreenatha, “Fuzzy logic implementation of
proportional navigation guidance,” Acta Astronautica, vol. 46, no. 1,
pp. 17–24, Jan. 2000.

[30] Y. Ulybyshev, “Terminal Guidance Law Based on Proportional Navi-
gation,” Journal of Guidance, Control, and Dynamics, vol. 28, no. 4,
pp. 821–824, 2005, publisher: American Institute of Aeronautics and
Astronautics eprint: https://doi.org/10.2514/1.12545.

[31] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[32] N. Shneydor, Missile Guidance and Pursuit: Kinematics, Dynamics
and Control (1st ed.). Horwood Series in Engineering Science.
Chichester, UK: Horwood Publishing, 1998.

[33] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robotics Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[34] C. Rösmann, A. Makarow, and T. Bertram, “Online Motion Planning
based on Nonlinear Model Predictive Control with Non-Euclidean
Rotation Groups,” in 2021 European Control Conference (ECC), June
2021, pp. 1583–1590, arXiv:2006.03534 [cs, eess, math].

[35] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning,” May 2018, arXiv:1709.10082 [cs].

[36] Z. Xie and P. Dames, “DRL-VO: Learning to Navigate Through
Crowded Dynamic Scenes Using Velocity Obstacles,” IEEE Trans-
actions on Robotics, vol. 39, no. 4, pp. 2700–2719, Aug. 2023,
conference Name: IEEE Transactions on Robotics.

	Introduction
	Related Work
	Perception Space and Gap-based Navigation
	Guidance Laws

	Dynamic Gap Local Planning Module
	Gap Detection, Association, and Estimation
	Gap Detection and Simplification
	Gap Association
	Gap Estimation

	Gap Propagation
	Crossing condition
	Overlapping condition

	Gap Feasibility Analysis
	Guidance Law Analysis
	Collision-free Trajectory Generation
	Proof of Collision-Free Passage

	Trajectory Scoring
	Trajectory Tracking
	MPC Trajectory Tracking
	Projection Operator

	Experimental Results
	Experiment 1: Assumption-adhering Environments
	Experiment 2: Assumption-violating Environments

	Conclusion
	References

