
IEEE/ASME TRANSACTIONS ON MECHATRONICS 1

A Survey of Optimization-Based Task and
Motion Planning: From Classical to

Learning Approaches
Zhigen Zhao , Shuo Cheng , Yan Ding , Student Member, IEEE, Ziyi Zhou ,

Shiqi Zhang , Member, IEEE, Danfei Xu , and Ye Zhao , Senior Member, IEEE

Abstract—Task and motion planning (TAMP) integrates
high-level task planning and low-level motion planning to
equip robots with the autonomy to effectively reason over
long-horizon, dynamic tasks. Optimization-based TAMP fo-
cuses on hybrid optimization approaches that define goal
conditions via objective functions and are capable of han-
dling open-ended goals, robotic dynamics, and physical
interaction between the robot and the environment. There-
fore, optimization-based TAMP is particularly suited to
solve highly complex, contact-rich locomotion and manip-
ulation problems. This survey provides a comprehensive
review on optimization-based TAMP, covering first, plan-
ning domain representations, including action description
languages and temporal logic, second, individual solution
strategies for components of TAMP, including AI planning
and trajectory optimization (TO), and finally, the dynamic
interplay between logic-based task planning and model-
based TO. A particular focus of this survey is to highlight
the algorithm structures to efficiently solve TAMP, espe-
cially hierarchical and distributed approaches. In addition,
the survey emphasizes the synergy between the classical
methods and contemporary learning-based innovations,
such as large language models. Furthermore, the future
research directions for TAMP is discussed in this survey,
highlighting both algorithmic and application-specific chal-
lenges.

Received 2 April 2024; revised 19 June 2024; accepted 15 August
2024. Recommended by Technical Editor S. Zhuang and Senior Editor
H. Gao. This work was supported in part by the Office of Naval Re-
search (ONR) under Grant 0023 N000142312223, in part by the Na-
tional Science Foundation (NSF) under Grant 0023 IIS-1924978, Grant
0023 CMMI-2144309, and Grant 0023 FRR-2328254, and in part by the
USDA under Grant 0023 2023-67021-41397. (Corresponding author: Ye
Zhao.)

Zhigen Zhao, Ziyi Zhou, and Ye Zhao are with the The Laboratory
for Intelligent Decision and Autonomous Robots (LIDAR), Georgia In-
stitute of Technology, Atlanta, GA 30318 USA (e-mail: zhigen.zhao@
gatech.edu; zhouziyi@gatech.edu; yzhao301@gatech.edu).

Shuo Cheng and Danfei Xu are with the Robot Learning and Reason-
ing Lab (RL2), Georgia Institute of Technology, Atlanta, GA 30318 USA
(e-mail: shuocheng@gatech.edu; danfei@gatech.edu).

Yan Ding and Shiqi Zhang are with the Autonomous Intelligent
Robotics (AIR) Group, Binghamton University, Binghamton, NY 13902
USA (e-mail: yding25@binghamton.edu; zhangs@binghamton.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMECH.2024.3452509.

Digital Object Identifier 10.1109/TMECH.2024.3452509

Index Terms—AI planning, large language models
(LLMs), robot learning, task and motion planning (TAMP),
temporal logic, trajectory optimization (TO).

I. INTRODUCTION

IN RECENT years, robotic systems are rapidly transitioning
from structured factory floors to unstructured human-centric

environments. To this end, the demand continues to grow for
a planning system that enables robots to efficiently perform
complex, long-horizon tasks, as exemplified in Fig. 1. To achieve
this level of autonomy, robots must be capable of generating and
executing feasible and efficient motion plans that allow them to
interact with their environment and complete assigned tasks.
This complex problem is often framed as robot task and motion
planning (TAMP), which breaks a complex, often intractable
planning problem into a hybrid symbolic search and a set of local
motion planning problems, where each subproblem is tractable
to solve.

The main research focus in TAMP is to develop appropriate
problem representations and algorithms that efficiently synthe-
size both symbolic and continuous components of the planning
problem [2]. In the existing literature, there are three mainstream
classes of TAMP methods: 1) constraint-based TAMP [4], [5],
2) sampling-based TAMP [6], [7], and 3) optimization-based
TAMP [8], [9]. Constraint- and sampling-based TAMP char-
acterizes the problem as a set of goal conditions. The solutions
are typically found via constraint satisfaction or sampling-based
approaches [10], which satisfy the defined goal conditions, but
often cannot evaluate or compare the quality of the generated
plan or the final state due to the lack of objective functions.
In many robotics problems, goals are often expressed as an
objective function rather than an explicitly defined set of states.
For example, “given a number of rectangular blocks on the
table, build a stable structure that is as tall as possible with
minimal robot control effort.” This is challenging for tradi-
tional sampling-based methods, which often require explicit
goal definition and do not have mechanisms to compare plan
qualities. As an exception, a specific class of sampling-based
motion planning [11] have been proposed to address optimal
planning using RRT∗ and PRM∗ [12], [13]. However, the com-
plexity and expressiveness of the objective functions are often
limited to simple costs, such as path length, time, and energy

1083-4435 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6843-656X
https://orcid.org/0000-0003-4882-1724
https://orcid.org/0000-0002-7949-4351
https://orcid.org/0000-0003-1589-0598
https://orcid.org/0000-0003-4110-8213
https://orcid.org/0000-0002-8744-3861
https://orcid.org/0000-0001-6402-5416
mailto:zhigen.zhao@gatech.edu
mailto:zhigen.zhao@gatech.edu
mailto:zhouziyi@gatech.edu
mailto:yzhao301@gatech.edu
mailto:shuocheng@gatech.edu
mailto:danfei@gatech.edu
mailto:yding25@binghamton.edu
mailto:zhangs@binghamton.edu
https://doi.org/10.1109/TMECH.2024.3452509

2 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 1. Optimization-based TAMP enables dynamic locomotion and
manipulation behaviors in complex environments: (a) bipedal robot loco-
manipulation [1]; (b) mobile robot table-top manipulation [2]; (c) long-
horizon multi-agent collaboration [3].

TABLE I
COMPARISON BETWEEN OPTIMIZATION-BASED VS SAMPLING-BASED TAMP

METHODS

consumption [14]. A comparison between optimization and
sampling-based TAMP methods is presented in Table I. For
clarification, the scope of this survey focuses on optimization-
based TAMP, which naturally defines an objective function for
representing the plan quality, in addition to task- and motion-
level constraints. This framework enables us to represent and
solve a broad range of tasks with complex objective functions.

Optimization-based TAMP optimizes the objective function
while adhering to constraints imposed by the robot kinematics
and dynamics at the motion planning level and the discrete logic

at the task planning level. This motivates the formulation of
optimization-based TAMP as a hybrid optimization problem.
Optimization-based TAMP naturally incorporates model-based
trajectory optimization (TO) methods in motion planning, which
allow the planning framework to encode complex robot dy-
namics, leading to not only feasible but also natural, efficient,
and dynamic robot motions. This is especially important for
contact-rich applications, such as long-horizon robot manip-
ulation [15] of objects with complex geometry and frictional
properties [16], [17], and dynamic locomotion over uneven
terrains [18], [19], [20], [21]. In addition, optimization-based
TAMP allows the inclusion of more complex objective func-
tions and constraints (e.g., nonlinear and nonconvex ones),
enabling the robot to achieve various robot behaviors, thereby
enhancing the applicability of robotic systems in real-world
deployments.

However, the hybrid optimization problems formed by
optimization-based TAMP are often computationally in-
tractable. A successful planning algorithm needs to simulta-
neously overcome the combinatorial complexity at the task
planning level, and the numerical complexity at the motion
planning level. As such, a common theme in optimization-based
TAMP is to tradeoff between the complexity of the optimization
and comprehensiveness of the information included in the plan-
ning problem. Either extreme of this tradeoff tends to degrade
either the quality or the computational efficiency of the resulting
robot plans. In addition, optimization-based TAMP faces several
limitations comparing to sampling-based methods as follows:

1) it is sensitive to the initial and goal conditions of the
problem setup, which can lead to failures in complex
environments, such as complex obstacle geometry or
difficult terrain, where certain initial and goal conditions
can make it particularly challenging to find the optimal
solution;

2) the optimization results can be dependent on the initializa-
tion of decision variables, which might cause the planner
to get stuck in local optima;

3) optimization-based methods are not complete, meaning
they cannot discover infeasible problems.

Therefore, the challenge remains to improve the robustness
of optimization-based TAMP and bridge the gap between plan-
ning for long-horizon tasks [22], [23] and generating highly
dynamic robot behaviors, showcased in model-based optimal
control strategies [24], [25], [26]. The integration of learning-
based approaches in TAMP has become a significant research
trend, as learning-based approaches offer considerable promise
for enhancing the scalability and generalizability of classical
TAMP methods. Leveraging learning as heuristics improves
the efficiency of classical methods. For example, action fea-
sibility checks during the task sequence search process can be
accelerated by a neural feasibility classifier [27], [28]. As an
alternative method, generative models offer promising avenues
to effectively replace certain components within the classical
methods, as illustrated by learned task sequence generation from
visual input [29] and the use of large language models (LLMs)
for domain knowledge representation and planning [30], [31],
[32]. Along another line of research, reinforcement learning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 3

Fig. 2. Overview of the problem structures and related algorithms in optimization-based TAMP discussed in this survey paper.

(RL)-based skill learning has been studied in conjunction with
the symbolic interface of a task planner, resulting in reusable
skill learning that is generalizable across long-horizon tasks [33],
[34].

A. Survey Goals and Roadmap

This work is inspired by and builds upon previous surveys in
TAMP [2], [10], [35], [36], but carries the unique overarching
goal of reviewing the historical background and state-of-the-art
optimization-based TAMP, and illustrating the connection be-
tween classical methods and the recent development in learning
methods. Portions of this work are inspired by recent surveys
in other relevant areas, such as logic programming [23], formal
methods [37], distributed optimization [38], and TO for legged
locomotion [24]. In addition, research contributions originated
from 19 countries are highlighted to provide a global research
landscape on TAMP innovations (see Fig. 3).

We aim to provide discussion, promising solutions, and future
trends in the following questions.

1) Q1: Why are optimization-based methods important for
TAMP? What are the benefits?

2) Q2: How will solutions for each individual component
of optimization-based methods inform the strategies to
solve integrated TAMP?

3) Q3: What common structures are observed in
optimization-based TAMP problems, and which tools
and strategies can exploit these structures to efficiently
generate long-horizon, dynamic robot plans?

4) Q4: How to leverage machine learning algorithms to
enable robust, and generalizable TAMP frameworks?

Q1 and Q2 motivate us to explore the key components and
critical features of optimization-based TAMP, including prob-
lem formulation (see Section II), domain representation (see
Section III), task planning (see Section IV), and motion planning
(see Section V). Q3 seeks to present the current strategies
and remaining challenges of optimization-based TAMP (see
Section VI), and inspire improved TAMP frameworks that ef-
ficiently manage complex task structures and robot dynamics.

Fig. 3. Percentage statistics sorted by countries of origin. In total, 182
references that directly address TAMP are included.

A particular focus of the discussion is on the interaction be-
tween task planning and motion planning layers. Q4 addresses
advancements in learning-based methods with the intent of syn-
thesizing these elements for the enhancement of TAMP frame-
works. The discussion on Q4 is interleaved with the classical
methods to place the learning approaches into proper context.
An overview of the structure of the survey is illustrated in
Fig. 2.

Q1–Q3 serve as an effective introduction for early-stage
researchers new to the TAMP field, but also provide background
information for experts in one or more of the TAMP compo-
nents looking to explore an integrated optimization-based TAMP
framework. Q4 provides important context for machine learning
experts on how to combine learning techniques with classical
TAMP. For the research groups currently exploring classical
TAMP, this survey provides a systematic overview of the recent
works in learning methods.

Finally, we offer our outlook on the potential future research
directions in TAMP (see Section VII), including the challenges
in incorporating LLMs and skill learning in TAMP, as well as
under-explored application areas, such as loco-manipulation and
human–robot collaboration (HRC).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ASME TRANSACTIONS ON MECHATRONICS

II. PRELIMINARIES

In this section, we present the assumptions and definitions
involved in optimization-based TAMP, as well as a motivating
example that will be used throughout the survey.

A. Assumptions

The following assumptions, adapted from [22], are made to
formulate a basic definition for optimization-based TAMP:

1) A1. Deterministic Transitions: If a symbolic action is ap-
plicable to a symbolic state, applying the action brings the
deterministic symbolic transition system to a single other
symbolic state, similarly for the application of continuous
control.

2) A2. Known Models and Objectives: The planner has
complete knowledge about the continuous state transition
system and the continuous dynamic system, as well as the
objective function before the planning process begins.

3) A3. Fully Observable Environments: The planner has
complete knowledge about the symbolic and continuous
states.

4) A4. Sequential Plans: The solutions to a TAMP problem
are two linearly ordered finite sequences of symbolic
actions and continuous controls, respectively.

In some extensions of the optimization-based TAMP prob-
lems, certain assumptions may not be satisfied. For example,
in planning problem with probabilistic operators [39], the sym-
bolic transitions are not deterministic, relaxing A1; in RL-based
TAMP, a prior world model is unavailable, relaxing A2; in a
TAMP framework incorporating visual input [29], the mapping
function between observation and state is often learned implic-
itly or explicitly, relaxing A3. These variants present unique
additional challenges due to the relaxation of certain assump-
tions. Nevertheless, the principles and patterns underscored
throughout this survey retain their relevance and applicability,
even in these more complex scenarios.

B. TAMP as Joint Optimization

The optimization-based TAMP problem can be viewed as a
joint optimization between task planning and motion planning.
The optimization at two different levels are interconnected by
constraints in both decision variables and cost functions.

The task planning domain is defined as Dt, with a set of
symbolic states S , and a set of actions A. Each symbolic state
s ∈ S is defined by the values of a fixed set of discrete variables;
each action a ∈ A specifies a state transition sk+1 ∈ γ(sk, ak),
where k = 1, . . . ,K is the index of the discrete mode of the
task planner. A task planning problem is represented by a task
planning domain Dt an initial state sinit ∈ S , and a set of goal
states Sgoal ⊆ S . A task plan consists of a symbolic state-action
sequence of length K: 〈S,A〉 = 〈s0, a0, s1, a1, . . . , aK−1, sK〉,
where s0 = sinit, sK ∈ Sgoal.

The motion planning domain is defined as Dm. The contin-
uous robot state at the tth knot point of the trajectory is rep-
resented by xt = [qt, q̇t] ∈ R2n, where qt, q̇t ∈ Rn represent
the generalized configuration and velocity of the robot. The

control input is ut ∈ Rm. The discretized dynamics of the robot
is denoted as xt+1 = f(xt,ut). The cost function at time t is
L(xt,ut) → R, which maps the state-control pair 〈xt,ut〉 to
a real number. In addition, 〈xt,ut〉 is constrained by various
factors, such as joint limits, torque limits, and robot collision.
These constraints are denoted as g(xt,ut) ≤ 0.

The planning domain of the TAMP problem is jointly de-
fined by the task planning domain Dt and the motion plan-
ning domain Dm. Each symbolic state s ∈ S represents a
manifold X s in the continuous state space, which is speci-
fied by the state mapping function M : X s = M(s). A sym-
bolic state transition 〈sk, a, sk+1〉 corresponds to a contin-
uous trajectory representing the robot motion: 〈Xk,Uk〉 =
〈xk,0,uk,0,xk,1,uk,1, . . . ,uk,Tk−1,xk,Tk

〉. To achieve the sym-
bolic state transition, the entire trajectory must lie within the
manifold indexed by sk: xt ∈ X sk ∀ t ∈ [0, Tk], while the final
state of the kth trajectory should lie on the intersection between
the manifolds indexed by sk and sk+1: xTk

∈ X sk ∩ X sk+1 and
trigger the mode transition.

Given the planning domains 〈Dt,Dm〉, the initial states
〈sinit,xinit

0 〉 and goal states 〈Sgoal,xgoal
K 〉, the optimization-

based TAMP problem is formulated as a joint optimization of the
task-level decisions and the motion-level trajectory segments

min
〈S,A,X1:k,U1:k〉

K−1∑

k=0

Tk−1∑

t=0

Lpath(xk,t,uk,t) + Lgoal(xk,Tk
)

s.t. s0 = sinit, sK ∈ Sgoal (1a)

∀k ∈ {1, . . . ,K − 1} ∀t ∈ {0, . . . , Tk − 1}
ak ∈ A, sk+1 = γ(sk, ak) (1b)

xk,t+1 = f(xk,t,uk,t) (1c)

xk,0 = xinit
k , xk,Tk

= xgoal
k (1d)

xk,t ∈ X sk , xk,Tk
∈ X sk ∩ X sk+1 (1e)

gk(xk,t,uk,t) ≤ 0, hk(xk,t,uk,t) = 0. (1f)

In this formulation, task planning and motion planning in-
form each other as they contain different subsets of the TAMP
problem. Symbolic states in TAMP correspond to manifold con-
straints in the continuous domain, while symbolic actions define
transitions and constraints for motion planning. The sequence
of actions, or the plan skeleton, guides the trajectory planning
process by defining the sequence of mode transitions to be
achieved. Conversely, motion planning informs task planning
by providing geometric information, action feasibility, and cost
evaluations, ensuring that task decisions are realizable at the
motion level.

C. Motivating Example

We introduce a tabletop manipulation task as a representative
example to illustrate the formulations and algorithms discussed
in this survey. As illustrated in Fig 4, the task involves a robot
manipulator, denoted as R, and three distinct movable objects
labeled as A,B,C. The primary objective of this task is to stack

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 5

Fig. 4. Illustration for the table top manipulation example: (a) initial
state and (b) one possible final state.

the objects such that the final height of object A is maximized.
In addition, the robot should exert a minimal amount of control
effort to achieve this task.

To quantitatively evaluate the performance of the manipulator
in executing the task, we define an objective function. This func-
tion encompasses two distinct components: the path cost, which
quantifies the control effort exerted by the robot throughout
the task execution; the terminal cost, which measures the final
elevation achieved by object A at the conclusion of the task.
The objective function is then constructed as a weighted sum of
these individual costs, providing a holistic measure of the task’s
efficiency and effectiveness.

Throughout the survey, we will enrich the initial tabletop
manipulation task with various extensions to demonstrate the
practical considerations of the discussed algorithms and formu-
lations.

III. PLANNING DOMAIN REPRESENTATION

In real-world scenarios, planning domain representation de-
mands formulating declarative knowledge about environments,
robots, objects, their interrelationships, and task goals, along-
side integrating continuous-domain knowledge, such as robot
configurations and object placement. Converting this knowledge
into an optimization-based formulation requires a standardized
interface, which ensures seamless integration by transforming
varied input knowledge into an encoded form that can be ef-
fectively utilized by optimization algorithms. Therefore, this
interface bridges the gap between real-world complexities and
optimization-based TAMP.

Traditional methods for planning domain representation have
been adopted from both the AI planning and temporal logic
communities [23]. These methods generally involve the use of
logic. Section III-A presents AI planning techniques that often
employ domain-independent action description languages, such
as the planning domain definition language (PDDL), which are
widely interfaced with state-of-the-art task planners. Temporal
logic approaches (see Section III-B), utilizing formalisms, such
as linear temporal logic (LTL) [40], [41], signal temporal logic
(STL) [42], and metric temporal logic (MTL) [43], have been
extensively used to express time-dependent behaviors and con-
straints.

One drawback of these traditional logic-based formalisms is
that the domain representations are generally hand-specified by
expert users. Therefore, a recent trend is to use learning-based
methods to automatically encode domain knowledge for TAMP

(see Sections III-C and D). These methods include the learning
of symbolic operators, which can model the preconditions and
effects of actions based on previous experiences. Furthermore,
LLMs have been explored to process and interpret natural
language inputs, providing a novel method for encoding the
planning domain in a more intuitive and accessible format.

A. AI Planning

The task planning problem with discrete planning domains
has long been the focus of the AI planning community. Ghallab
et al. [22] provided a comprehensive discussion of task planning
representations and algorithms in the AI planning perspective.

PDDL [44], [45] is a standard language extensively used
in the AI planning community for encoding a task plan-
ning problem. It offers a compact and domain-independent
syntax that aids in the clear delineation and representa-
tion of the task planning problem. An action a ∈ A(S) in
PDDL is expressed as a tuple consisting of five components:
〈name(a), param(a), pre(a), eff(a), cost(a)〉 as follows.

1) name: name of the action.
2) param: discrete and continuous parameters involved to

evaluate pre(a) and eff(a).
3) pre: a set of predicates that represent a set of facts that

must be satisfied before the action can be applied.
4) eff: a set of predicates that represent a set of facts that

must be satisfied after the action is applied.
5) cost: cost of the action represented by a positive scalar.

Classically, PDDL only supports a deterministic, discrete,
and nontemporal world model [45]. Historically speaking,
multiple versions and extensions of PDDL have been de-
veloped to improve its expressiveness. Numerical expres-
sions, plan metrics, and temporal planning are introduced in
PDDL2.1 [46]. The latest official version is PDDL3.1 [47],
which includes more elements of modern planning problems,
such as state-trajectory constraints, soft constraints, and object-
fluents. Among the PDDL extensions, hybrid system planning is
handled in PDDL+ [48]; probabilistic operators are introduced
in PPDDL [49]; and multiagent planning is included in MA-
PDDL [50].

Within the context of TAMP, PDDL undergoes certain mod-
ifications to accommodate the inherent complexity of the do-
main. For robotics problems, additional continuous parameters
are often introduced into the planning domain. The values of
predicates in both the precondition, pre(a), and the effect,
eff(a), can be functions of these continuous variables, such
as robot poses or the continuous trajectory taken by the robot.
Furthermore, the cost of an action may be defined as a function
of the continuous trajectory. This expanded use of PDDL allows
for a more detailed and nuanced representation of planning
problems, enabling the bridging of symbolic task planning and
continuous motion planning.

Example: The block stacking example can be represented by
a hybrid AI planning stacking domain with five distinct ac-
tions, as seen in Fig. 5. The move-holding and move-free
actions allows the manipulator to move along a collision free
trajectory with or without holding an object. The pick action

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 5. Hybrid block stacking problem expressed in a PDDL-style ac-
tion description language.

allows the robot to pick up an object that is on the table. The
place action allows that robot to place the object it is currently
holding onto the table. The stack action allows the robot to
stack one object on top of another. Note that the actions are
represented in a templated manner, which provides a compact
representation of the planning problem. At the planning time, the
actions are instantiated into grounded representations associated
with specific robots and objects.

B. Temporal Logic

Temporal logic formalism provides concise expressions for
temporal relations between symbolic expressions. One of the
most popular classes of temporal logic in robotic applications
is LTL [40], [41], which assumes a linear sequence of event,
as opposed to the more complex nonlinear temporal logic (e.g.,
computation tree logic [51]). The syntax of LTL contains a set
of propositional variables AP , boolean operators ¬ (negation),
∧ (conjunction), ∨ (disjunction), and a collection of temporal
operators. The most common temporal operators are as follows:

1) eventually ♦ϕ: ϕ will hold true at some point in the
future;

2) next©ϕ: ϕ is true at the next time step;
3) always �ϕ: ϕ has to be true for the entire path;
4) until ϕ1Uϕ2: ϕ1 has to hold true at least until ϕ2

becomes true;

5) release ϕ1Rϕ2: ϕ2 holds true until ϕ1 becomes true.
One limitation of LTL formula is that only boolean variables

and discrete time evaluation is allowed. Several extensions of
LTL have been proposed to enable real-time and real-valued
expressions. MTL [43] extends LTL to real-time applications by
allowing timing constraints. STL [42] further extends MTL to
allow formula evaluation over continuous real-valued signals,
which enrich the temporal logic formalism to specify hybrid
planning problems in TAMP.

For STL, let y : R≥0 → Rn be a signal and t ∈ R≥0 be a
time. Let (y, t) := (y, [t,∞)) denote the suffix of the signal.
Let π represent an atomic predicate of the form μπ(y) ≥ 0. The
satisfaction of an STL formula ϕ at time t for signal y is defined
as follows:

1) (y, t) |= π ⇐⇒ μπ(y(t)) ≥ 0;
2) (y, t) |= ¬ϕ ⇐⇒ (y, t) �|= ϕ;
3) (y, t) |= ϕ1 ∧ ϕ2 ⇐⇒ (y, t) |= ϕ1 and (y, t) |= ϕ2;
4) (y, t) |= ϕ1 ∨ ϕ2 ⇐⇒ (y, t) |= ϕ1 or (y, t) |= ϕ2;
5) (y, t) |= �[t1,t2]ϕ ⇐⇒ ∀t′ ∈ [t1, t2], (y, t

′) |= ϕ;
6) (y, t) |= ♦[t1,t2]ϕ ⇐⇒ ∃t′ ∈ [t1, t2], (y, t

′) |= ϕ;
7) (y, t) |= ϕ1U[t1,t2]ϕ2 ⇐⇒ ∃t′ ∈ [t1, t2], (y, t

′) |= ϕ2 ∧
∀t′′ ∈ [t1, t

′], (y, t′′) |= ϕ1.
The robustness degree ρ(y, ϕ, t) of STL is often used to

quantify how well a given signal satisfies or violates an STL
specification. The mathematical definition of robustness degree
can be found in [52].

Encoding STL formula as mixed-integer constraints: The
STL specification can be encoded into mixed-integer constraints
using the big-M method [53]. The overall idea is that for each
predicate π, a binary variable zπt is created at time t, where 1
corresponds to true and 0 corresponds to false. Using the big-M
method, the robustness degree ρ can be represented with the
inequality

μπ(y(t))−Mt(1 − zt) ≥ εt, μ
π(y(t))−Mtzt ≤ εt (2)

where Mt is a sufficiently large constant for all predicates at
time t, Mt ≥ maxπ μ

π(y(t)), and εt is a sufficiently small
positive constant that bounds μπ(y(t)) away from 0. Using the
big-M method, the boolean operations, such as disjunction and
conjunction are represented by the following:

z =

nz∧

i=1

zi =⇒ z ≤ zi, i = 1, . . . , nz (3)

z =

nz∨

i=1

zi =⇒ z ≥
nz∑

i=1

zi. (4)

Kurtz and Lin [54] proposed a tree structure for STL formulas,
resulting in a more efficient encoding that uses fewer binary
variables. In comparison to the big-M method, the smoothed
approximation approaches, introduced in Section VI-B, repre-
sent the STL specifications as continuous constraints via the
robustness degrees.

Example: To express the block stacking problem in STL,
we first define the signals and predicates and then express the
planning domain using STL formulas. The continuous states
and controls in the planning domain are represented as signals

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 7

Fig. 6. Tabletop manipulation example expressed in STL.

in STL. We define signals pA(t),pB(t),pC(t) to be the 3-D
positions of objectsA,B,C, and signaly(t) = [q(t);u(t)] to be
the joint angles and torques of the robot manipulator at time t. In
addition, the gripper state is represented by signal g(t) ∈ {0, 1},
where 0 means the gripper is closed and 1 means it is opened.
Note that, STL has to instantiate each object individually, which
is different from the templated representation in PDDL. The
following example in Fig. 6 provides one instantiation for each
type of predicate.

C. Learning Operators and State Abstractions

To facilitate the search for task plan in solving TAMP prob-
lems, researchers propose learning symbolic operators, where
probabilistic transition models are evaluated. In addition, learn-
ing state abstractions studies the intrinsic structure of the task,
such as hierarchical structure and object importance, in order to
help decompose the large search space into two or more levels
of abstractions.

Learning operators: Silver et al. [39] proposed to learn sym-
bolic operators for TAMP using a relational learning method,
where the demonstration data is first converted to symbolic
transitions with defined predicates, and then the effects and pre-
conditions are discovered by grouping transitions with similar
effects. To alleviate the burden of hand-engineered symbolic
predicates, Silver et al. [55] further proposed to learn the sym-
bolic predicates and the operators jointly from the demonstration
data by optimizing a surrogate objective that relates to planning
efficiency. To improve the generalization over novel objects,
Chitnis et al. [56] introduced neuro-symbolic relational tran-
sition models, where high-level planning is achieved through
symbolic search, and the learned action sampler and transition
models are used to generate continuous motion.

Learning state abstractions: State abstractions have also been
studied to further improve the efficiency and generalization
of TAMP systems. Chitnis et al. [57] introduced a method
for acquiring context-specific state abstractions. This approach

focuses on considering only task-relevant objects, streamlining
the planning process and improving adaptability across dif-
ferent scenarios, Silver et al. [58] developed a graph neural
network (GNN)-based framework to predict object importance,
thus allowing the planner to efficiently search for a solution
while only considering the objects that are relevant to the task
goal. Zhu et al. [59] proposed a hierarchical framework that
constructs the symbolic scene graph and geometric scene graph
from visual observations for representing the states, which are
used for generating task plans and motion plans. Wang et al. [60]
suggested utilizing extensive datasets to enhance generaliza-
tion. They adopt a two-step approach, commencing with the
pretraining of visual features through symbolic prediction tasks
and semantic reconstruction tasks. Subsequently, they employ
the latent feature derived from this pretraining to learn abstract
transition models, which in turn aid in guiding the task plan
search process.

D. Generating Domain Knowledge by LLMs

Generating domain knowledge for planning methods, includ-
ing action descriptions and goal specifications, typically re-
quires manual input from human experts using specific declara-
tive languages like PDDL. Manually encoding action description
knowledge for task planners can be a tedious process. It requires
extensive domain knowledge from human experts and must
be regularly maintained to adapt to domain changes. It is a
long-standing challenge of generating domain knowledge for
autonomous agents (including robots) with minimum human
involvement. Recent advances in LLMs have demonstrated the
great potential of automating this process across various plan-
ning scenarios.

Generating action description by LLMs: The strategy for
generating action descriptions can be divided into two cate-
gories. The first involves LLMs revising existing action de-
scriptions to adapt them to different domains and situations.
For instance, Ding et al. dynamically enrich original domain
knowledge with task-oriented commonsense knowledge ex-
tracted from LLMs [61]. The second category involves LLMs
directly creating new action descriptions for planning. Here,
researchers may employ various prompting methods to enhance
generation performance. Examples of such methods include
specifying detailed prompts that guide the generative model
toward producing outputs that are more aligned with the desired
outcome [31], [62], and integrating structured data through
programming languages to provide a clear context or framework
for the generation [63]. A major challenge in this area is ensuring
the practicality of these generated descriptions in real planning
systems, given the variability of LLM outputs. To address this,
researchers deploy various evaluation methods, including sim-
ulations [64], comparison against predefined actions [32], or
human assessments, to filter the most viable outcomes [65].

Generating goal description with LLMs: Existing studies aim
to translate objectives stated in natural language into specific
formats, such as PDDL [62], [66] or LTL [67]. This process
is challenging, requiring understanding of context, adherence to
syntax to avoid errors that may lead to failure, and alignment with
the particular domains and problems. Like action description

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 7. Tabletop manipulation example expressed in LLM prompt.

generation, this requires various prompting methods, such as
including examples in the prompts [62], [66]. Learning methods
are also used to translate natural language directives into LTL
specifications, with minimal need for human-annotated training
data [67]. Unlike others, AutoTAMP [68] employs LLMs to
translate task requirements into goals, which can be applicable
at both task and motion levels. Fig. 7 illustrates an example of
translating natural language into goal specification.

IV. TASK PLANNING

Task planning focuses on determining sequences of actions
to achieve specific goals using symbolic method. Traditionally,
classical AI planning methods address this using graph search
algorithms with specialized heuristics. Alternatively, temporal-
logic-based techniques, especially those using LTL, employ
automata theory and reactive synthesis to generate discrete
decision sequences. However, the aforementioned classical AI
planning and temporal-logic-based approaches are not without
limitations. One major challenge is the combinatorial complex-
ity that arises when dealing with large-scale planning problems.
This complexity can severely hamper the scalability and effi-
ciency of planning algorithms.

To address these challenges, recent advancements in the
field aim to bypass the combinatorial bottleneck by leverag-
ing learned models to guide the task sequence search. These
approaches utilize insights from learned models, incorporating
task decompositions, action affordances, and the effects of skills.
Notably, the advent of LLMs has introduced new methodologies.
LLM-native planning derives strategies directly from data, while
LLM-aided techniques synergize these models with established
planning systems. The fusion of classic algorithms with state-
of-the-art machine learning encourages a promising evolution
in task planning algorithms.

A. Classical Task Planning

Classical task planning, as described by Ghallab et al. [22],
refers to the problem of planning for a deterministic, static,
finite, and fully observable state-transition system with restricted

goals and implicit time. The most straightforward task planning
algorithms are state-space search methods. In this paradigm, the
search space is a subset of the state-space itself, where each
node in the search represents a state, and each edge symbol-
izes a transition. The state-space search typically results in a
sequential path traversing the state space, effectively detailing
the progression from an initial state to a goal state. State-space
search is particularly relevant to the field of TAMP, as the
underlying motion planning algorithm inherently operates on
state space. The key considerations for algorithm design include
the identification of appropriate search space, the selection of
efficient algorithms, and the determination of suitable heuristics
to guide the search process.

The search heuristics in classical AI planning can be seen
as the relaxation of the exact search problem. In practice, the
heuristics design often involves a tradeoff between computa-
tional cost and informativeness of the heuristics. The works
in [69] and [70] employ heuristics based on the idea of state
reachability relaxation, where the heuristics are computed by
constructing a relaxed planning graph starting at state s, and
all negative effects of operators are ignored when growing the
graph. Therefore, the resulting planning graph has the properties
of monotonic increase in the number of propositions with respect
to the depth of the graph. A simple, computationally-cheap
heuristics based on the relaxed planning graph is the goal dis-
tance function [71]. Let the distance to goal h∗(s) be defined
as the minimum number of operators needed to reach the goal.
The lower bound estimation of h∗(s) can be easily calculated
by the minimum depth of the node containing all the goal
propositions within the relaxed planning graph. As an alternative
approach, the fast downward-based [72], [73] planning systems
uses hierarchical decomposition of planning tasks to compute
a causal graph heuristic, which uses the causal dependencies
in a relaxed causal graph to guide the forward state-space
search.

In comparison to state-space search, other AI planning meth-
ods, such as hierarchical task network [74], attempt to conduct
search on plan-space. However, these methods are not often used
in TAMP scenarios due to the difficulty in interfacing plan-space
search with motion planners.

For temporal logic-based formulations, such as LTL,
automata-based approaches [75], such as reactive synthesis [76],
[77], [78], are often used to generate a reactive system that
ensures the system meets a desired specification irrespective of
external inputs.

Note that this survey assumes the readers have basic back-
grounds of classical task planning and intentionally keeps this
section brief. For more information, readers are referred to [22],
[23], and [37].

B. Learning Models for Task Planning

A key challenge of improving the scalability of TAMP is the
combinatorial complexity of the discrete planning problem and
the large number of motion planning problems to be solved.
A promising approach to circumvent this challenge is to use
learning methods to guide the high-level task plan search. Pasula
et al. [79] proposed to learn probabilistic, relational planning
rule representations to model the action effects, which can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 9

used to generate the task plan through search. Similarly, Amir
and Chang [80] developed a method that learns the deterministic
action models in partially observable domains. To allow dealing
with uncertain representation and probabilistic plans, Konidaris
et al. [81] proposed to replace the sets and logical operations
by probability distributions and probabilistic operations, and
develop a framework that enables autonomous learning of the
probabilistic symbols from continuous environments. To address
the challenge of goal-directed planning involving a set of pre-
defined motor skills, Konidaris et al. [82] presented a frame-
work that directly acquires symbolic representations, abstracting
the low-level transitions for effective utilization in planning
tasks.

More recently, deep learning techniques have been explored
to learn the models from large-scale datasets. Ames et al. [83]
proposed to learn preconditions, action parameters, and effects
from execution results of parameterized motor skills, which are
then used to construct symbolic models for efficient planning.
Neural task programming [84] proposes to learn neural models
that recursively decompose a task demonstration video into robot
executable action primitives. To further improve the generaliza-
tion on long-horizon tasks, neural task graphs [85] learns neural
networks for generating conjugate task graphs, where the actions
are represented as nodes and the dependencies between actions
are modeled by edges, better exploring the compositionality.
Regression planning networks [86] learns a neural model to
iteratively predict the intermediate subgoals in a reverse order
based on the current image observation and the final symbolic
goal. Ceola et al. [87] proposed to utilize deep RL to train
neural models for generating discrete actions. Deep affordance
foresight [88] learns the long-term affordance of actions and
the latent transition models to guide the search, and thereby
informs the robot of the best actions to achieve the final task
goal. Similarly, Liang et al. [89] proposed to learn skill effect
models that generate future terminal states of each parameterized
skill, and then leverage these models to aid search-based task
planning.

C. LLMs for Task Planning

Traditionally, optimizing task plans for robots involves min-
imizing either the number of actions or the total plan cost, de-
pending on whether action costs are considered. The emergence
of LLMs, such as Google’s Bard, OpenAI’s ChatGPT [90], and
Meta’s LLaMA [91], have reshaped the landscape of AI, includ-
ing task planning for robots [92]. We categorize the LLM-based
planning methods into the two groups: LLM-native planning
methods and LLM-aided planning methods, where the former
does not rely on external knowledge and the latter does, as
shown in Fig. 8. Comparing to regular learning-based methods,
LLMs are typically trained on a large amount of out-of-domain
data that contains a great deal of commonsense knowledge.
While LLMs are not strong in numerical reasoning (and hence
optimization) [93], [94], the incorporation of LLMs improves the
capabilities of natural language understanding, the acquisition
of world knowledge, and commonsense reasoning. Such capa-
bilities enable LLM-based planners to reason about symbolic
information, such as spatial relationships between objects [95]

Fig. 8. Two methodologies for task planning using LLMs, with the key
difference lies in the role of LLMs: (a) LLM-native planning methods
use LLMs for planning, while (b) LLM-aided planning methods LLMs to
generate domain descriptions for existing task planning methods, such
as PDDL and temporal logic.

and symbolic correctness of a task sequence [30], without prior
interaction with the robot environment. Therefore, LLMs as a
task and domain agnostic reasoning module has the potential to
enhance the scalability and generalizability of robot planning.

LLM-native planning methods often incorporate additional
components like RL to enhance planning by choosing better
actions. Conversely, LLM-aided planning methods can be inte-
grated with classical optimization strategies, ensuring satisfac-
tory planning efficiency and practicality. These two approaches
are compatible with optimization methods, while integrating
LLMs enhances the overall planning capabilities.

LLM-native planning methods: One method to leverage
LLMs for task planning involves directly generating plans
from LLMs by providing a domain description [see Fig. 8(a)].
This can be done either in a one-shot way or iteratively.
These methods primarily focus on prompt design for effective
communication with LLMs, and the grounding to specific
domains and robot skills. Multiple systems have made efforts
in this field. Huang et al. [32] proposed to generate candidate
actions and design tools to improve their executability, such as
enumerating all permissible actions and mapping the model’s
output to the most semantically similar action. Building upon
this, SayCan [96] enables robotic planning using affordance
functions that determine action feasibility and respond to
natural language requests, such as “deliver a Coke.” An
advanced approach, named Inner Monologue, developed by
Huang et al. [97], integrated environmental feedback for task
planning and situation handling. Previously, methods typically
generate task plans in text forms. Singh et al. [63] developed
a system, called ProgPrompt, which employs programmatic
LLM prompts to generate task plans and manage situations,
by verifying the preconditions of the plan and reacting to
failed assertions with suitable recovery actions. Employing
code as the framework for high-level planning provides
significant benefits. It allows for the expression of complex
functions and feedback loops. These loops effectively process
sensory outputs and enable the parameterization of control
primitives within application programming interface
(APIs) [98]. Apart from planning for robots, there is also
research on whether LLMs can act as universal planners. They

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ASME TRANSACTIONS ON MECHATRONICS

could potentially create programs that efficiently generate plans
for various tasks within the same domain [31]

LLM-aided planning methods: Prior to the development of
LLMs, various tools existed for robot task planning, but they had
scalability limitations. For example, defining domain knowledge
in PDDL demands significant time from human experts [see
Fig. 8(b)]. The advent of LLMs offers a way to augment these
traditional planners by supplementing knowledge, thereby im-
proving their performance and enabling more natural language
interaction. There are a few ways of integrating LLMs and
classical task planners. First, a series of studies are conducted to
explore the conversion of natural language descriptions of plan-
ning tasks into standardized languages like PDDL or temporal
logic. LLMs complete these transformations, playing a crucial
role in the process. These translated specifications are then
used in existing planning systems. For example, Xie et al. [66]
created optimality-based task-level plans with the PDDL plan-
ner, translating natural language inputs into PDDL problems.
Second, one can dynamically extract commonsense knowledge
from LLMs, enhancing PDDL’s action knowledge for planning
and situational handling [95]. Third, Zhao et al. [64] utilized
LLMs to build world models, and perform heuristic policy in
search algorithms, such as Monte Carlo tree search, which uses
the common-sense knowledge provided by LLMs to generate
possible world states, thus facilitating efficient decision-making
as well as underlying motion planning.

The optimization of those LLM-based planning methods oc-
curs in the interaction with the LLMs, in the plan generation of
classical task planners, or both. The prompting strategy of LLM-
native planning methods encourage behaviors toward maximiz-
ing the overall task completion rate, where the optimization
usually occurs in an implicit way (i.e., there is no objective
function explicitly specified). By comparison, the LLM-Aided
planning methods compute optimal plans with or without plan
cost in consideration, where the optimality is conditioned on the
external knowledge provided by LLMs, and the optimization
process is embedded within the deployed task planning system.

V. OPTIMIZATION-BASED MOTION PLANNING

Optimization-based motion planning is an important com-
ponent in robot planning. It aims to generate a continuous
robot motion path and a control sequence that optimizes an
objective function subject to a set of kinematics and/or dynamics
constraints. Numerous methods have been proposed [99] to TO1.
Notable TO techniques include direct methods that transcribe
TO into nonlinear programs (NLPs), and indirect methods that
leverage the optimality conditions.

In the meantime, with the increasing complexity and diver-
sity of environments that robots operate in and tasks that the
robot are required to accomplish, there is an imperative need
to enhance the scalability of these TO strategies, especially in
handling robot dynamics, complex constraints in physical con-
tact problems, and higher dimensional state spaces in multirobot

1In this survey, we interchangeably use the terms of “TO” and “optimization-
based motion planning.”

scenarios. To this end, distributed optimization techniques have
been introduced, with consensus alternating direction method of
multipliers (ADMM) being a notable methodology [100].

In conjunction with model-based TO approaches, recent ad-
vancement in combining data-driven approaches and TO has
shown capabilities in predictively generating trajectories by
imitating offline-generated optimized paths solved by model-
based TO techniques [101], [102]. These learned methods hold
significant promise in enhancing the efficiency and adaptability
of motion planning processes, especially in environments with
dynamic and unforeseen challenges.

A. Trajectory Optimization

A motion planning problem is specified by a motion planning
domain Dm, an initial state xinit ∈ R2n, and a goal state xG ∈
R2n. A motion plan consists of a state-control trajectory with
T knot points: 〈X,U〉 = 〈x0,u0,x1,u1, . . . ,uT−1,xT 〉, where
x0 = xinit and xT = xG.

The motion planning problem can be formulated as a con-
strained NLP

min
X,U

T−1∑

t=0

Lpath(xt,ut) + Lgoal(xT) (5a)

s.t. xt+1 = f(xt,ut) (5b)

x0 = xinit, xT = xG (5c)

g(xt,ut) ≤ 0 (5d)

where the dynamics equation in (5b) and inequality constraint
in (5d) are defined in Section II-B.

Direct collocation [103], [104] offers a straightforward tran-
scription where both controls and states are treated as deci-
sion variables, and complex state constraints can be easily
expressed. General-purpose NLP solvers, such as IPOPT [105]
and SNOPT [106], can be adopted to solve for optimal solutions.
Alternatively, motivated by the real-time computation require-
ment for many robotics applications, researchers start to devise
problem-specific solvers for reliably solving the above NLP.
Notably, differential dynamic programming (DDP) [107] is a
shooting method that efficiently explores the problem structure
through Riccati recursion and handles nonlinear dynamics, but
limited to unconstrained TO. More recently, variants of DDP al-
gorithms have been proposed to handle diverse state and control
constraints [26], [108], [109], [110], [111], [112], [113]. Readers
are referred to [99] and [114] for a comprehensive overview
on the numerical TO methods.The recent survey paper [24]
offers insights into contemporary applications of TO in legged
locomotion with an emphasis on handling complex dynamic and
contact constraints.

Example: For the tabletop manipulation task, we consider
the motion planning problem for a single task of a manipulator
moving from a free position to pick up an object A. Let forward
kinematics function FK(·) denote the end-effector position of
the manipulator andpA denote the position of objectA. The run-
ning cost consists of a position tracking term and regularization

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 11

terms for state and control

Lpath(xt,ut) = w‖FK(xt)− pA‖2

+ x�
t Qxt + u�

t Rut. (6)

The goal cost only concerns whether the final configurations of
the robot achieves the desired final end-effector position

Lgoal(xT) = w‖FK(xT)− pA‖2. (7)

The dynamics in (5b) is represented by the numerical integration
of the rigid-body dynamics equation [115]

M(q)q̈+C(q, q̇) = u+ J(q)λ (8)

where M ∈ Rn×n represents is inertia matrix; C ∈ Rn is the
gravitational, centrifugal, and Coriolis forces; J represents the
Jacobian matrix; and λ is the contact forces at the end-effector.

The following inequality constraints are involved:

state limit : x ≤ xt ≤ x (9)

control limit : u ≤ ut ≤ u (10)

collision avoidance : di(x) ≥ dmin (11)

where di(x) represents the distance between the ith collision
pair at statex, and dmin denotes the minimum allowable distance
to avoid collisions.

B. Distributed Optimization

Many TO problems have intrinsically distributed structures.
Such distributed structures are often formulated and solved via
alternating optimization approaches, such as ADMM [100], in
order to improve the efficiency of TO. However, the distributed
structure might not be immediately apparent and the optimiza-
tion problems often need to be reformulated into an explicitly
distributed format. We focus here on the consensus ADMM
as a representative distributed formulation, where copies of
decision variables and additional consensus constraints are often
introduced to reveal the distributed structure of the TO problems.
Consider a optimization problem where the objective is the sum
of N functions

min
X

N∑

i

Ji(X). (12)

The optimization can be reformulated in the consensus ADMM
format

min
X,X1,...,XN

N∑

i

Ji(X)

s.t. Xi = X ∀i ∈ {1, . . ., N} (13)

where X is a set of global decision variables. Practically,
one critical aspect to achieve a satisfactory consensus perfor-
mance is built upon appropriate selection of ADMM parameters
through principled mechanisms, such as over-relaxation [116],
varying-penalty parameters [117], and Nestorov acceleration
method [118]. In the following, we focus on the discussion of

three structures that can be effeciently solved using consensus
ADMM commonly seen in TO problems.

Spatial structure: The spatial structure of the system can be
exploited when the subsystems and their dynamics are separable.
This property often exists in multirobot systems, where the
planning of each robot can be treated as a subproblem. The
decision variables are possibily coupled through the objective
functions or the constraints (e.g., collision avoidance between
robots). Local copies of the full state variables can be created for
each robot to decouple the problem [119], as seen in Fig. 9(a).
Readers are referred to [38] and [120] for a detailed review of
the multirobot ADMM. Robustness is further studied in [121]
given a multirobot motion planning problem via ADMM. Am-
atucci et al. [122] accelerated TO for loco-manipulation tasks
by modeling a quadruped robot with an articulated arm as three
subrobots.

Temporal structure: TO problems are often formulated in
their discretized form. In most cases, the discrete formulation
involves a set of decoupled objective and constraint terms that
are functions of robot state and control at a single timestep [e.g.,
(5c) and (5d)], and dynamics constraints that couples the states
and control trajectory across consecutive timesteps [e.g., (5b)].

For single-timestep objectives or constraints that are com-
putationally expensive (e.g., complementarity constraints for
contact [25]), it is beneficial to accelerate the optimization
process by leveraging the temporal structure of the problem
and parallelizing single-timestep objectives and constraints of
interest in a distributed fashion [see Fig. 9(b)].

A constraint can be decoupled in a similar fashion by moving
the constraint into objective using indicator functions or projec-
tion operators. Examples include [123], where the linear com-
plementarity constraints are independent temporally, and [124],
where a L1 objective on the control are decoupled. Similarly,
in [125] and [126], box constraints are handled separately
through a projection operator.

System structure: The system structure of TO can be exploited
when the system dynamics can be characterized by two or
more interacting subsystems, i.e., dynamic models with different
complexities. ADMM is used to separate the full optimization
problem into sub-problems, each of which corresponds to a sub-
system [see Fig. 9(c)]. This separation often applies to systems
with complex robot dynamics with high degrees of freedom.
Different from the spatial structure, the system structure often
involves nonlinear mapping from one subsystem to another
one, e.g., a mapping from centroidal dynamics to whole-body
dynamics for locomotion problems, as introduced in the next
paragraph.

In legged locomotion, there is often a hierarchy of model
abstractions, where a whole-body TO and a reduced-order TO
are both solved over the planning horizon [127], [128]. This
hierarchy of model abstractions can be effectively handled via
the dynamic splitting strategy of ADMM. The original rigid
body dynamics can be split into centroidal dynamics and whole-
body kinematics [129] or dynamics [130], [131]. Although the
authors in [129] and [130] do not explicitly use ADMM, they
iteratively feed optimized trajectory from one subsystem to the
other one as the reference trajectory. Empirically, decent results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 9. Three common structures in distributed TO: (a) spatial structure, illustrated by a multiagent drone system; (b) temporal structure, illustrated
by a Cassie robot jumping over a gap; (c) system structure, illustrated by an alternating centroidal and whole-body optimization for a quadruped.

have been reported for converging to local minima [132]. A po-
tentially accelerated ADMM updating scheme is also proposed
in [133].

C. Learning Methods for Motion Planning

Despite the improvements in the efficiency of classical TO
methods, it remains challenging to achieve real-time TO in many
use cases. Moreover, problem-specific objectives and constraints
within TO often need to be manually designed, limiting the gen-
eralizability of TO approaches. Consequently, learning methods
have been extensively explored to facilitate motion generation
by: 1) learning objectives and constraints to guide the TO, 2)
learning physical models for integration into TO, and 3) learning
end-to-end policies that imitates the trajectories generated by
TO.

Learned objectives and constraints for TO: Objective func-
tions and constraints can be learned from trajectory demon-
strations and other task specification inputs, such as natural
language. Guided cost learning [134] recovers cost function by
adaptively sampling trajectories generated by TO using policy
optimization. For constrained TO scenarios, inverse karush-
kuhn-tucker (KKT) [135] learns the cost function and KKT
conditions of the underlying constrained optimization problem.
Janner et al. [102] proposed to view RL as a generic sequence
modeling problem, and then develop a transformer-based archi-
tecture to model the distribution of the trajectories, and utilize
beam search to solve the planning problem. To allow more
flexible task specifications, Sharma et al. [136] proposed to
learn neural networks for mapping natural language sentences
to transformations of cost functions, which are then used for op-
timizing the motion trajectories. Along another line of research,
LLM has shown promises as a interface to motion planning by
describing robot motions and translating desired robot motions
into reward functions [137] to guide the optimization of control
policy. VoxPoser [138] leverages LLM to generate cost maps
based on task specifications, and then utilizes search algorithms
to derive the robot motion trajectory.

Learned physical models for TO: Complexities in physical
models, especially the discontinuities in contact models can
cause significant numerical challenges for TO. These challenges
have spurred the development of learned differentiable contact
models, despite the noted difficulty in accurately capturing the
behavior of stiff contacts [139]. ContactNets [140] proposes to
learn interbody distances and contact Jacobians using a smooth,
implicit parameterization, which can potentially be integrated
with TO. The work in [141] extends upon [140] to simulta-
neously learn continuous and contact dynamics using residual
networks. For object manipulation problems, Cleac’h et al. [142]
build a dynamic augmented neural object model that simulates
the geometry and dynamics of an object as well as a differen-
tiable contact model. Driess et al. [143] proposed to learn object
representations as signed distance fields, which are particularly
suitable for optimization-based planning approaches.

End-to-end policy learning guided by TO: To address the
inefficiencies encountered in TO and the obstacles associated
with executing TO in real-time, research efforts have been made
to learn neural policies that imitates the trajectory examples
generated by offline TO. Guided policy search [144], [145]
iteratively trains policy on distributions over guiding samples
generated by DDP. In comparison, the works in [101], [146],
and [147] propose to use ADMM to achieve consensus between
neural network policy and trajectory examples provided by
TO. OracleNet [148] recovers the motion plans sequentially
with learned recurrent neural networks. To address the motion
planning problems with task constraints, CoMPNet [149] first
encodes the task descriptions and environment into latent space,
with a recurrent neural network and CNNs, and then sequentially
generates the intermediate robot configurations based on the
feature embedding, initial configuration, and goal configuration.
Similarly, Radosavovic et al. [150] developed a transformer-
based framework for tacking the humanoid locomotion task,
where the model is first trained in simulation for generating
actions in an autoregressive way, and directly deployed in the
real world. To handle the multimodal action distribution of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 13

Fig. 10. Organization and main topics of Integrated TAMP in Section VI. Two main types of optimization-based TAMP are introduced: logic-guided
TAMP and TO-guided TAMP. For each type, the formulations, considerations in classical methods, and relevant learning methods are discussed.

TABLE II
OVERVIEW OF CLASSICAL APPROACHES FOR OPTIMIZATION-BASED TAMP

low-level skills, diffusion policy [151] iteratively refine the noise
into action sequence through a learned gradient field that is
conditioned on the observations, which provides stable train-
ing and accommodates high-dimensional action sequences. For
legged locomotion, Viereck and Righetti [152] proposed to learn
a neural network that generates the desired centroidal motion
real-time, which is subsequently integrated with a whole-body
controller.

VI. INTEGRATED TAMP

Integrated TAMP presents a holistic approach that contrasts
with others separately handling task planning (see Section IV)
and motion planning (see Section V). In optimization-based
TAMP, the plan is not merely required to be feasible but also
expected to approximate the global optimality. The crucial
consideration of integrated TAMP lies in the interdependence
between task planning and motion planning. This interplay
forms the cornerstone of the design of efficient TAMP algorithms
and represents an area of active research.

The optimization-based formulations for TAMP often involve
a hybrid optimization of discrete symbolic-level decisions and

continuous motion-level trajectories, as shown in Section II-B.
To this end, we identify two general approaches to formulate
and solve the hybrid optimization: logic-guided TAMP and TO-
guided TAMP. While both approaches inherently solve the hy-
brid optimization problems, they fundamentally differ in formu-
lations and algorithms, particularly in the definition of discrete
variables and the selection of search spaces. Fig. 10 shows the
overall organization of this section and main topics discussed.
Table II presents a representative set of classical approaches
for optimization-based TAMP, highlighting their formulations,
algorithms, and whether dynamics or kinematics are considered
in the application.

Logic-guided TAMP (see Section VI-A) is formulated based
on symbolic languages, such as PDDL, with the continuous
variables and constraints for motion planning embedded as
continuous-level realization of symbolic planning (referred to
as refinement hereafter). A notable formulation in logic-guided
TAMP is logic-geometric programming (LGP) [8], where logic
at the symbolic level governs the constraints imposed on TO,
i.e., the motion planner. The algorithm structures for logic-
guided TAMP typically involves a state-space search-based task
planner, with hand-designed heuristics specific to the planning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ASME TRANSACTIONS ON MECHATRONICS

problem (see Section VI-A1). The motion planner is typically
interleaved with the task planner to refine the plan skeleton
generated by the task planner (see Section VI-A2).

TO-guided TAMP (see Section VI-B) is formulated as a sin-
gle TO problem with binary variables that represent discrete
decisions. This formulation often views the hybrid optimiza-
tion problem of TAMP as mixed-integer programming (MIP).
Frequently, TO-guided TAMP is derived from temporal logic
representations as introduced in Section III-B. The methods to
solve TO-guided TAMP typically employs general-purpose nu-
merical solvers, such as B&B, without problem-specific heuris-
tics. Unlike logic-guided TAMP, the algorithm’s search space is
defined not by the explicit state space of the planning problem,
but the solution space of the underlying numerical program
(see Section VI-B1). In addition, efforts have been made to
improve the scalability of TO-guided TAMP by splitting the MIP
into subproblems [153] (see Section VI-B2) or formulating the
planning problem as a fully continuous optimization [9], [154]
(see Section VI-B3).

Despite the progress made in classical optimization tech-
niques for integrated TAMP, these methods still typically have
limited scalability due to the combinatorial nature of task plan-
ning and numerical complexity of motion planning. One cur-
rent trend of research is to explore the use of learning-based
techniques to improve the efficiency of TAMP algorithms. For
logic-guided TAMP, learning methods have been utilized in the
interaction between task planning and motion planning layers,
for example, learned action feasibility (see Section VI-C1) and
search guidance (see Section VI-C2). Along a different line of
research, reusable motion skill acquisition has been explored,
which facilitates the efficiency improvement for motion gener-
ation in long-horizon tasks (see Section VI-C3). For TO-guided
TAMP, integrating learning-based techniques to reduce the com-
putational burden of MIP problem has been an active area of
research (see Section VI-C5).

A. Logic-Guided TAMP

In logic-guided TAMP, the approach to solving the hybrid
planning problem can be conceptualized as constructing a tra-
jectory tree. In this trajectory tree representation, each node
corresponds to a symbolic state and each edge represents a
trajectory segment. Given the intertwined nature of TAMP, the
determination of a symbolic state’s feasibility and its associated
cost is influenced by a combination of symbolic and continuous
domains.

A naive approach to solve for logic-guided TAMP is to
impose a strict hierarchical structure [2], where task planning
precedes, followed by motion planning to refine the proposed
plan skeleton in continuous domain. This approach hinges on the
downward refinement property [163], which posits that for every
plan skeleton generated by the task planner, a corresponding
continuous motion plan exists. However, the downward refine-
ment property does not hold in most real-world scenarios. This
necessitates mechanisms for replanning or backtracking at the
task planning level upon realizing that a current plan skeleton
becomes infeasible in the motion planning level.

On the other extreme, a fully intertwined algorithm for TAMP
might require a call to the motion planner every time a new node
in the search tree is expanded, in order to validate the feasibility
of the selected symbolic action sequence and to generate a
feasible and low-cost continuous motion plan. This method fully
determines each symbolic state’s reachability and its associated
cost is influenced by a combination of planning at symbolic
and continuous domains. However, each motion planner call
is often computationally expensive, and a majority of symbolic
states expanded and trajectory segments solved are unused in the
final solution. This often makes the fully intertwined approach
computationally intractable.

Therefore, the main research question is how to effectively
interface between task planning and motion planning layers in
order to curtail the size of the search tree and minimize the
number of calls to the motion planner, while still effectively
solving for feasible and ideally optimal solutions. Fig. 11 illus-
trates the overall algorithm structure that is commonly seen in
logic-guided TAMP.

1) Search Heuristics in TAMP: Many search heuristics in
TAMP attempt to solve a relaxation of the underlying motion
planning problem, in order to obtain an estimation of the feasibil-
ity and cost of the action. For example, in TAMP for navigation
problems [156], Euclidean distance in 2-D space serves as
an admissible and easily computable heuristic function, which
improves planning efficiency while guaranteeing task-level op-
timality. However, in planning domains with high-dimensional
configuration spaces, it is often difficult to generate an analogous
distance measure that estimates the action costs. One intuitive
approach is to evaluate the action feasibility and cost based on
the initial and final configurations of the robot or object while
ignoring the intermediate trajectories. For example, inverse kine-
matics (IK) is commonly used to reason about the feasibility of
the initial and final robot poses in the action without generating
the full trajectory [125], [164]. For collaborative robot manipu-
lation, the angular displacement of a manipulated object is often
used as heuristics [17]. Agostini and Piater [165] proposed an
object-centric representation of manipulation constraints that
unifies TAMP into a single heuristic search that is amenable
to existing AI planning heuristics. Toussaint [8] proposed a
multistage method to solve the TAMP: 1) optimizing over the
final configuration given an action sequence, 2) optimizing over
all kinematics configurations at symbolic state transitions, and
3) optimizing over the entire trajectory. The first two stages
effectively act as heuristics during tree search to check the
geometric feasibility of a given symbolic action sequence, while
the costly TO is only conducted in the final stage.

Heuristics presented so far consider only the initial and final
states in a symbolic action. Therefore, no feasibility or cost
information about the intermediate states along the trajectory
is available, which makes the heuristics easy-to-compute but
less informative. This is insufficient to solve more complicated
problems, where the path feasibility of the actions plays an
important role in the planning process. In comparison, [155],
extended from [8], proposes to use a TO with a very coarse time
resolution (2 time steps per symbolic action). These heuristics

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 15

Fig. 11. Schematic overview of logic-guided TAMP and associated learning approaches: blue blocks illustrate domain representation and task
planning level; green blocks denote the motion planning level; orange blocks represent plan execution and failure recovery mechanisms.

incorporate some path feasibility information while remaining
relatively fast to compute, effectively achieving a different level
of informativeness-relaxation tradeoff.

Additional work has been done to discover and prune infea-
sible actions before the corresponding node is reached. If an
action is determined to be infeasible by a heuristic function or a
motion planner during the search, the same action that exists on
other branches of the tree would also be infeasible if no other
actions are taken to modify the states relevant to the infeasible
action. Srivastava et al. [166] proposed a planner-independent
task-motion interface layer, where additional infeasible
predicates are introduced to the task planning domain when
an infeasibility is found by the motion planner.Toussaint and
Lopes [155] extended this method to operate in conjunction
with Monte Carlo tree search in an optimization-based TAMP
formulation.

2) Multimodal Motion Planning (MMMP) Solved by TO: Af-
ter a complete or partial plan skeleton is generated by the heuris-
tics search process at the task planning level, the plan skeleton
is refined into a continuous trajectory by TO. The problem
of TO over a given plan skeleton is akin to the conventional
MMMP problem proposed in the sampling-based planning com-
munity [167], [168]. TO incorporates the mode transitions and
mode constraints derived from the symbolic decisions to form
a MMMP problem. Mode constraints are predominantly ex-
pressed as manifold constraints in TO. Furthermore, transitions
at the symbolic level, often called “symbolic switches,” are
often represented as continuity constraints between trajectory
segments.

Two main strategies arise to solve the MMMP using TO. The
first paradigm emphasizes segment-wise optimization, wherein
trajectory segments associated with individual actions in the
symbolic sequence are solved independently. For example,
LGP-based formulation typically uses kth order motion opti-
mization [169] as the underlying motion planner. The authors
in [15] and [170] further extends LGP to incorporate dynamics
constraints and predicates. Migimatsu and Bohg [16] proposed
an object-centric TO formulation based on LGP. Similarly, Zhao
et al. [125] solved the hybrid NLP as trajectory tree, but aims to
improve the efficiency of the solver by using ADMM to handle

the constraints of the trajectory segments in a distributed manner.
Another line of research attempts to solve for the full motion
trajectory as a whole given the symbolic sequence: Zimmermann
et al. [171] proposed a multilevel optimization framework that
exploits the implicit differentiation method to solve the switch
conditions and full trajectories holistically. Phoon et al. [172]
used a multiphased TO approach that optimizes the entire motion
sequence simultaneously.

3) Receding Horizon TAMP: The real-world application of
TAMP for long-horizon dynamic tasks is often hindered by
failures in plan execution due to changes in the environment,
interaction with human, or noisy sensor inputs. Receding hori-
zon TAMP has been explored to mitigate this issue via online
replanning. Receding horizon TAMP is analogous to model
predictive control (MPC) [173], where the planning problem
is solved iteratively over a receding time window. The specific
challenge in receding horizon TAMP is to appropriately define
the finite time horizon over the hybrid planning domain. The
works in [125] and [174] rely on task-specific decomposition,
where each receding horizon planning iteration achieves the goal
for a subtask. The authors in [175] and [176] proposed to plan
over a fixed action-horizon, where a full task plan is generated
in each iteration, while the motion plan is only computed for
a predefined number of actions. Chen et al. [177] developed
branch-MPC, where the objective function is optimized over a
scenario tree, which is constructed by enumerating the predicted
environmental responses.

Example: To address the tabletop manipulation scenario
through TAMP, the initial step involves the task planner gen-
erating a plan skeleton using tree search. This process involves
constructing a tree where nodes represent potential states of the
environment and edges represent actions, such as moving or
stacking the objects A,B,C. The objective is to find a sequence
of actions that leads to the desired configuration with maximal
height for object A. An example plan skeleton can be seen in
Fig. 12.

During the tree search, IK is employed as a heuristic function
to check the feasibility of actions. This involves determining
whether the robot can physically reach and manipulate the
objects as required by the actions in the plan skeleton. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 12. Illustration of a plan skeleton for the tabletop manipulation
example. (a)–(e) Plan to stack block A on top of C and B using pick
and stack actions; the arrows denote the associated move-free and
move-hold actions and their required continuous decision variables.

use of IK as a heuristic aids in efficiently pruning the search
tree by quickly eliminating infeasible actions, thereby focusing
the search on promising solution paths. Once a preliminary
plan skeleton is generated, it is passed to a multimodal motion
planner, which refines this skeleton into a detailed, executable
plan. This process is repeated iteratively until the optimal plan
is reached or the allocated planning time elapses.

B. TO-Guided Tamp

In contrast with the approaches discussed in Section VI-A,
where the interactions between task planning and motion plan-
ning are expressed explicitly, the common methods to solve TO-
guided TAMP typically rely on internal features of numerical
algorithms, such as branch-and-bound (B&B) and ADMM, to
achieve interplay between the discrete and continuous decision
variables implicitly.

1) B&B Methods: One typical approach to solve MIP is
B&B-based algorithms [178], [179]. This method partitions the
solution space into smaller subsets (branching) and uses bounds
on the objective function to eliminate regions that do not contain
an optimal solution. Initially, integer constraints are relaxed to
provide an initial bound. The algorithm then branches based
on fractional integer variable values, constructing a search tree.
By assessing bounds for each subproblem and pruning branches
that cannot improve the current best solution, B&B converges to
the global optimum after multiple iterations. However, MIP is
classified as a NP-hard problem [180], therefore several branch-
ing heuristics are commonly used [181] to improve scalability,
analogous to the state-space search heuristics discussed in Sec-
tion VI-A. For example, strong branching heuristics [182] aims
to produce a small B&B tree by selecting the variable to branch
that will result in the best improvement of the objective func-
tion. Alternatively, local neighborhood search [183] attempts to
improve upon existing feasible solutions by local search.

B&B-based algorithms are widely implemented in commer-
cial solvers, such as Gurobi [184], Mosek [185], and Mat-
lab [186]. However, many off-the-shelf implementations are
only able to efficiently solve mixed integer linear programming

Fig. 13. Example algorithm structures for TO-guided TAMP: (a) hi-
erarchical and distributed methods and (b) smoothed approximation
methods.

(MILP) or mixed integer convex programming (MICP). There-
fore, one commonly adopted strategy is to formulate the TAMP
problems as MILP or MICP in order to effectively leverage the
commercial MIP solvers.

From the formal control community, such as temporal
logic, [157] avoid reactive synthesis by directly encoding LTL
formula as mixed-integer linear constraints on nonlinear sys-
tems, and aim to find an optimal control sequence. Chen
et al. [158] encoded the LTL-based hybrid planning problem as
an MILP by fixing the number of automaton runs and reasoning
over temporally concurrent goals. Kogo et al. [159] integrated
an existing TAMP model with collision avoidance using an
MILP formulation with hard constraints on collision and soft
constraints on goal positions. Katayama et al. [160] proposed an
object-oriented MILP formulation for dual-arm manipulation by
representing the LTL formulas, robot end effector dynamics, and
object dynamics as a mixed logical dynamical (MLD) system.
Bredu et al. [1] proposed grounded task planning as mixed
integer programming, which builds a hybrid funnel graph (HFG)
from the hybrid planning problem description in PDDL+, and
encodes the HFG as an MICP.

2) Hierarchical and Distributed Optimization Methods: For
systems subject to nonlinear dynamics, the optimization for-
mulation extends to mixed integer nonlinear programming
(MINLP). However, the computational burden associated with
MINLP is often prohibitive, making them impractical for many
real-world applications. In order to manage the computational
complexity, the MINLP are often reformulated by decomposing
it into solvable subproblems in a hierarchical or distributed
fashion [see Fig. 13(a)].

For the hierarchical methods, Saha and Julius [161] proposed
a hierarchical framework that uses MTL to express specifications
for object manipulation tasks and encodes them into an MILP at
the high level to solve for task sequence and manipulation poses.
Meanwhile, it employs a gradient-descent-based optimization
at the low level to compute collision-free robot trajectory. Simi-
larly, Funk et al. [187] solved robot assembly discovery problem
via a tri-level hierarchical planning structure, where the high
level solves an MILP for object arrangement. The work in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 17

[188] and [189] address bipedal locomotion problem in partially
observable environment with a LTL-based task planner and a
reduced-order model motion planner. The main drawback of
these hierarchical frameworks is that the low-level TO only
attempts to refine the high-level candidate solutions with an
detailed continuous-level trajectory, but cannot influence the
high-level MILP to achieve a better discrete solution.

To address the communication issue between the high and
low level in hierarchical methods above, the distributed meth-
ods [153], [190] use ADMM to convert a MINLP into a con-
sensus problem between a MICP, which involves the logical
rules and discrete variables, and a continuous NLP that involves
the nonlinear kinematics and dynamics. The MICP and NLP
shares mutual information through the consensus constraints.
The ADMM-based algorithm for MINLP is demonstrated to be
effective in a modular robot climbing [153] and manipulation
task [190]. However, ADMM relies on augmented Lagrangian
method, which assumes all decision variables are continuous.
Consequently, the presence of integer variables in TAMP can
impede ADMM’s convergence. To circumvent this limitation,
modifications to the ADMM algorithm are required. One po-
tential solution involves the direct copying of integer solutions
across subproblems, effectively bypassing the primal-dual up-
date process for integer variables [153].

3) Smooth Approximation Methods: Different from the hier-
archical and distributed methods above, another line of research
to circumvent the combinatorial complexity of MIP is refor-
mulate the hybrid optimization into a continuous NLP with a
specific cost function or constraint representing the smooth ap-
proximation of the discrete task planning [see Fig. 13(b)]. Such a
formulation can be solved more efficiently with gradient-based
solvers. Recent works in STL utilize smooth approximations
of a task specification formula and encode the corresponding
robustness degrees into the NLP cost functions [162], [191],
[192], [193]. The work in [9] builds on the smooth approx-
imation approach but focuses on handling multiple dynamic
modes in robot manipulation tasks. The authors in [154] and
[194] applied the STL specifications and robustness degrees
on the push recovery scenarios for bipedal locomotion. Envall
et al. [3] proposed a differentiable scheme for multiarm manip-
ulation problems by treating robot task assignment implicitly
as continuous constraints that associate the states of robots
and objects. Analogous to receding horizon TAMP discussed
in Section VI-A3, MPC-based methods have been developed
based on STL to enable formal guarantees or reasoning about
robustness of the task satisfaction in an online fashion [194],
[195], [196], [197], [198].

C. Learning for Combined TAMP

Classical TAMP frameworks [2], [199] require accurate,
special-purpose perception systems and hand engineered ma-
nipulation skills, rendering these approaches less effective while
handling novel problems. To overcome this issue, in recent
years, there has been extensive exploration of learning tech-
niques within TAMP community. Data-driven approaches allow
robots to make informed decisions based on prior examples
and experiences, which enhance flexibility and generalizability.

Furthermore, the scalability of classical TAMP methods is often
limited by the problem size of the tree search for complex
problems and the computational cost to evaluate heuristics and
optimal trajectories. Learning-based methods show potential to
accelerate or replace some of the computationally expensive
components of classical methods, such as feasibility checking,
search guidance, and skill learning. Categorizing the works
based on the roles and functionalities of the learned components,
we primarily classify them into the following five categories.
Note that, although some of the low-level motion planners used
by works cited in this section might not be optimization-based,
the methodologies discussed here are fundamental and highly
relevant to optimization-based TAMP. A list of representative
learning approaches is presented in Table III.

1) Learning Feasibility Classifier: Traditionally, TAMP
methods leverage the geometric and dynamic information in the
continuous domain to determine the feasibility of tasks during
discrete search. However, it can be challenging to incorporate
this feasibility check mechanism into a discrete planner. A single
feasibility check might involve computationally expensive op-
erations, such as collision checking, IK, or even TO. In addition,
the selection of an action or associated geometric parameters can
have long-horizon implications on the feasibility of the plan.

To address these issues, Wells et al. [200] proposed to train a
classifier for evaluating feasible motions and use the classifier
as a heuristic for discrete task plan search. Driess et al. [29]
proposed to learn a neural model for evaluating the hypothesized
discrete actions based on visual images. Noseworthy et al. [201]
leveraged active learning to efficiently collect the data for train-
ing the plan feasibility classifier, and then utilize the learned
classifier to guide the planning and execution. Xu et al. [27]
similarly train a feasibility classifier with a neural network,
which estimates the feasibility of proposed TAMP actions from
images of the robot’s workspace. To avoid exhaustively reevalu-
ating infeasible motion-level actions, Sung et al. [205] proposed
learning backjumping heuristics to identify infeasible actions for
efficient backtracking during the discrete search. Alternatively,
Yang et al. [28] developed a transformer-based framework for
directly predicting the feasibility of finding motion trajectories
for the given task plan conditioned on the environment state.
Curtis et al. [206] learned to predict the affordances of actions
from color and depth images, which helps the TAMP solver
generalize to environments with unknown object models.

2) Learning Search Guidance: When dealing with planning
challenges with extended continuous state-action spaces, rely-
ing on random uniform sampling of action parameters with-
out guidance until a path to a goal is discovered proves to
be extremely inefficient. In addition, gradient-based methods
frequently struggle when the optimization manifold of a specific
problem lacks smoothness. To tackle these challenges, some re-
searchers propose to learn samplers to speed up the TAMP solver
for sequential manipulation. Wang et al. [207], [208] proposed
to jointly learn the action samplers and the conditions of the
models. Kim et al. [209] proposed to learn an action sampling
distribution with adversarial training to guide the search toward
the task goal, then they develop a score space representation and
leverage it for transferring constraints to novel situations [210],

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

18 IEEE/ASME TRANSACTIONS ON MECHATRONICS

TABLE III
OVERVIEW OF LEARNING TECHNIQUES FOR PLANNING

which facilitates the speed-up of the search in TAMP. Chitnis
et al. [211] proposed to formulate the task plan refinement as a
Markov decision process and leverage RL to learn a policy to
guide the task plan search. Similarly, Kim et al. [212] developed
an abstract representation of states and goals, and learn a value
function using graph neural networks to guide TAMP. Ortiz
et al. [213] proposed to represent the problem as constraint
graphs and break the overall problem into smaller sequential
sampling problems, which are solved by learning assignment
orders with Monte Carlo tree search, then they propose to utilize
generative models for learning to sample solutions on constraint
manifolds [214].

For complex scenarios involving heterogeneous multiagent
systems, the planning framework must effectively handle task
allocation and scheduling. Traditionally, these problems are
addressed using heuristics-based approaches, but the combina-
torial growth of the search space makes them computationally
demanding. To tackle this challenge, RL methods have been
widely explored for both task allocation [215], [216] and task
scheduling [217]. These studies demonstrate RL’s capability to
significantly improve the time and memory requirements for
multiagent planning.

3) Learning Skill Policies: In recent advancements, some re-
searchers have proposed the concept of acquiring foundational
skills within the operational framework of TAMP systems. No-
tably these methods differ from conventional motion planning
by learning skill policies, which are capable of generating tra-
jectories through rollout and can be viewed as implicit motion
plans. Learning skill policies at motion planning level has shown
significant potential to improve the overall efficiency of TAMP
due to the reusability and adaptability of the skills. McDonald
et al. [34] proposed to distill the knowledge of a TAMP system
into a hierarchical RL policy, where they first leverage the TAMP
solver to generate supervision data for imitation learning, and
then the learned control policies are utilized to further speed up

the TAMP solver. LEAGUE [33] proposes to learn RL policies
with the guidance of a task planner, where the acquired skills
are reused in the TAMP system to accelerate the learning of
new skills, which progressively grows its capability for solving
long-horizon manipulation tasks in a more efficient manner. The
work in [218] extends [33] to leverage LLMs to guide skill
learning. HITL-TAMP [202] develops an efficient teleoperation
system that leverages TAMP to reach the beginning state of the
demonstration phase, where the low-level control policies are
learned with the collected data and integrated into the system
in the testing stage. Meng et al. [219] proposed to learn control
policies for satisfying the long-term tasks specified with STL,
where the learned models are used to generate trajectories via
MPC during execution. Silver et al. [203] proposed to jointly
learn the symbolic operators and low-level skill policies with
demonstration data, the extracted operators are first used to
generate abstract task plans, and the learned policies are then
invoked for generating motions to achieve subgoals.

4) Learning for Error Recovery: Robots tend to make mis-
takes during the execution phase of TAMP in unstructured envi-
ronments. Therefore, robust policies are critical to both prevent
and recover from such errors. Pan et al. [220] proposed a TAMP
framework that accounts for potential failures during execution,
enabling the robot to calculate and perform necessary actions to
achieve the goal despite potential failures. The strength of this
framework lies in its continuous reassessment and adjustment
of the basic beliefs associated with actions, minimizing the
likelihood of execution failures. Wang and Kroemer [221] used
multimodal information to create a system to improve the robust-
ness of robot manipulation tasks in unstructured environments.
This procedure involves developing a multimodal state transi-
tion model, grounded on task contact dynamics and observed
transitions. Similar to [221], Luo et al. [222] used learning-
from-demonstration techniques to enable error recovery
in robots.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 19

Recently, vision language models (VLMs) and LLMs have
been utilized in error recovery. For instance, Zhang et al. [223]
developed a system, called task planning via visual question
answering (TPVQA). This system leverages VLMs to identify
action failures and validate action possibilities, thereby increas-
ing the likelihood of successful plan execution. REFLECT [224]
uses LLMs to autonomously identify and explain robot fail-
ures. It creates a hierarchical summary of past robot experi-
ences, utilizing multisensory data, systematically formulates
plans to correct failures, and effectively managing complex
tasks. SayPlan [225] offers an error recovery strategy via an
iterative replanning process. It produces an initial plan tested in
a simulator, and any unexecutable actions detected are reported
back to the LLM for plan refinement. This iterative feedback
system, a method of error recovery learning, enables the LLM
to steadily boost its planning efficiency, adapting to expansive,
complex environments. Huang et al. [97] leveraged three types
of environmental feedback in LLMs to generate task plans and
handle failures.

5) Learning for MIP: One main limitation of MIP-based
methods for TAMP is that MIP is expensive to solve if a large
number of integer variables are involved. Recent works in the
optimization literature have shown promises to learn the branch-
ing heuristics and initializations for MIP. The authors in [226]
and [227] provided detailed surveys for learning-based MIP
solvers. Alvarez et al. [228] first proposes to imitate the strong
branching heuristics via supervised learning. The work in [229]
similarly imitates strong branching but develops a framework to
solve MIP in an instance-specific manner. Gasse et al. [230]
further extends the imitation learning method to incorporate
GNN-based models and represent the MIP problem as a bipartite
graph. Along another line of research, the work in [231], [232],
and [233] combined RL with local neighborhood search for MIP
and learn to determine the neighborhood selection, initialization
and search neighborhood, and neighborhood size, respectively.

Aside from the advancements in learning-based general MIP
solvers, recent works also specifically explore learning for MIP
in TAMP tasks. [234] trains a neural network offline that imitate
the solution of MILP solvers as a warm-start to online multi-
robot planning tasks. Cauligi et al. [204], [235] speeds up MICP
for robot planning and control by solving a dataset of MICP
offline and learning the combinatorial decisions via a strategy
classifier. The classifier is used to predict the discrete variables
and the remaining convex program is solved online during
execution. Deits et al. [236] learned the optimal value function
from mixed-integer optimizations to guide policy search.

VII. FUTURE CHALLENGES AND OPPORTUNITIES

Foundation Models for TAMP: The integration of LLMs and
VLMs in robot planning is emerging but faces a few challenges.
In robot planning, it is crucial to break down complex task
specifications into actionable steps suited for particular envi-
ronments [64], [237], [238], [239], [240]. However, LLMs and
VLMs often struggle with this. Their plans may be too abstract,
failing to consider the practical constraints of the physical world.
This presents a significant issue for robots that need concrete

and feasible instructions for physical operations. Furthermore,
the current capabilities of LLMs and VLMs are limited, which in
turn restricts their effectiveness in robot planning. For instance,
spatial reasoning is essential in robot planning, yet LLMs and
VLMs may not accurately understand physical spaces and dy-
namic environments [241], [242], [243]. Robot planning also
requires considering historical data and long-term goals. The
limited short-term memory of LLMs could result in information
loss during sequential or multistage tasks, impacting the coher-
ence and efficiency of planning [244], [245], [246]. Although
recent developments aim to enhance the capabilities of LLMs
and VLMs, they seem not to fundamentally solve these limi-
tations [241], [247]. In addition, in open-world settings such
as homes, malls, and hospitals, robots also need the ability
to adapt to new, unforeseen tasks. Despite the complexities,
progress in developing LLMs and VLMs for these purposes is
emerging [248], [249].

Diffusion Models for TAMP: The use of diffusion models in
motion planning, such as diffuser [250], decision diffuser [251],
and diffusion policies [151], [252], has been explored for their
flexibility and composability. Pan et al. [253] proposed a model-
based diffusion planner that solves TO using the diffusion pro-
cess without external data. In the context of TAMP, diffusion
models can serve as trajectory samplers for individual skills,
offering a robust method for generating diverse and feasible
motion plans. Mishra et al. [254] presented generative skill
chaining, where short-horizon skill-centric diffusion models
are learned and a compositional framework is established to
directly generate long-horizon plans given a plan skeleton. Fang
et al. [255] integrated diffusion skill samplers into a classical
TAMP method, which adapts the framework to partially observ-
able planning domains. Promising future research can explore
the synergy between LLMs and diffusion models to develop
generative multitask models and end-to-end TAMP frameworks.

Multimodal Sensing for TAMP: Currently, most TAMP frame-
works rely predominantly on visual sensing. However, integrat-
ing multimodal sensing, such as visual, tactile, and acoustic
modules, can significantly improve the robots’ capabilities for
contact-rich tasks in imitation learning [256], [257], [258], since
each sensing modality provides unique and useful contact in-
formation related to the manipulation task that covers a wide
range of geometric scales and frequency bandwidths. Future
research opportunities include further integrating multi-modal
sensing with TAMP by advanced sensor fusion as well as contact
information representation, extraction, and utilization. Given
these potentials, we can potentially enhance the performance of
TAMP with better heuristics for task planning and more accurate
contact models for TO.

Policy Learning in and for TAMP: In the realm of RL-based
policy learning, key obstacles revolve around sample ineffi-
ciency (the cost of trial and error) and the reliance on metic-
ulously crafted dense reward functions. These challenges are
exacerbated in the realm of complex, long-term tasks and often
mandate the initial training of RL algorithms within simulators,
thereby adding complexity to the transfer of acquired behaviors
from simulation to real world [33]. While tapping into robot
teleoperation data directly from real-world environments could

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

20 IEEE/ASME TRANSACTIONS ON MECHATRONICS

alleviate generalization issues, this strategy demands careful
system design to ensure seamless robot-human handover and
maintain efficient data collection [202]. Moreover, constructing
diverse task configurations that encompass an adequate range of
scenarios in terms of object geometries, spatial arrangements,
and lighting conditions is nontrivial, presenting additional chal-
lenges for acquiring generalizable models in long-horizon tasks.
In addition, the design of observation and action representations
is pivotal in enhancing the generalization and reusability of
acquired skills.

TAMP for Locomotion and Manipulation: Although the dual-
ity between locomotion and manipulation [259] means that they
can be viewed as equivalent problems, the distinct nature of loco-
motion and manipulation presents challenges in applying TAMP
more complex robotic systems, e.g., humanoid robots with
loco-manipulation capabilities. From the TAMP perspective,
both involve hybrid planning for dynamic contact interactions
between the robot and the environment but differ in the repre-
sentation and frequency of the hybrid events. Manipulation tasks
are usually object-centric [2] and occur at lower frequencies for
contact switching, focusing on precise interactions with objects.
In contrast, locomotion involves robot-centric motions with
higher frequency contact switching, typically handled through a
hierarchical approach of contact planning followed by trajectory
generation [24], often facilitated by a centroidal trajectory plan-
ning approach [260], [261]. This difference in representation
and operational frequency raises important research questions in
developing a unified TAMP framework for loco-manipulation,
requiring a balanced integration of these aspects. Sleiman et al.
[19] showed promises in integrating graph search and TO for
long-horizon loco-manipulation tasks by handling the object-
centric and robot-centric tasks separately and transferring of-
fline generated plans to online execution. Sferrazza et al. [262]
illustrated the recent trend to use hierarchical RL to solve
whole-body loco-manipulation problems for humanoid robots
with dexterous hands. Still, TAMP for unified locomotion and
manipulation remains a challenge, due to complicating factors,
such as the complexity of dexterous grasping and locomotion
planning in uneven terrains.

TAMP for HRC: TAMP for HRC faces challenges due to
the uncertainties of human intentions and behaviors. For effec-
tive collaboration, it is essential for robots to predict human’s
symbolic intentions and continuous motions and integrate this
understanding into the planning process [263]. Recent devel-
opment in this area include human-aware task planning [264],
hierarchical planning approaches [265], [266], and the incorpo-
ration of human motion prediction into LGP [267]. An emerging
area of research in HRC is the exploration of novel commu-
nication modalities between humans and robots, for example,
the integration of conversation interactions [268] in the robot
planning framework. Moreover, human intent can be expressed
via physical interactions in physical HRC scenarios, such as
hand-over [269] and collaborative transport of objects, where the
object and human dynamics are considered [270]. How physical
HRC can be achieved efficiently via TAMP remains an active
area of research. These recent trends signals a move toward
more intuitive and natural human–robot interactions through
both physical and language interfaces.

TAMP in Real-World Applications: Optimization-based
TAMP has diverse real-world applications across various in-
dustries. In industrial settings, TAMP is used for construction
planning [174], and rebar grid traversal [21]. In addition, TAMP
enables autonomous aerial vehicles (AAVs) to navigate complex
environments for delivery services and environmental moni-
toring [271], as well as agricultural tasks [272]. In domestic
applications, TAMP facilitates household tasks such as cook-
ing [273], and manipulation of doors and dishwashers [19].
In lab environment, TAMP is deployed for medical test tube
rearrangements [274]. Expanding TAMP to broader real-world
applications requires overcoming current challenges, such as
developing more robust methods to accommodate varying en-
vironmental factors, problem settings, and human interactions.
In addition, proper scene understanding and representation that
captures spatial and semantic relationships is essential and re-
mains an open research area for deploying TAMP in open-world
environments. Furthermore, implementing low-level control for
robots in real-world scenarios involves handling environmental
variability, sensor noise, and calibration issues, which affect
feedback reliability. Addressing these challenges is crucial for
effective and safe robot deployment.

Ethical and Societal Implications: The deployment of TAMP
and robotics raise several ethical and societal considera-
tions [275], [276], including the following:

1) ensuring the safety and reliability of robot planning, par-
ticularly in human-populated environments;

2) developing strategies to mitigate socio-economic impact
of job displacement caused by increased automation;

3) responsible handling of data collected during training of
machine learning models to protect privacy and intellec-
tual property;

4) minimizing environmental impact via more energy ef-
ficient training process for machine learning models and
sustainable practices in the the production, operation, and
disposal of robots.

GLOSSARIES OF TERMS

Alternating Direction Method of Multipliers (ADMM): An
algorithm that solves convex optimization problems by breaking
it into smaller pieces, each of which is easier to handle [100].

AI Planning: An area of artificial intelligence that studies
the process of automated generation of sequence of actions to
achieve specific goals [22].

Bilevel Optimization: A mathematical program, where an
optimization problem contains another optimization problem as
a constraint [277].

Foundation Model: A general purpose model, typically
trained on a large amount of data, that can be adapted for various
downstream applications [278].

Heuristics: Methods to organize the search space and guide
the search algorithm [22].

Large Language Model: A large pretrained language model
designed to understand and generate human-like text [92].

Mixed Integer Programming: An optimization problem with a
combination of continuous and discrete decision variables [180].

Mixed Logical Dynamical System: A formulation of system
dynamics with mixed integer constraints [37].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 21

Model Predictive Control: A class of control methods where
a model is used to predict the future of the controlled system
over a receding planning horizon [173].

Motion Planning: The problem of moving a mechanical sys-
tem from a start state to a goal region [11].

Nonlinear Programming: An optimization problem where the
objective function or constraints are nonlinear [99].

Reinforcement Learning: A problem where an agent learns
to make decisions through a goal-directed interaction with the
uncertain environment [279].

Task and Motion Planning: A hybrid planning problem
that integrates high-level task planning and low-level motion
planning, which enables reasoning over long-horizon, dynamic
tasks [2].

Task Planning: The problem of generating an action sequence
that accomplishes the goal of the task and satisfies the task
specifications [23].

Temporal Logic: The formal methods for describing time de-
pendent rules and symbols, often used to specify the correctness
of a finite-state transition system [37].

Trajectory Optimization: The problem of generating a contin-
uous robot motion path and a control sequence that optimizes an
objective function subject to a set of kinematics and/or dynamics
constraints [99].

REFERENCES

[1] A. A. Bredu, N. Devraj, and O. C. Jenkins, “Optimal constrained task
planning as mixed integer programming,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2022, pp. 12029–12036.

[2] C. R. Garrett et al., “Integrated task and motion planning,” Annu. Rev.
Control Robot. Auton. Syst., vol. 4, pp. 265–293, 2021.

[3] J. Envall, R. Poranne, and S. Coros, “Differentiable task assignment and
motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, 2023,
pp. 2049–2056.

[4] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
Int. J. Robot. Res., vol. 37, no. 10, pp. 1134–1151, 2018.

[5] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2014, pp. 3684–3691.

[6] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proc. Int. Conf. Autom. Plan. Scheduling, 2020,
pp. 440–448.

[7] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrangement
tasks: A fast extension primitive for an incremental sampling-based
planner,” in Proc. IEEE Int. Conf. Robot. Autom., 2016, pp. 3924–3931.

[8] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Proc. Int. Joint
Conf. Artif. Intell., 2015, pp. 1930–1936.

[9] R. Takano, H. Oyama, and M. Yamakita, “Continuous optimization-based
task and motion planning with signal temporal logic specifications for
sequential manipulation,” in Proc. IEEE Int. Conf. Robot. Autom., 2021,
pp. 8409–8415.

[10] H. Guo, F. Wu, Y. Qin, R. Li, K. Li, and K. Li, “Recent trends in task and
motion planning for robotics: A survey,” ACM Comput. Surv., 2023.

[11] A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-based motion
planning: A comparative review,” Annu. Rev. Control Robot. Auton. Syst.,
vol. 7, pp. 285–310, 2023.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[13] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert, and
W. Burgard, “Optimal, sampling-based manipulation planning,” in Proc.
IEEE Int. Conf. Robot. Autom., 2017, pp. 3426–3432.

[14] J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based
motion planning methods,” Annu. Rev. Control Robot. Auton. Syst., vol. 4,
pp. 295–318, 2021.

[15] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Proc. Robot. Sci. Syst., 2018.

[16] T. Migimatsu and J. Bohg, “Object-centric task and motion planning
in dynamic environments,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 844–851, Feb. 2020.

[17] T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar, “On-
line hybrid motion planning for dyadic collaborative manipulation via
bilevel optimization,” IEEE Trans. Robot., vol. 36, no. 5, pp. 1452–1471,
May 2020.

[18] B. Aceituno-Cabezas et al., “Simultaneous contact, gait, and motion
planning for robust multilegged locomotion via mixed-integer convex
optimization,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2531–2538,
Mar. 2017.

[19] J.-P. Sleiman, F. Farshidian, and M. Hutter, “Versatile multicontact plan-
ning and control for legged loco-manipulation,” Sci. Robot., vol. 8, no. 81,
2023, Art. no. eadg 5014.

[20] Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task and motion
planning for robust whole-body dynamic locomotion in constrained
environments,” Int. J. Robot. Res., vol. 41, no. 8, pp. 812–847, 2022.

[21] M. Asselmeier, J. Ivanova, Z. Zhou, P. A. Vela, and Y. Zhao, “Hier-
archical experience-informed navigation for multi-modal quadrupedal
rebar grid traversal,” in Proc. IEEE Int. Conf. Robot. Autom., 2024,
pp. 8065–8072.

[22] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Amsterdam, The Netherlands: Elsevier, 2004.

[23] D. Meli, H. Nakawala, and P. Fiorini, “Logic programming for delibera-
tive robotic task planning,” Artif. Intell. Rev., vol. 56, pp. 1–39, 2023.

[24] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. Del
Prete, “Optimization-based control for dynamic legged robots,” IEEE
Trans. Robot, vol. 40, pp. 43–63, Oct. 2023.

[25] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Int. J. Robot. Res., vol. 33,
no. 1, pp. 69–81, 2014.

[26] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in Proc. IEEE Int. Conf. Robot. Autom., 2014,
pp. 1168–1175.

[27] L. Xu, T. Ren, G. Chalvatzaki, and J. Peters, “Accelerating integrated
task and motion planning with neural feasibility checking,” 2022,
arXiv:2203.10568.

[28] Z. Yang, C. Garrett, T. Lozano-Perez, L. Kaelbling, and D. Fox,
“Sequence-based plan feasibility prediction for efficient task and motion
planning,” in Proc. Robot. Sci. Syst., 2023.

[29] D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning: Learning
to predict action sequences for task and motion planning from an initial
scene image,” in Proc. Robot. Sci. Syst., 2020.

[30] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” Auton. Robots,
vol. 47, no. 8, pp. 1345–1365, 2023.

[31] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and M. Katz,
“Generalized planning in PDDL domains with pretrained large language
models,” in Proc. AAAI Conf. Artif. Intell., 2024, pp. 20256–20264.

[32] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in Proc. Int. Conf. Mach. Learn. PMLR, 2022, pp. 9118–9147.

[33] S. Cheng and D. Xu, “League: Guided skill learning and abstraction for
long-horizon manipulation,” IEEE Robot. Autom. Lett., vol. 8, no. 10,
pp. 6451–6458, Oct. 2023.

[34] M. J. McDonald and D. Hadfield-Menell, “Guided imitation of task
and motion planning,” in Proc. Conf. Robot. Learn. PMLR, 2022,
pp. 630–640.

[35] M. Mansouri, F. Pecora, and P. Schüller, “Combining task and motion
planning: Challenges and guidelines,” Front. Robot. AI, vol. 8, 2021,
Art. no. 637888.

[36] L. Antonyshyn, J. Silveira, S. Givigi, and J. Marshall, “Multiple mobile
robot task and motion planning: A survey,” ACM Comput. Surv., vol. 55,
no. 10, pp. 1–35, 2023.

[37] C. Belta and S. Sadraddini, “Formal methods for control synthesis: An
optimization perspective,” Annu. Rev. Control Robot. Auton. Syst., vol. 2,
pp. 115–140, 2019.

[38] O. Shorinwa, T. Halsted, J. Yu, and M. Schwager, “Distributed optimiza-
tion methods for multi-robot systems: Part 1—A tutorial,” IEEE Robot.
Autom. Mag., vol. 31, no. 3, pp. 121–138, 2024.

[39] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez,
“Learning symbolic operators for task and motion planning,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 3182–3189.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

22 IEEE/ASME TRANSACTIONS ON MECHATRONICS

[40] A. Pnueli, “The temporal logic of programs,” in Annu. Symp. Found.
Comput. Sci., 1977, pp. 46–57.

[41] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in Proc. Int. Joint Conf. Artif. Intell.,
2013, pp. 854–860.

[42] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Int. Symp. Formal Tech. Real-Time Fault-Tolerant Syst., 2004,
pp. 152–166.

[43] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[44] Constructions Aeronautiques . et al., “PDDL|the planning domain defini-
tion language,” Yale Center for Computational Vision and Control, New
Haven, CT, USA, Tech. Rep. CVC TR-98-003, 1998.

[45] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, “An introduction
to the planning domain definition language,” Synth. Lect. Artif. Intell.
Mach. Learn., vol. 13, no. 2, pp. 1–187, 2019.

[46] M. Fox and D. Long, , “Pddl2,1: An extension to PDDL for expressing
temporal planning domains,” J. Artif. Intell. Res., vol. 20, pp. 61–124,
2003.

[47] D. L. Kovacs, “BNF definition of PDDL 3.1,” Unpublished manuscript
from the IPC-2011 website, vol. 15, 2011.

[48] M. Fox and D. Long, “Modelling mixed discrete-continuous domains for
planning,” J. Artif. Intell. Res., vol. 27, pp. 235–297, 2006.

[49] H. L. Younes and M. L. Littman, “PPDDL1. 0: An extension to PDDL
for expressing planning domains with probabilistic effects,” Techn. Rep.
CMU-CS-04-162, vol. 2, 2004, Art. no. 99.

[50] D. L. Kovács, “A multi-agent extension of PDDL3.1,” in Proc. 3rd
Workshop Int. Plan. Compet., 2012, pp. 19–37.

[51] E. A. Emerson and E. M. Clarke, “Using branching time temporal logic to
synthesize synchronization skeletons,” Sci. Comput. Prog., vol. 2, no. 3,
pp. 241–266, 1982.

[52] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst.,
2010, pp. 92–106.

[53] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. IEEE Conf. Decis. Control, 2014,
pp. 81–87.

[54] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Syst. Lett., vol. 6,
pp. 2635–2640, 2022.

[55] T. Silver et al., “Predicate invention for bilevel planning,” in Proc. AAAI
Conf. Artif. Intell., 2023, pp. 12120–12129.

[56] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Learning neuro-symbolic relational transition models for
bilevel planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 4166–4173.

[57] R. Chitnis, T. Silver, B. Kim, L. Kaelbling, and T. Lozano-Perez, “Camps:
Learning context-specific abstractions for efficient planning in factored
mdps,” in Proc. Conf. Robot. Learn. PMLR, 2021, pp. 64–79.

[58] T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Pérez, and L.
P. Kaelbling, “Planning with learned object importance in large problem
instances using graph neural networks,” in Proc. AAAI Conf. Artif. Intell.,
2021, pp. 11962–11971.

[59] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning for
long-horizon manipulation with geometric and symbolic scene graphs,”
in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 6541–6548.

[60] C. Wang, D. Xu, and L. Fei-Fei, “Generalizable task planning through
representation pretraining,” IEEE Robot. Autom. Lett., vol. 7, no. 3,
pp. 8299–8306, Mar. 2022.

[61] Y. Ding et al., “Integrating action knowledge and LLMS for task planning
and situation handling in open worlds,” Auton. Robots, vol. 47, no. 8,
pp. 981–997, 2023.

[62] B. Liu et al., “Llm p: Empowering large language models with optimal
planning proficiency,” 2023, arXiv:2304.11477.

[63] I. Singh et al., “Progprompt: Generating situated robot task plans using
large language models,” in Proc. IEEE Int. Conf. Robot. Autom., 2023,
pp. 11523–11530.

[64] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as commonsense
knowledge for large-scale task planning,” in Proc. Adv. Neural Inf.
Process. Syst., 2024, vol. 36, pp. 31967–31987.

[65] A. Z. Ren et al., “Robots that ask for help: Uncertainty alignment for
large language model planners,” in Proc. Conf. Robot. Learn. PMLR,
2023, pp. 661–682.

[66] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating
natural language to planning goals with large-language models,” 2023,
arXiv:2302.05128.

[67] J. Pan, G. Chou, and D. Berenson, “Data-efficient learning of natural
language to linear temporal logic translators for robot task specification,”
in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 11554–11561.

[68] Y. Chen, J. Arkin, C. Dawson, Y. Zhang, N. Roy, and C. Fan, “Auto-
tamp: Autoregressive task and motion planning with LLMS as trans-
lators and checkers,” in IEEE Int. Conf. Robot. Autom. IEEE, 2024,
pp. 6695–6702.

[69] J. Hoffmann, “FF: The fast-forward planning system,” AI Mag., vol. 22,
no. 3, pp. 57–57, 2001.

[70] J. A. Baier, F. Bacchus, and S. A. McIlraith, “A heuristic search approach
to planning with temporally extended preferences,” Artif. Intell., vol. 173,
no. 5-6, pp. 593–618, 2009.

[71] L. Zhu and R. Givan, “Simultaneous heuristic search for con-
junctive subgoals,” in Proc. Nat. Conf. Artif. Intell., vol. 3, 2005,
pp. 1235–1240.

[72] M. Helmert, “The fast downward planning system,” J. Artif. Intell. Res.,
vol. 26, pp. 191–246, 2006.

[73] S. Richter, M. Westphal, and M. Helmert, “LAMA 2008 and 2011,” in
Proc. Int. Plan. Compet., 2011, pp. 117–124.

[74] I. Georgievski and M. Aiello, “An overview of hierarchical task network
planning,” 2014, arXiv:1403.7426.

[75] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” ACM SIGACT News, vol. 32, no. 1,
pp. 60–65, 2001.

[76] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proc. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., 1989,
pp. 179–190.

[77] S. Maoz and J. O. Ringert, “Gr (1) synthesis for ltl specification patterns,”
in Proc. Joint Meet. Found. Softw. Eng., 2015, pp. 96–106.

[78] R. Ehlers and V. Raman, “Slugs: Extensible GR (1) synthesis,” in Proc.
Computer Aided Verif.: 28th Int. Conf., 2016, pp. 333–339.

[79] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning symbolic
models of stochastic domains,” J. Artif. Intell. Res., vol. 29, pp. 309–352,
2007.

[80] E. Amir and A. Chang, “Learning partially observable deterministic
action models,” J. Artif. Intell. Res., vol. 33, pp. 349–402, 2008.

[81] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Symbol acquisition
for probabilistic high-level planning,” in Proc. Int. Joint Conf. Artif.
Intell., 2015, pp. 3619–3627.

[82] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills to sym-
bols: Learning symbolic representations for abstract high-level planning,”
J. Artif. Intell. Res., vol. 61, pp. 215–289, 2018.

[83] B. Ames, A. Thackston, and G. Konidaris, “Learning symbolic represen-
tations for planning with parameterized skills,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2018, pp. 526–533.

[84] D. Xu et al., “Neural task programming: Learning to generalize across
hierarchical tasks,” in Proc. IEEE Int. Conf. Robot. Autom., 2018,
pp. 3795–3802.

[85] D.-A. Huang et al., “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 8565–8574.

[86] D. Xu, R. Martín-Martín, D.-A. Huang, Y. Zhu, S. Savarese, and L. F. Fei-
Fei, “Regression planning networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, vol. 32, pp. 1319–1329.

[87] F. Ceola, E. Tosello, L. Tagliapietra, G. Nicola, and S. Ghidoni, “Robot
task planning via deep reinforcement learning: A tabletop object sorting
application,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2019, pp. 486–
492.

[88] D. Xu, A. Mandlekar, R. Martín-Martín, Y. Zhu, S. Savarese, and L.
Fei-Fei, “Deep affordance foresight: Planning through what can be
done in the future,” in Proc. IEEE Int. Conf. Robot. Autom., 2021,
pp. 6206–6213.

[89] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer,
“Search-based task planning with learned skill effect models for lifelong
robotic manipulation,” in Proc. IEEE Int. Conf. Robot. Autom., 2022,
pp. 6351–6357.

[90] OpenAI, ChatGPT, Accessed: Aug. 2, 2023. [Online]. Available: https:
//openai.com/blog/chatgpt/

[91] H. Touvron et al., “Llama: Open and efficient foundation language
models,” 2023, arXiv:2302.13971.

[92] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural
language processing,” ACM Comput. Surv., vol. 55, no. 9, pp. 1–35,
2023.

[93] S. Imani, L. Du, and H. Shrivastava, “Mathprompter: Mathematical
reasoning using large language models,” in Proc. Annu. Meet. Assoc.
Comput. Linguist., 2023, vol. 5, pp. 37–42.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 23

[94] V. Gaur and N. Saunshi, “Reasoning in large language models through
symbolic math word problems,” in Proc. Finding Assoc. Comput. Lin-
guist., 2023, pp. 5889–5903.

[95] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, “Task and motion planning
with large language models for object rearrangement,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2023, pp. 2086–2092.

[96] A. Brohan et al., “Do as i can, not as i say: Grounding language in robotic
affordances,” in Proc. Conf. Robot. Learn. PMLR, 2023, pp. 287–318.

[97] W. Huang et al., “Inner monologue: Embodied reasoning through plan-
ning with language models,” in Proc. Conf. Robot. Learn. PMLR, 2023,
pp. 1769–1782.

[98] Y. Hu et al., “Toward general-purpose robots via foundation models: A
survey and meta-analysis,” 2023, arXiv:2312.08782.

[99] J. T. Betts, “Survey of numerical methods for trajectory optimization,” J.
Guid. Control Dyn., vol. 21, no. 2, pp. 193–207, 1998.

[100] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2011.

[101] I. Mordatch and E. Todorov, “Combining the benefits of function approx-
imation and trajectory optimization,” in Proc. Robot. Sci. Syst., 2014,
Art. no. 23.

[102] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one
big sequence modeling problem,” Adv. Neural Inf. Process. Syst., vol. 34,
pp. 1273–1286, 2021.

[103] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Rev., vol. 59, no. 4, pp. 849–904, 2017.

[104] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli, “Eval-
uating direct transcription and nonlinear optimization methods for robot
motion planning,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 946–953,
Feb. 2016.

[105] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Prog., vol. 106, pp. 25–57, 2006.

[106] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm
for large-scale constrained optimization,” SIAM Rev., vol. 47, no. 1,
pp. 99–131, 2005.

[107] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” Int. J. Control, vol. 3,
no. 1, pp. 85–95, 1966.

[108] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in Proc. IEEE Int. Conf. Robot. Autom., 2017,
pp. 695–702.

[109] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained unscented
dynamic programming,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2017, pp. 5674–5680.

[110] T. A. Howell, B. E. Jackson, and Z. Manchester, “Altro: A fast solver for
constrained trajectory optimization,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 7674–7679.

[111] J.-P. Sleiman, F. Farshidian, and M. Hutter, “Constraint handling in
continuous-time DDP-based model predictive control,” in Proc. IEEE
Int. Conf. Robot. Autom., 2021, pp. 8209–8215.

[112] W. Jallet, A. Bambade, N. Mansard, and J. Carpentier, “Constrained
differential dynamic programming: A primal-dual augmented lagrangian
approach,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 13371–13378.

[113] Y. Wang, H. Li, Y. Zhao, X. Chen, X. Huang, and Z. Jiang, “A fast
coordinated motion planning method for dual-arm robot based on par-
allel constrained DDP,” IEEE/ASME Trans. Mechatron., vol. 29, no. 3,
pp. 2350–2361, Jun. 2024.

[114] J. Nocedal and S. J. Wright, Numerical Optimization. Berlin, Germany:
Springer, 1999.

[115] R. Featherstone, Rigid Body Dynamics Algorithms. Berlin, Germany:
Springer, 2014.

[116] J. Eckstein and D. P. Bertsekas, “On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone opera-
tors,” Math. Prog., vol. 55, pp. 293–318, 1992.

[117] B. Wohlberg, “Admm penalty parameter selection by residual balancing,”
2017, arXiv:1704.06209.

[118] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternat-
ing direction optimization methods,” SIAM J. Imag. Sci., vol. 7, no. 3,
pp. 1588–1623, 2014.

[119] L. Ferranti, L. Lyons, R. R. Negenborn, T. Keviczky, and J. Alonso-Mora,
“Distributed nonlinear trajectory optimization for multi-robot motion
planning,” IEEE Trans. Control Syst. Technol, vol. 31, no. 2, pp. 809–824,
Mar. 2023.

[120] O. Shorinwa, T. Halsted, J. Yu, and M. Schwager, “Distributed optimiza-
tion methods for multi-robot systems: Part 2—a survey,” IEEE Robot.
Autom. Mag., vol. 31, no. 3, pp. 154–169, 2024.

[121] R. Ni, Z. Pan, and X. Gao, “Robust multi-robot trajectory optimization
using alternating direction method of multiplier,” IEEE Robot. Autom.
Lett., vol. 7, no. 3, pp. 5950–5957, Mar. 2022.

[122] L. Amatucci, G. Turrisi, A. Bratta, V. Barasuol, and C. Semini, “Accel-
erating model predictive control for legged robots through distributed
optimization,” 2024, arXiv:2403.11742.

[123] A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive
control via admm,” in Proc. IEEE Int. Conf. Robot. Autom., 2022,
pp. 3414–3421.

[124] S. L. Cleac’h and Z. Manchester, “Fast solution of optimal control
problems with l1 cost,” in Proc. AAS/AIAA Astrodyn. Spec. Conf., 2019,
vol. 904, pp. 1–11.

[125] Z. Zhao, Z. Zhou, M. Park, and Y. Zhao, “Sydebo:Symbolic-decision-
embedded bilevel optimization for long-horizon manipulation in dynamic
environments,” IEEE Access, vol. 9, pp. 128817–128826, 2021.

[126] L. Wijayarathne, Z. Zhou, Y. Zhao, and F. L. Hammond, “Real-time
deformable-contact-aware model predictive control for force-modulated
manipulation,” IEEE Trans. Robot., vol. 39, no. 5, pp. 3549–3566,
Oct. 2023.

[127] H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive
control of robotic systems,” IEEE Robot. Autom. Lett., vol. 6, no. 2,
pp. 3373–3380, Feb. 2021.

[128] C. Khazoom, S. Heim, D. Gonzalez-Diaz, and S. Kim, “Optimal schedul-
ing of models and horizons for model hierarchy predictive control,” in
Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 9952–9958.

[129] A. Herzog, S. Schaal, and L. Righetti, “Structured contact force opti-
mization for kino-dynamic motion generation,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2016, pp. 2703–2710.

[130] Z. Zhou, B. Wingo, N. Boyd, S. Hutchinson, and Y. Zhao, “Momentum-
aware trajectory optimization and control for agile quadrupedal lo-
comotion,” IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 7755–7762,
Mar. 2022.

[131] R. Budhiraja, J. Carpentier, and N. Mansard, “Dynamics consensus
between centroidal and whole-body models for locomotion of legged
robots,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 6727–6733.

[132] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Trans. Robot, vol. 39, no. 2, pp. 905–922,
Apr. 2023.

[133] Z. Zhou and Y. Zhao, “Accelerated ADMM based trajectory optimization
for legged locomotion with coupled rigid body dynamics,” in Proc. Amer.
Control Conf. IEEE, 2020, pp. 5082–5089.

[134] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. Int. Conf. Mach. Learn.
PMLR, 2016, pp. 49–58.

[135] P. Englert, N. A. Vien, and M. Toussaint, “Inverse KKT: Learning cost
functions of manipulation tasks from demonstrations,” Int. J. Robot. Res.,
vol. 36, no. 13-14, pp. 1474–1488, 2017.

[136] P. Sharma et al., “Correcting robot plans with natural language feedback,”
in Proc. Robot. Sci. Syst., 2022.

[137] W. Yu et al., “Language to rewards for robotic skill synthesis,” in Proc.
Conf. Robot. Learn. PMLR, 2023, pp. 374–404.

[138] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3D value maps for robotic manipulation with language
models,” in Proc. Conf. Robot. Learn. PMLR, 2023, pp. 540–562.

[139] M. Parmar, M. Halm, and M. Posa, “Fundamental challenges in deep
learning for stiff contact dynamics,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2021, pp. 5181–5188.

[140] S. Pfrommer, M. Halm, and M. Posa, “Contactnets: Learning discontin-
uous contact dynamics with smooth, implicit representations,” in Proc.
Conf. Robot. Learn. PMLR, 2021, pp. 2279–2291.

[141] B. Bianchini, M. Halm, and M. Posa, “Simultaneous learning of contact
and continuous dynamics,” in Proc. Conf. Robot. Learn. PMLR, 2023,
pp. 3966–3978.

[142] S. L. Cleac’h, et al., “Differentiable physics simulation of dynamics-
augmented neural objects,” IEEE Robot. Autom. Lett., vol. 8, no. 5,
pp. 2780–2787, May 2023.

[143] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake, “Learning models as
functionals of signed-distance fields for manipulation planning,” in Proc.
Conf. Robot. Learn. PMLR, 2022, pp. 245–255.

[144] S. Levine and V. Koltun, “Guided policy search,” in Proc. Int. Conf. Mach.
Learn. PMLR, 2013, pp. 1–9.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

24 IEEE/ASME TRANSACTIONS ON MECHATRONICS

[145] S. Levine and V. Koltun, “Learning complex neural network policies with
trajectory optimization,” in Proc. Int. Conf. Mach. Learn. PMLR, 2014,
pp. 829–837.

[146] A. Duburcq, Y. Chevaleyre, N. Bredeche, and G. Boéris, “Online tra-
jectory planning through combined trajectory optimization and function
approximation: Application to the exoskeleton atalante,” in Proc. IEEE
Int. Conf. Robot. Autom., 2020, pp. 3756–3762.

[147] Z. Zhao, S. Zuo, T. Zhao, and Y. Zhao, “Adversarially regularized policy
learning guided by trajectory optimization,” in Proc. Learn. Dyn. Control
Conf. PMLR, 2022, pp. 844–857.

[148] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning:
Fixed time, near-optimal path generation via oracle imitation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 3965–3972.

[149] A. H. Qureshi, J. Dong, A. Choe, and M. C. Yip, “Neural manipulation
planning on constraint manifolds,” IEEE Robot. Autom. Lett., vol. 5, no. 4,
pp. 6089–6096, Apr. 2020.

[150] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath,
“Real-world humanoid locomotion with reinforcement learning,” Sci.
Robot., vol. 9, no. 89, 2024, Art. no. eadi9579.

[151] C. Chi et al., “Diffusion policy: Visuomotor policy learning via action
diffusion,” in Proc. Robot. Sci. Syst., 2023.

[152] J. Viereck and L. Righetti, “Learning a centroidal motion planner for
legged locomotion,” in Proc. IEEE Int. Conf. Robot. Autom., 2021,
pp. 4905–4911.

[153] X. Lin, G. I. Fernandez, Y. Liu, T. Zhu, Y. Shirai, and D. Hong, “Multi-
modal multi-agent optimization for limms, a modular robotics approach
to delivery automation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2022, pp. 12674–12681.

[154] Z. Gu, R. Guo, W. Yates, Y. Chen, Y. Zhao, and Y. Zhao, “Walking-by-
logic: Signal temporal logic-guided model predictive control for bipedal
locomotion resilient to external perturbations,” in Proc. IEEE Int. Conf.
Robot. Autom., 2024, pp. 1121–1127.

[155] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-geometric
programming in cooperative manipulation domains,” in Proc. IEEE Int.
Conf. Robot. Autom., 2017, pp. 4044–4051.

[156] S.-Y. Lo, S. Zhang, and P. Stone, “The petlon algorithm to plan effi-
ciently for task-level-optimal navigation,” J. Artif. Intell. Res., vol. 69,
pp. 471–500, 2020.

[157] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajectory
generation with linear temporal logic specifications,” in Proc. IEEE Int.
Conf. Robot. Autom., 2014, pp. 5319–5325.

[158] J. Chen, B. C. Williams, and C. Fan, “Optimal mixed discrete-continuous
planning for linear hybrid systems,” in Proc. Int. Conf. Hybrid Syst.:
Comput. Control, 2021, pp. 1–12.

[159] T. Kogo, K. Takaya, and H. Oyama, “Fast MILP-based task and motion
planning for pick-and-place with hard/soft constraints of collision-free
route,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 2021, pp. 1020–
1027.

[160] M. Katayama, S. Tokuda, M. Yamakita, and H. Oyama, “Fast LTL-based
flexible planning for dual-arm manipulation,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2020, pp. 6605–6612.

[161] S. Saha and A. A. Julius, “Task and motion planning for manipulator
arms with metric temporal logic specifications,” IEEE Robot. Autom.
Lett., vol. 3, no. 1, pp. 379–386, Jan. 2017.

[162] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-logic:
Control of multi-drone fleets with temporal logic objectives,” in Proc.
ACM/IEEE Int. Conf. Cyber-Phys. Syst., 2018, pp. 186–197.

[163] F. Bacchus and Q. Yang, “Downward refinement and the efficiency of
hierarchical problem solving,” Artif. Intell., vol. 71, no. 1, pp. 43–100,
1994.

[164] A. Akbari, F. Lagriffoul, and J. Rosell, “Combined heuristic task and
motion planning for bi-manual robots,” Auton. Robots, vol. 43, no. 6,
pp. 1575–1590, 2019.

[165] A. Agostini and J. Piater, “Unified task and motion planning using object-
centric abstractions of motion constraints,” 2023, arXiv:2312.17605.

[166] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proc. IEEE Int. Conf. Robot. Autom.,
2014, pp. 639–646.

[167] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” Int. J. Robot. Res., vol. 29, no. 7, pp. 897–915,
2010.

[168] Z. Kingston and L. E. Kavraki, “Scaling multimodal planning: Using
experience and informing discrete search,” IEEE Trans. Robot., vol. 39,
no. 1, pp. 128–146, Jan. 2022.

[169] M. Toussaint, “A tutorial on Newton methods for constrained trajectory
optimization and relations to SLAM, Gaussian process smoothing, op-
timal control, and probabilistic inference,” Geom. Numer. Found. Mov.,
pp. 361–392, 2017.

[170] M. Toussaint, J.-S. Ha, and D. Driess, “Describing physics
for physical reasoning: Force-based sequential manipulation plan-
ning,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 6209–6216,
Apr. 2020.

[171] S. Zimmermann, G. Hakimifard, M. Zamora, R. Poranne, and S. Coros,
“A multi-level optimization framework for simultaneous grasping and
motion planning,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2966–2972,
Feb. 2020.

[172] M. S. Phoon, P. S. Schmitt, and G. v. Wichert, “Constraint-based
task specification and trajectory optimization for sequential manip-
ulation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 197–202.

[173] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predic-
tive control: An engineering perspective,” Int. J. Adv. Manuf. Technol.,
vol. 117, no. 5, pp. 1327–1349, 2021.

[174] V. N. Hartmann, O. S. Oguz, D. Driess, M. Toussaint, and A. Menges,
“Robust task and motion planning for long-horizon architectural con-
struction planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2020, pp. 6886–6893.

[175] N. Castaman, E. Pagello, E. Menegatti, and A. Pretto, “Receding horizon
task and motion planning in changing environments,” Robot. Auton. Syst.,
vol. 145, 2021, Art. no. 103863.

[176] C. V. Braun, J. Ortiz-Haro, M. Toussaint, and O. S. Oguz, “RHH-LGP:
Receding horizon and heuristics-based logic-geometric programming for
task and motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2022, pp. 13761–13768.

[177] Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, and A. D.
Ames, “Interactive multi-modal motion planning with branch model pre-
dictive control,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5365–5372,
Feb. 2022.

[178] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Oper. Res., vol. 14, no. 4, pp. 699–719, 1966.

[179] L. Huang et al., “Branch and bound in mixed integer linear programming
problems: A survey of techniques and trends,” 2021, arXiv:2111.06257.

[180] A. Schrijver et al. Combinatorial Optimization: Polyhedra and Efficiency.
Berlin, Germany: Springer, 2003.

[181] T. Berthold, “Primal heuristics for mixed integer programs,” Ph.D. dis-
sertation, Zuse Institute Berlin (ZIB), Berlin, Germany, 2006.

[182] S. S. Dey, Y. Dubey, M. Molinaro, and P. Shah, “A theoretical and
computational analysis of full strong-branching,” Math. Prog., vol. 205,
pp. 1–34, 2023.

[183] M. Fischetti and A. Lodi, “Local branching,” Math. Prog., vol. 98,
pp. 23–47, 2003.

[184] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2023.
[Online]. Available: https://www.gurobi.com

[185] M. ApS, “The MOSEK optimization toolbox for MATLAB manual.
version 9.0.,” 2019. [Online]. Available: http://docs.mosek.com/9.0/
toolbox/index.html

[186] T. M. Inc., “Matlab version: 9. 13.0 (r2022b),” Natick, Massachusetts,
United States, 2022. [Online]. Available: https://www.mathworks.com

[187] N. Funk, S. Menzenbach, G. Chalvatzaki, and J. Peters, “Graph-based
reinforcement learning meets mixed integer programs: An application
to 3 d robot assembly discovery,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2022, pp. 10215–10222.

[188] A. Shamsah, Z. Gu, J. Warnke, S. Hutchinson, and Y. Zhao, “Integrated
task and motion planning for safe legged navigation in partially observ-
able environments,” IEEE Trans. Robot, vol. 39, no. 6, pp. 4913–4934,
Dec. 2023.

[189] J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion
navigation in partially observable environments with uneven terrain,” in
Proc. IEEE Conf. Decis. Control, 2020, pp. 958–965.

[190] Y. Shirai et al., “Simultaneous contact-rich grasping and locomotion
via distributed optimization enabling free-climbing for multi-limbed
robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp. 13563–13570.

[191] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in Proc. IEEE Conf.
Control Technol. Appl., 2017, pp. 1235–1240.

[192] N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean
robustness for control from signal temporal logic specifications,” in Proc.
Amer. Control Conf., 2019, pp. 1690–1695.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

https://www.gurobi.com
http://docs.mosek.com/9.0/toolbox/index.html
http://docs.mosek.com/9.0/toolbox/index.html
https://www.mathworks.com

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 25

[193] Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of signal
temporal logic for symbolic control,” IEEE Control Syst. Lett., vol. 5,
no. 1, pp. 241–246, Jan. 2020.

[194] Z. Gu et al., “Robust-locomotion-by-logic: Perturbation-resilient bipedal
locomotion via signal temporal logic guided model predictive control,”
2024, arXiv:2403.15993.

[195] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning from
signal temporal logic specifications,” IEEE Robot. Autom. Lett., vol. 7,
no. 2, pp. 3451–3458, Feb. 2022.

[196] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive
control for signal temporal logic synthesis,” Int. Fed. Autom. Control,
vol. 48, no. 27, pp. 323–328, 2015.

[197] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Proc. Annu. Allerton Conf. Commun., Control, Comput.,
2015, pp. 772–779.

[198] D. Sadigh and A. Kapoor, “Safe control under uncertainty with proba-
bilistic signal temporal logic,” in Proc. Robot. Sci. Syst., 2016.

[199] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Proc. IEEE Int. Conf. Robot. Autom., 2011,
pp. 1470–1477.

[200] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
Robot. Autom. Lett., vol. 4, no. 2, pp. 1255–1262, Feb. 2019.

[201] M. Noseworthy et al., “Active learning of abstract plan feasibility,” in
Proc. Robot. Sci. Syst., 2021.

[202] A. Mandlekar, C. Garrett, D. Xu, and D. Fox, “Human-in-the-loop task
and motion planning for imitation learning,” in Proc. Conf. Robot. Learn.
PMLR, 2023, 3030–300.

[203] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Learning neuro-symbolic skills for bilevel planning,” in Proc.
Conf. Robot. Learn. PMLR, 2022, pp. 701–714.

[204] A. Cauligi, P. Culbertson, B. Stellato, D. Bertsimas, M. Schwager, and
M. Pavone, “Learning mixed-integer convex optimization strategies for
robot planning and control,” in Proc. IEEE Conf. Decis. Control., 2020,
pp. 1698–1705.

[205] Y. Sung, Z. Wang, and P. Stone, “Learning to correct mistakes: Back-
jumping in long-horizon task and motion planning,” in Proc. Conf. Robot.
Learn. PMLR, 2023, pp. 2115–2124.

[206] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett,
“Long-horizon manipulation of unknown objects via task and motion
planning with estimated affordances,” in Proc. IEEE Int. Conf. Robot.
Autom., 2022, pp. 1940–1946.

[207] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Active
model learning and diverse action sampling for task and motion plan-
ning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 4107–
4114.

[208] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning
compositional models of robot skills for task and motion planning,” Int.
J. Robot. Res., vol. 40, no. 6–7, pp. 866–894, 2021.

[209] B. Kim, L. Kaelbling, and T. Lozano-Pérez, “Guiding search in contin-
uous state-action spaces by learning an action sampler from off-target
search experience,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 6509–
6516.

[210] B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to
guide task and motion planning using score-space representation,” Int. J.
Robot. Res., vol. 38, no. 7, pp. 793–812, 2019.

[211] R. Chitnis et al., “Guided search for task and motion plans using learned
heuristics,” in Proc. IEEE Int. Conf. Robot. Autom., 2016, pp. 447–454.

[212] B. Kim and L. Shimanuki, “Learning value functions with relational state
representations for guiding task-and-motion planning,” in Proc. Conf.
Robot. Learn. PMLR, 2020, pp. 955–968.

[213] J. Ortiz-Haro, V. N. Hartmann, O. S. Oguz, and M. Toussaint, “Learning
efficient constraint graph sampling for robotic sequential manipulation,”
in, Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 4606–4612.

[214] J. Ortiz-Haro, J.-S. Ha, D. Driess, and M. Toussaint, “Structured deep
generative models for sampling on constraint manifolds in sequential
manipulation,” in Proc. Conf. Robot. Learn. PMLR, 2022, pp. 213–223.

[215] D. B. Noureddine, A. Gharbi, and S. B. Ahmed, “Multi-agent deep
reinforcement learning for task allocation in dynamic environment,” in
Proc. Int. Conf. Softw. Technol., 2017, pp. 17–26.

[216] S. Ding, D. Lin, and X. Zhou, “Graph convolutional reinforcement
learning for dependent task allocation in edge computing,” in Proc. IEEE
Int. Conf. Agents., 2021, pp. 25–30.

[217] C. Shyalika, T. Silva, and A. Karunananda, “Reinforcement learning in
dynamic task scheduling: A review,” SN Comput. Sci., vol. 1, no. 6, 2020,
Art. no. 306.

[218] Z. Li, K. Yu, S. Cheng, and D. Xu, “League: Empowering continual robot
learning through guided skill acquisition with large language models,” in
Proc. Int. Conf. Learn. Represent., 2024.

[219] Y. Meng and C. Fan, “Signal temporal logic neural predictive control,”
IEEE Robot. Autom. Lett, vol. 8, no. 11, pp. 7719–7726, Nov. 2023.

[220] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “Failure is an option:
Task and motion planning with failing executions,” in Proc. IEEE Int.
Conf. Robot. Autom., 2022, pp. 1947–1953.

[221] A. S. Wang and O. Kroemer, “Learning robust manipulation strategies
with multimodal state transition models and recovery heuristics,” in Proc.
IEEE Int. Conf. Robot. Autom., 2019, pp. 1309–1315.

[222] S. Luo, H. Wu, S. Duan, Y. Lin, and J. Rojas, “Endowing robots
with longer-term autonomy by recovering from external disturbances
in manipulation through grounded anomaly classification and recovery
policies,” J. Intell. Robot. Syst., vol. 101, pp. 1–40, 2021.

[223] X. Zhang et al., “Grounding classical task planners via vision-language
models,” in Proc. ICRA Workshop Robot Exec. Failures Fail. Manag.
Strateg., 2023.

[224] Z. Liu, A. Bahety, and S. Song, “Reflect: Summarizing robot experiences
for failure explanation and correction,” in Proc. Conf. Robot. Learn.
PMLR, 2023, pp. 3468–3484.

[225] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suender-
hauf, “Sayplan: Grounding large language models using 3 d scene graphs
for scalable robot task planning,” in Proc. Conf. Robot. Learn. PMLR,
2023, pp. 23–72.

[226] J. Zhang et al., “A survey for solving mixed integer programming via
machine learning,” Neurocomputing, vol. 519, pp. 205–217, 2023.

[227] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial
optimization: A methodological tour d’horizon,” Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405–421, 2021.

[228] A. M Alvarez, Q. Louveaux, and L. Wehenkel, “A supervised machine
learning approach to variable branching in branch-and-bound,” Dept.
EE&CS, Universite de Liege, Liege, Belgium, Tech. Rep., 2014.

[229] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning
to branch in mixed integer programming,” in Proc. AAAI Conf. Artif.
Intell., 2016, pp. 724–731.

[230] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, vol. 32, pp. 15580–15592.

[231] J. Song et al., “A general large neighborhood search framework for
solving integer linear programs,” Adv. Neural Inf. Process. Syst., vol. 33,
pp. 20012–20023, 2020.

[232] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair, “Learning a
large neighborhood search algorithm for mixed integer programs,” 2021,
arXiv:2107.10201.

[233] D. Liu, M. Fischetti, and A. Lodi, “Learning to search in local branching,”
in Proc. AAAI Conf. Artif. Intell., 2022, pp. 3796–3803.

[234] M. Srinivasan, A. Chakrabarty, R. Quirynen, N. Yoshikawa, T. Mariyama,
and S. Di Cairano, “Fast multi-robot motion planning via imitation
learning of mixed-integer programs,” Int. Fed. Autom. Control, vol. 54,
no. 20, pp. 598–604, 2021.

[235] A. Cauligi, P. Culbertson, E. Schmerling, M. Schwager, B. Stellato,
and M. Pavone, “CoCo: Online mixed-integer control via supervised
learning,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1447–1454,
Feb. 2021.

[236] R. Deits, T. Koolen, and R. Tedrake, “LVIS: Learning from value function
intervals for contact-aware robot controllers,” in Proc. IEEE Int. Conf.
Robot. Autom., 2019, pp. 7762–7768.

[237] A. Ajay et al., “Compositional foundation models for hierarchical plan-
ning,” in Proc. Adv. Neural Inf. Process. Syst., 2024, vol. 36, pp. 22304–
22325.

[238] Y. Qiu, Z. Zhao, Y. Ziser, A. Korhonen, E. Ponti, and S. B. Cohen, “Are
large language model temporally grounded?,” in Proc. Conf. North Amer.
Chap. Assoc. Comput. Linguist.: Hum. Lang. Technol., 2024, pp. 7057–
7076.

[239] X. L. Li, A. Kuncoro, J. Hoffmann, C. de Masson d’Autume, P. Blun-
som, and A. Nematzadeh, “A systematic investigation of commonsense
knowledge in large language models,” in Proc. Conf. Empir. Methods
Nat. Lang. Process., 2022, pp. 11838–11855.

[240] J. Chen, W. Shi, Z. Fu, S. Cheng, L. Li, and Y. Xiao, “Say what you
mean! large language models speak too positively about negative com-
monsense knowledge,” in Proc. Annu. Meet. Assoc. Comput. Linguist.,
2023, pp. 9890–9908.

[241] B. Chen et al., “SpatialVLM: Endowing vision-language models with
spatial reasoning capabilities,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2024, pp. 14455–14465.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

26 IEEE/ASME TRANSACTIONS ON MECHATRONICS

[242] J. Rocamonde, V. Montesinos, E. Nava, E. Perez, and D. Lindner,
“Vision-language models are zero-shot reward models for reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2023.

[243] L. Chen et al., “Large language models are visual reasoning coordinators,”
in Proc. Adv. Neural Inf. Process. Syst., 2024, vol. 36, pp. 70115–70140.

[244] L. Liu et al., “Think-in-memory: Recalling and post-thinking enable llms
with long-term memory,” 2023, arXiv:2311.08719.

[245] W. Wang et al., “Augmenting language models with long-term memory,”
in Proc. Adv. Neural Inf. Process. Syst., 2024, vol. 36, pp. 74530–74543.

[246] S. S. Kannan, V. L. Venkatesh, and B.-C. Min, “Smart-LLM: Smart
multi-agent robot task planning using large language models,” 2023,
arXiv:2309.10062.

[247] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao, “Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v,” 2023,
arXiv:2310.11441.

[248] B. Chen et al., “Open-vocabulary queryable scene representations for
real world planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2023,
pp. 11509–11522.

[249] L. Wang et al., “GenSim: Generating robotic simulation tasks via large
language models,” in Proc. Int. Conf. Learn. Represent., 2023.

[250] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with diffusion
for flexible behavior synthesis,” in Proc. Int. Conf. Mach. Learn. PMLR,
2022, pp. 9902–9915.

[251] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal,
“Is conditional generative modeling all you need for decision-making?,”
2022, arXiv:2211.15657.

[252] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu, “3 d diffusion
policy: Generalizable visuomotor policy learning via simple 3 d repre-
sentations,” in Proc. Robot. Sci. Syst., 2024.

[253] C. Pan, Z. Yi, G. Shi, and G. Qu, “Model-based diffusion for trajectory
optimization,” 2024, Accessed:Jun. 5, 2024. [Online]. Available: https:
//lecar-lab.github.io/mbd/

[254] U. A. Mishra, S. Xue, Y. Chen, and D. Xu, “Generative skill chaining:
Long-horizon skill planning with diffusion models,” in Proc. Conf. Robot.
Learn. PMLR, 2023, pp. 2905–2925.

[255] X. Fang, C. Garrett, C. Eppner, T. Lozano-Pérez, L. Kael-
bling, and D. Fox, “Dimsam: Diffusion models as samplers
for task and motion planning under partial observability,” in
Proc. CoRL 2023 Workshop Learn. Effective Abstr. Plan.,
2023.

[256] M. A. Lee et al., “Making sense of vision and touch: Learning multimodal
representations for contact-rich tasks,” IEEE Trans. Robot., vol. 36, no. 3,
pp. 582–596, Mar. 2020.

[257] K. Yu, Y. Han, M. Zhu, and Y. Zhao, “Mimictouch:Learning
human’s control strategy with multi-modal tactile feedback,” in
Proc. NeurIPS Workshop Touch Process.: New Sens. Modality AI,
2023.

[258] H. Li et al., “See, hear, and feel: Smart sensory fusion for robotic
manipulation,” in Proc. Conf. Robot. Learn. PMLR, 2023, pp. 1368–1378.

[259] M. T. Mason, “Toward robotic manipulation,” Annu. Rev. Control Robot.
Auton. Syst., vol. 1, pp. 1–28, 2018.

[260] Z. Zhang, J. Yan, X. Kong, G. Zhai, and Y. Liu, “Efficient motion
planning based on kinodynamic model for quadruped robots following
persons in confined spaces,” IEEE/ASME Trans. Mechatron., vol. 26,
no. 4, pp. 1997–2006, Apr. 2021.

[261] C. McGreavy and Z. Li, “Reachability map for diverse and energy
efficient stepping of humanoids,” IEEE/ASME Trans. Mechatron., vol. 27,
no. 6, pp. 5307–5317, Jun. 2022.

[262] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel, “Humanoid-
bench: Simulated humanoid benchmark for whole-body locomotion and
manipulation,” in Proc. Robot. Sci. Syst., 2024.

[263] W. Liu, X. Liang, and M. Zheng, “Task-constrained motion planning con-
sidering uncertainty-informed human motion prediction for human–robot
collaborative disassembly,” IEEE/ASME Trans. Mechatron., vol. 28,
no. 4, pp. 2056–2063, Apr. 2023.

[264] Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task planning
based on a hierarchical task model,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 1136–1143, Feb. 2021.

[265] K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino,
“A hierarchical architecture for human–robot cooperation pro-
cesses,” IEEE Trans. Robot., vol. 37, no. 2, pp. 567–586,
Feb. 2020.

[266] M. Faroni, A. Umbrico, M. Beschi, A. Orlandini, A. Cesta, and N. Pe-
drocchi, “Optimal task and motion planning and execution for multiagent
systems in dynamic environments,” IEEE Trans. Cybern, vol. 54, no. 6,
pp. 3366–3377, Jun. 2024.

[267] A. T. Le, P. Kratzer, S. Hagenmayer, M. Toussaint, and J. Mainprice, “Hi-
erarchical human-motion prediction and logic-geometric programming
for minimal interference human-robot tasks,” in Proc. IEEE Int. Conf.
Robot. Hum. Interact. Commun., 2021, pp. 7–14.

[268] C. Zhang, J. Chen, J. Li, Y. Peng, and Z. Mao, “Large language models
for human-robot interaction: A review,” Biomimetic Intell. Robot., vol.
3, no. 4, 2023, Art. no. 100131.

[269] A. Kshirsagar, H. Kress-Gazit, and G. Hoffman, “Specifying and syn-
thesizing human-robot handovers,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 5930–5936.

[270] A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan, and
S. Hirche, “The role of roles: Physical cooperation between humans and
robots,” Int. J. Robot. Res., vol. 31, no. 13, pp. 1656–1674, 2012.

[271] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Optimization
approaches for civil applications of unmanned aerial vehicles (UAVs) or
aerial drones: A survey,” Networks, vol. 72, no. 4, pp. 411–458, 2018.

[272] J. Conesa-Muñoz, J. M. Bengochea-Guevara, D. Andujar, and A. Ribeiro,
“Route planning for agricultural tasks: A general approach for fleets of
autonomous vehicles in site-specific herbicide applications,” Comput.
Electron. Agric., vol. 127, pp. 204–220, 2016.

[273] J. Siburian, C. C. Beltran-Hernandez, and M. Hamaya, “Integrated task
and motion planning for real-world cooking tasks,” in Proc. IEEE Int.
Conf. Robot. Autom. 2024 Workshop Cook. Robot.: Percept. Motion
Plann, 2024.

[274] W. Wan, T. Kotaka, and K. Harada, “Arranging test tubes in racks using
combined task and motion planning,” Robot. Auton. Syst., vol. 147, 2022,
Art. no. 103918.

[275] P. Lin, K. Abney, and G. A. Bekey, Robot Ethics: The Ethical and Social
Implications of Robotics. Cambridge, MA, USA: MIT press, 2014.

[276] C.-J. Wu et al., “Sustainable ai: Environmental implications, challenges
and opportunities,” Proc. Mach. Learn. Syst., vol. 4, pp. 795–813, 2022.

[277] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From
classical to evolutionary approaches and applications,” IEEE Trans. Evol.
Comput., vol. 22, no. 2, pp. 276–295, Feb. 2017.

[278] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[279] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT press, 2018.

Zhigen Zhao received the B.S. degree in me-
chanical engineering in 2018 from the Geor-
gia Institute of Technology, Atlanta, GA, USA,
where he is currently working toward the Ph.D.
degree in robotics.

His research interests include task and mo-
tion planning, trajectory optimization, combining
model-based and learning approaches for robot
planning, and applications involving robot ma-
nipulation and loco-manipulation tasks, where
he aims to advance the capabilities of robotic

systems in complex, dynamic environments.

Shuo Cheng is currently working toward the
Ph.D. degree in computer science with the
Georgia Institute of Technology, Atlanta, GA,
USA.

To approach this research objective, he stud-
ies novel representations for efficient, general-
izable, and scalable robot skill acquisition and
develop systems that compose and reuse the
skills robustly, by exploring techniques such as
task and motion planning, imitation learning,
reinforcement learning, and visual perception

learning. His research focuses on enabling robots with the ability to
reason and perform in complex and highly variable environments for
achieving long-horizon tasks.

Dr. Cheng has been nominated for Best Paper at IEEE RA-L.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

https://lecar-lab.github.io/mbd/
https://lecar-lab.github.io/mbd/

ZHAO et al.: SURVEY OF OPTIMIZATION-BASED TASK AND MOTION PLANNING: FROM CLASSICAL TO LEARNING APPROACHES 27

Yan Ding (Student Member, IEEE) received
the bachelor’s degrees in mechanical engineer-
ing and master’s degree in computer science
from Chongqing University, Chongqing, China,
in 2016 and 2019, respectively, and the Ph.D.
degree in computer science from the State Uni-
versity of New York at Binghamton, Binghamton,
NY, USA, in 2024.

He is currently a Researcher with Shanghai AI
Laboratory, Shanghai, China. His research fo-
cuses on spatial intelligence for robotics, where

he aims to empower robots with the capability to understand and interact
with the real world, and skill learning for robotics, focusing on enabling
robots to effectively transform the real world.

Ziyi Zhou received the B.S. degree in automa-
tion from Northeastern University, Shenyang,
China, in 2018, and the M.S. degree in elec-
trical and computer engineering in 2021 from
the Georgia Institute of Technology, Atlanta, GA,
USA, where he is currently working toward the
Ph.D. degree in electrical and computer engi-
neering, with a focus on robotics.

His research interests include contact-rich
trajectory optimization and task planning ap-
plied to legged robots.

Shiqi Zhang (Member, IEEE) received the B.S.
and M.S. degrees from the Harbin Institute of
Technology, Harbin, China, in 2006 and 2008,
respectively, and the Ph.D. degree in computer
science from Texas Tech University, Lubbock,
TX, USA, in 2013.

He is currently an Associate Professor with
the School of Computing, State University of
New York at Binghamton, Binghamton, NY,
USA. He was an Assistant Professor with Cleve-
land State University, Cleveland, OH, USA, and

before that was a Postdoctoral Fellow with the University of Texas at
Austin, Austin, TX.

Dr. Zhang was the recipient of the AAMAS-2018 Best Robotics Paper
Award, Ford URP Award in 2019, OPPO Faculty Research Award in
2020, Top Cited Article recognition from AI Magazine in 2023 and
Outstanding Associate Editor recognition from IEEE Robotics and Au-
tomation Letters in 2024. He served on the organizing committees of
the AAMAS-2022 and KR-2023 conferences.

Danfei Xu received the Ph.D. degree in com-
puter science from Stanford University, Stan-
ford, CA, USA, in 2021.

He is currently an Assistant Professor with the
School of Interactive Computing, Georgia Insti-
tute of Technology, Atlanta, GA, USA. His re-
search interests include machine learning meth-
ods for robotics, with a focus on manipulation
planning and imitation learning, and to enable
physical autonomy in everyday human environ-
ments with minimum expert intervention.

Dr. Xu is an Associate Editor for International Journal on Robotics
Research. He was named as a 2022 DARPA Riser. His work has been
nominated for Best Paper at CoRL and IEEE RA-L.

Ye Zhao (Senior Member, IEEE) received the
Ph.D. degree in mechanical engineering from
The University of Texas at Austin, Austin, TX,
USA, in 2016.

He is currently an Assistant Professor with the
George W. Woodruff School of Mechanical En-
gineering, Georgia Institute of Technology, At-
lanta, GA, USA. He was a Postdoctoral Fellow
with the John A. Paulson School of Engineering
and Applied Sciences, Harvard University, Cam-
bridge, MA, USA. His research interests include

robust task and motion planning, contact-rich trajectory optimization,
formal methods for legged locomotion and navigation.

Dr. Zhao is an Associate Editor of IEEE TRANSACTIONS ON ROBOTICS,
IEEE/ASME TRANSACTIONS ON MECHATRONICS, IEEE ROBOTICS AND AU-
TOMATION LETTERS, and IEEE CONTROL SYSTEMS LETTERS. He was the
recipient of the George W. Woodruff School Faculty Research Award
at Georgia Tech in 2023, NSF CAREER Award in 2022, and ONR YIP
Award in 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 06,2024 at 00:35:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

