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Socially Acceptable Bipedal Robot Navigation via
Social Zonotope Network Model Predictive Control

Abdulaziz Shamsah , Krishanu Agarwal, Nigam Katta, Abirath Raju , Shreyas Kousik , Member, IEEE,
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Abstract— This study addresses the challenge of social
bipedal navigation in a dynamic, human-crowded environment,
a research area largely underexplored in legged robot navigation.
We present a zonotope-based framework that couples prediction
and motion planning for a bipedal ego-agent to account for
bidirectional influence with the surrounding pedestrians. This
framework incorporates a Social Zonotope Network (SZN),
a neural network that predicts future pedestrian reachable
sets and plans future socially acceptable reachable set for
the ego-agent. SZN generates the reachable sets as zonotopes
for efficient reachability-based planning, collision checking, and
online uncertainty parameterization. Locomotion-specific losses
are added to the SZN training process to adhere to the dynamic
limits of the bipedal robot that are not explicitly present in
the human crowds data set. These loss functions enable the
SZN to generate locomotion paths that are more dynamically
feasible for improved tracking. SZN is integrated with a Model
Predictive Controller (SZN-MPC) for footstep planning for our
bipedal robot Digit. SZN-MPC solves for collision-free trajectory
by optimizing through SZN’s gradients. Our results demonstrate
the framework’s effectiveness in producing a socially acceptable
path, with consistent locomotion velocity, and optimality. The
SZN-MPC framework is validated with extensive simulations and
hardware experiments.

Note to Practitioners—This paper is motivated by the challenge
of navigating bipedal robots through dynamic, human-crowded
environments in a socially acceptable manner. Existing methods
for social navigation often only address obstacle avoidance and
are demonstrated on a robot with simple dynamics. This paper
proposes the Social Zonotope Network (SZN), a novel neural
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network that couples pedestrian future trajectory prediction and
robot motion planning to facilitate socially aware navigation for
bipedal robots such as Digit, designed by Agility Robotics. The
social behaviors are learned from real open-sourced pedestrian
data using the SZN, which outputs the future predictions as
reachable sets for each agent in the environment. The SZN
is then integrated into a trajectory optimization problem that
takes into account personal space preferences and bipedal robot
capabilities to design trajectories that are both collision-free and
socially acceptable. This work also highlights the computational
efficiency of the SZN design that makes it suitable for real-time
integration with motion planners. The framework is validated
through extensive simulations and hardware experiments. From
a practical standpoint, this research provides a framework that
can be applied to bipedal robots to improve automation in
human-populated environments such as hospitals, shopping cen-
ters, and airports. The framework’s ability to automatically adapt
to surrounding human movement helps minimize disruptions
and ensures that the robot’s presence is not a hindrance to
the flow of human traffic. Future work will focus on outdoor
deployment, which will require onboard perception capabilities
to detect surrounding pedestrians.

Index Terms— Social navigation, bipedal robot locomotion,
reachability, collision avoidance, path planning, neural networks.

I. INTRODUCTION

B IPEDAL locomotion in complex environments has gar-
nered substantial attention in the robotics community [4],

[5], [6], [7], [8], [9], [10], [11]. Social navigation poses
a particular challenge due to the inherent uncertainty of
the environment, unknown pedestrian dynamics, and implicit
social behaviours [12]. Recently, there has been an increasing
focus on social navigation for mobile robots in human environ-
ments [13], [14], [15], [16], [17], [18], [19], [20]. Using mobile
robots benefits from stable motion dynamics, which facilitate
the investigation of high-level social path planners. In contrast,
the exploration of social navigation for bipedal robots remains
unexplored. This is largely attributed to the intricacies of the
hybrid, nonlinear, and high degree-of-freedom dynamics asso-
ciated with bipedal locomotion. The complexities inherent in
stabilizing and controlling bipedal robots have led researchers
to prioritize fundamental locomotion research in the past [21],
[22], [23], [24], delaying advancements in deploying these
robots into more complex dynamic environments such as
human-populated ones (see Fig. 1).

In this study, we present an integrated framework for
prediction and motion planning for socially acceptable bipedal
navigation as shown in Fig. 2. We propose a Social Zonotope
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Network (SZN) that both predicts pedestrians’ future trajecto-
ries and plans a socially acceptable path for the bipedal robot
Digit [25] with 28 degrees of freedom (DoFs). SZN is trained
with locomotion-specific losses to improve full-body tracking
of the desired socially acceptable paths.

Our SZN model outputs reachable sets for both pedes-
trians and the ego-agent represented as zonotopes, a class
of convex symmetric polytopes. Zonotopes enable efficient
and robust reachability-based planning, collision checking,
and uncertainty parameterization [26], [27], [28], [29]. In this
work, we detect and avoid collisions between zonotopes cor-
responding to the ego-agent and pedestrians. Additionally, the
ego-agent’s zonate for (1) robot modeling errors of the ego-
agent’s dynamics via Gaussian process (GP) regression, and
(2) ego-agent’s personal space for increased social acceptance
in practice. Zonotopes provide a balance between geometric
complexity and computational efficiency. We specifically take
advantage of two facts: (1) the Minkowski sum of two
zonotopes is again a zonotope, allowing us to easily augment
the zonotopes output by a neural network; and (2) collision
checking a pair of zonotopes can be differentiated for use in
gradient-based motion planning methods.

Our framework integrates SZN in a model predictive
controller (MPC) at the middle level as shown in Fig. 2.
SZN-MPC optimizes over the output of the neural network by
encoding it as reachability and collision avoidance constraints.
We incorporate a novel cost function designed to encourage
the generation of socially acceptable trajectories. SZN-MPC
employs a reduced-order model (ROM), i.e., a Linear Inverted
Pendulum (LIP) model, for the bipedal locomotion process,
and then sends optimal commands, i.e., center of mass (CoM)
velocity and heading change, to the low-level controller on
Digit for full-body joint trajectory design and control.

A. Contributions and Outline

The main contributions of this study are as follows.
1) A reachability-based prediction and planning framework

for bipedal navigation in a social environment: we
introduce the Social Zonotope Network (SZN), a CVAE
architecture for coupled pedestrian future trajectory
prediction and ego-agent social planning both param-
eterized as zonotopes.

2) Learning locomotion safety: we encode locomotion
safety into the learning module using signal temporal
logic (STL) specifications, and design its robustness
score as loss functions of the CVAE network during
training.

3) Online zonotope refinements for social acceptability and
model discrepancy compensation: we leverage the adapt-
able nature of zonotope parameterization to enhance
social acceptability by incorporating personal space
refinements and to efficiently adjust online for learned
model discrepancies between the reduced-order model
(ROM) and the full-order model of Digit.

4) SZN-MPC: we integrate the SZN with MPC, where the
zonotopes outputted by SZN are encoded as constraints
for reachability-based motion planning and collision
checking.

Fig. 1. (top) Snapshot of the proposed social path planner demonstrated on
hardware with 5 pedestrians with pedestrian’s prediction zonotopes (green),
ego-agent’s social zonotope (cyan), and goal location (yellow star) superim-
posed. (bottom) shows a top-down view of the ego-agent’s path, pedestrians’
prediction, and social zonotopes.

5) Social acceptability cost function design: a novel MPC
cost function to plan trajectories for the ego-agent using
learned paths from human data sets.

6) Experimental hardware evaluation: we implement the
proposed framework on a bipedal robot Digit equipped
with a low-level passivity controller for full-body joint
control.

This article is organized as follows. Sec. II reviews related
work. Sec. III introduces the robot dynamics, environment
setup, and our problem statement. Zonotope preliminaries
are in Sec. IV. Sec. V presents SZN’s architecture and loss
functions. Sec. VI provides zonotope refinements for social
acceptability and uncertainty parameterization. Sec. VII for-
mulates the problem as a MPC and introduces the social
acceptability cost. Implementation details and results are in
Sec. VIII. In Sec. IX we discuss limitations of the proposed
framework. Finally, Sec. X concludes the article.

This paper expands upon a previous conference version [30].
The work presented here extends the SZN training to include
additional locomotion-specific loss functions, incorporates a
social acceptability cost function in the SZN-MPC, and
introduces a coupled SZN-MPC for simultaneous pedes-
trian prediction and ego-agent planning. Additionally, this
paper refines the zonotope parameterization by incorporating
personal space modulation and uncertainty parameterization.
We also benchmark the collision-avoidance performance of
our method with a control barrier function baseline and
validate our framework by extensive hardware experiments
that were not included in the conference version.
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Fig. 2. Block diagram of the proposed framework. The framework is developed around the Social Zonotope Network (SZN) (Sec. V), which is composed
of two sub-networks: the Pedestrian Prediction Network (PPN) and the Ego-agent Social Network (ESN) shown in green and cyan, respectively. Given an
environment with observed pedestrians T pk

t (green circle) and a goal location G (yellow ⋆), the social path planner designs a social path for Digit (red
dots) (Sec. VII-C). At the middle level, SZN-MPC optimizes through SZN to generate both collision-free and socially acceptable trajectories for Digit
(Sec. VII). The optimal trajectory is then sent to the ALIP controller [1] to generate the desired foot placement for reduced-order optimal trajectory tracking.
An ankle-actuated-passivity-based controller [2], [3] is implemented on Digit for full-body trajectory tracking. Digit current velocity and the optimal trajectory
from SZN-MPC are used in the modeling error GP to compensate for the modeling uncertainty between ROM dynamics and full-order dynamics (Sec. VI-B).

II. RELATED WORK

This work lies in the intersection of social navigation and
bipedal locomotion. We now review these topics.

A. Social Navigation

Social navigation literature can be categorized into two main
categories: coupled prediction and planning and decoupled
prediction and planning [12]. We further discuss methods for
predicting human motion, then the specific methods that we
build upon.

1) Coupled Prediction and Planning: In coupled prediction
and planning literature, the proposed frameworks recognize the
influence of the robot motion on the surrounding pedestrians
and vice versa [12]. Navigating an environment with humans
in a socially compliant manner requires a proactive approach to
motion planning [17], [19], [31], [32]. In [19], the authors use
coupled opinion dynamics to proactively design motion plans
for a mobile robot, without the need for human prediction
models. This is an implicit approach, as it relies only on the
observation of the approaching human position and orientation
to form an opinion that alters the nominal path and avoids
collisions with pedestrians. Another implicit approach is [33],
which uses inverse reinforcement learning to learn robot
motions that mimics human behavior.

On the other hand, the approaches in [17] and [31]
explicitly predict the future trajectories of pedestrians. The
authors in [31] propose a social interference metric based on
Kullback-Leibler divergence to measure the interference of the
robot’s path plan on the surrounding humans’ future trajectory,
hypothesizing that minimizing the social interference metric
will result in a socially acceptable trajectory for the ego-
agent. Similarly, a gradient-based trajectory optimization is

introduced in [17] to minimize the difference between the
humans’ future path prediction conditioned on the robot’s plan
and the nominal prediction. Both of these studies work under
the assumption that a minimally-invasive robot trajectory, with
minimal effect on surrounding humans’ nominal trajectory,
is socially acceptable (see Fig. 3(a)). In contrast, our work
leverages a different notion: we aim to learn the socially
acceptable trajectory of the ego-agent from human crowd
datasets to avoid any heuristics or biases on prioritizing
the minimal invasiveness of the pedestrians. Our method
enables bidirectional influence between the pedestrians and
the ego-agent, and allows the ego-agent to change surrounding
pedestrians’ paths (see Fig. 3(b)).

2) Decoupled Prediction and Planning: In decoupled pre-
diction and planning, social navigation can be viewed as
dynamic obstacle avoidance [12], [34], [35]. For example,
the work in [36] ignores any effect the robot path has on
the surrounding pedestrians. They propose a linear Kalman
filter to predict the pedestrians’ future paths, then use MPC
for collision avoidance. As another example, a decoupled
approach can be used for a robot to approach a group of
pedestrians in a socially aware way [37]. While effective
for a small number of pedestrians, ignoring the coupling
effect between the robot and the pedestrians can result in
two problems: first, reciprocal dance, meaning an oscillatory
interaction between the robot and pedestrians [38]; and second,
the so-called “freezing robot problem” [39], wherein the robot
comes to a stop to avoid collisions.

To overcome the aforementioned challenges, our framework
uses a coupled prediction and planning approach, as the
pedestrians’ future predictions are conditioned on the ego-
agent’s future planned motion. Our approach integrates both
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Fig. 3. Comparison between two different designs of socially acceptable
paths. (a) shows a minimally invasive path design for the robot as in [31]
and [17], i.e., the robot adjusts its path to not alter the pedestrian’s original
path or change it in a minimally-invasive way. (b) shows the bidirectionally
influenced path between the robot and the pedestrian that our work employs,
i.e., the robot and the pedestrian mutually react to each other and adjust their
own paths accordingly.

explicit and implicit elements. Explicitly, we predict the future
trajectories of pedestrians and utilize these predictions for
collision avoidance. Implicitly, we leverage learned trajectories
from pedestrian datasets to generate ego-agent trajectories that
mimic human behavior.

3) Human Trajectory Prediction: Our framework is inspired
by the human trajectory prediction community, such as
Trajectron++ [40], SocialGAN [41], PECNet [42], Y-net [43],
Sophie [44], and STAR [45] where we aim to design a
socially acceptable trajectory for the ego-agent that mimics
the path from human crowd datasets. The work in [46]
proposes an obstacle avoidance learning method that uses a
Conditional Variational Autoencoder (CVAE) framework to
learn a temporary, near-horizon target distribution to avoid
pedestrians actively. However, during training, the temporary
targets are selected heuristically. In contrast, we aim to learn
such temporary waypoints from human crowd datasets to
capture a heuristic-free socially acceptable path. In [42], the
authors develop a simple but accurate CVAE architecture based
on Multi-Layer Perceptrons (MLP) networks to predict crowd
trajectories conditioned on past observations and intermediate
endpoints. Our SZN inherits a similar MLP-based CVAE
architecture, where the ego-agent path is conditioned on the
final goal location and surrounding pedestrians’ future trajec-
tories. In addition, our SZN is conditioned on the immediate
change in the ego-agent state to be better integrated with
MPC for planning. Importantly, we find that the MLP network
architecture enables real-time gradient-based ego-agent motion
planning coupled with pedestrian prediction, which is chal-
lenging with more advanced architectures such as LSTMs [26],
[40] or Transformers [45].

4) Direct Predecessors to Our Work: Our work builds
off of the methods in [17] and [26], which leverage neural
network gradients in trajectory optimization (TO) for safe
motion planning. The method in [17] employs [40] for gener-
ating multimodal probabilistic predictions and integrates the
prediction model gradients in the cost function of the TO
problem, to minimize the invasiveness of the robot’s path to
the surrounding pedestrians’ paths (as previously discussed in
Sec. II-A); similarly, we leverage neural network gradients in

TO. Our prior work [26] presents a Zonotope Alignment of
Prediction and Planning (ZAPP) that relies on zonotopes to
enable continuous-time reasoning for planning, just as we do
in this work. This method uses Trajectron++ [40] to predict
obstacle trajectories via a Gaussian mixture model, then con-
structs a zonotope over this distributions to overapproximate
the non-ego agents’ reachable sets. The predictive model’s
gradients are used in TO for obstacle avoidance [26], rather
than in the cost function as designed in [17].

Our key insight, which distinguishes this work from the
prior work [17], [26], is to learn path prediction distributions
directly as zonotopes, bypassing the initial step of pre-
dicting Gaussian distributions for pedestrian motion. This
makes our approach more computationally efficient and
facilitates real-time integration with MPC, where both [17]
and [26] struggled to achieve real-time implementation. Our
learned zonotopes also provide gradients for constraints
in MPC, enabling reachability-based planning and collision
checking.

B. Bipedal Locomotion

Bipedal locomotion has been extensively studied with a
wide spectrum of model representations and methods—such
as reduced-order models (ROM) [5], [6], [7], [47], single rigid
body models [48], centroidal models [49], whole-body mod-
els [23], [24], [50], ROM-inspired reinforcement learning [51],
and model-free reinforcement learning [52], [53]—to name a
few. Generally, locomotion planning using whole-body models
results in high computation cost [54], [55] and becomes much
less efficient for navigation in complex environments that
often involve long-horizon planning; therefore, in this work,
we focus on ROM-based methods for CoM trajectory and foot
placement planning.

Other methods also use ROM-based methods for plan-
ning. For example, the work in [5] uses an omnidirectional
differential-drive wheeled robot model with a preference for
sagittal movement to capture bipedal robots’ behaviors accu-
rately. They design a control Lyapunov function (CLF) to
drive and orient that robot towards the goal and a control
barrier function (CBF) for obstacle avoidance. The framework
is demonstrated for indoor and outdoor navigation in environ-
ments with static obstacles only. In our work, we use a Linear
Inverted Pendulum (LIP) [56] as the ROM for our bipedal
robot. A similar model is used in [6], while [7] and [57]
use an angular momentum-based LIP (ALIP) [1] for improved
prediction of CoM velocities.

There also exist other approaches that seek to generate safe
bipedal motion in complex scenes. For example, the method
in [6] present discrete-time CBF (DCBF) [58] constraints with
a sequential LIP-based MPC to plan trajectories for Digit in
an environment with static and dynamic obstacles. However,
the dynamic obstacles trajectories are assumed to be known
in [6] and the framework is only demonstrated in simulation.
The work in [57] similarly uses a DCBF-MPC to avoid static
obstacles in simulation.

In contrast to the aforementioned studies, we develop a
bipedal locomotion planner that generates safe paths while
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Fig. 4. Illustration of the Linear Inverted Pendulum model for two
consecutive foot contact switching states xq and xq+1. The shaded yellow
regions indicate the kinematics constraint on the control input u detailed in
Sec. VII-A.

predicting pedstrian motion. This enables considering social
norms and can be efficiently solved in real-time, as we show
via hardware implementation.

III. PROBLEM FORMULATION

We seek to safely navigate a bipedal robot through a crowd.
We now present our robot model and environment model, and
then formalize this problem.

A. Walking Robot Model

We leverage a locomotion-specific reduced order model
(ROM) to describe our bipedal robot dynamics in this study.
Consider a bipedal ego-agent with discrete time dynamics
xq+1 = 8(xq , uq), where xq and uq are the state and control
input respectively at the q th walking step.1 The state of the
bipedal robot, i.e., the ego-agent, is x = ( pego, vloc, θ) where
pego

= (x, y) is the 2-D location in the world coordinate, vloc

is the sagittal velocity at the foot contact switching instant in
the local coordinate, and θ is the heading. The control input is
uq = (u f

q u1θ
q ), where u f

q is the sagittal foot position relative
to the CoM, and u1θ

q is the heading angle change between two
consecutive walking steps. A schematic robot model is shown
in Fig. 4.

ROM Dynamics: We use a linear inverted pendulum (LIP)
model [56] as a ROM to design the 3-D walking motion of
Digit For the LIP model we assume that each walking step
has a fixed duration2 T [6], [57]. Then we build our model
on the discrete sagittal dynamics3 (1x loc

q , vloc
q ), where x loc

q is
CoM position at the beginning of the q th step, 1x loc

= x loc
q+1 −

x loc
q is the local sagittal CoM position difference between two

consecutive walking steps, and vloc
q is the sagittal velocity at

the local coordinate for the q th walking step as shown in Fig. 4

1The robot model used in our study represent step-by-step dynamics, i.e.,
xq and xq+1 are the CoM state at the foot contact switching instant of two
consecutive walking steps.

2Set to be equal to the timestep between frames in the dataset (0.4 s).
3The lateral dynamics are only considered in the ALIP model at the low

level since they are periodic with a constant desired lateral foot placement
(see Fig. 2).

(see Appendix. A for detailed derivation):

1x loc(u f
q ) =

(
vloc

q
sinh(ωT )

ω
+ (1 − cosh(ωT ))u f

q

)
(1)

vloc
q+1(u

f
q ) = cosh(ωT )vloc

q − ω sinh(ωT )u f
q (2)

where ω =
√

g/H , g is the gravitational constant, and
H is the constant CoM height. The heading angle change
is governed by u1θ

q = θq+1 − θq . Based on the sagittal
dynamics (1) and (2), we introduce coordinate transformation
based on the heading angle θq to control the LIP dynamics in
2-D Euclidean space. Therefore the full LIP dynamics in 2-D
Euclidean space become:

xq+1 = xq + 1x loc(u f
q ) cos(θq) (3a)

yq+1 = yq + 1x loc(u f
q ) sin(θq) (3b)

vloc
q+1 = cosh(ωT )vloc

q − ω sinh(ωT )u f
q (3c)

θq+1 = θq + u1θ
q (3d)

A detailed derivation of (3) is in Appendix. A. For notation
simplicity, and hereafter, (3) will be referred to as:

xq+1 = 8(xq , uq) (4)

Later on, (4) will be enforced as dynamic constraints in our
proposed SZN-MPC in Sec. VII.

B. Environment Assumptions and Observations

In this work, we hypothesize that, in a social setting,
a human determines their future path using three pieces of
information: (i) their final destination G = (xdest, ydest) (navi-
gation intent), (ii) the surrounding pedestrians’ past trajectory4

T pk
[tp,t] = {x pk

q , y pk
q }

t
q=tp

, ∀k, where k indexes the k th pedestrian,
and (iii) their prior social experience, meaning assumptions
on how to navigate the environment in a socially-acceptable
manner. We treat the social experience as latent information
that is implicit in human crowd datasets:

Assumption 1: Suppose we learn a model of the future
trajectory of a human as a function of their final goal G and
surrounding pedestrians’ past trajectories T pk

[tp,t]. We assume
that this model will implicitly represent each human’s social
experience.

In this work, to learn a socially acceptable future path for an
ego-agent T ego

[t,t f ]
= {xego

q , yego
q }

t f
q=t , we use real human crowd

datasets, and substitute a single human for the ego-agent.
Only the pedestrians within a prespecified radius of the

ego-agent are observable, and we assume that their past
trajectories were observable over a specified time interval from
tp to t .

C. Problem Setup and Statement

The ego-agent is tasked to navigate to a known goal location
G in an open environment with m ∈ N observed pedestrians
treated as dynamic obstacles. Denote the pedestrian state
T pk

[tp,t], which is the 2-D trajectory of k th pedestrian observed

4The subscripts tp , t , and t f represent discrete time indices denoting the
past, current and future trajectories, respectively, where tp < t < t f .
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Fig. 5. An illustration of zonotopes: (a) a 3-D zontope (n = 3) with nG = 13
(b) a 2-D zonotope (n = 2) with nG = 3. Red arrows indicate the generators
in G, with only 6 out of 13 generators are illustrated in (a). In this study,
we will use the 2-D zonotopes for our reachability path design.

over a discrete time interval [tp, t], where tp < t . The
environment is partially observable, as only the pedestrians in
a pre-specified sensory radius of the ego-agent are observed.
The path the ego-agent takes should ensure locomotion safety
and navigation safety while being socially acceptable.

Definition 2 (Locomotion Safety): For a bipedal robot,
locomotion safety means maintaining balance dynamically
throughout its locomotion process.

Definition 3 (Navigation Safety): Navigation safety means
avoiding collisions with pedestrians. We model this as a
constraint, ∥ pego

t −T pk
t ∥ > d, ∀ t, k ∈ m, where pego

t denotes
the ego-agent 2-D position and d represents a minimum
allowable distance between the ego-agent and the pedestrians.

Definition 4 (Socially Acceptable Path for Bipedal Sys-
tems): A path that a bipedal ego-agent takes in a
human-crowded environment is socially acceptable if it has
an Average Displacement Error (ADE) < ϵ when compared to
ground truth human data navigating in the same environment.5

Based on the aforementioned definitions and environment
setup, we seek to solve the following problem:

Problem 5: Given a bipedal robot modeled by discrete
dynamics xq+1 = 8(xq , uq) and a partially-observable envi-
ronment state E = (T pk

[tp,t],G), find an optimal motion plan
that ensures locomotion and navigation safety while promoting
social acceptability.

IV. ZONOTOPE PRELIMINARIES

A zonotope Z ∈ Rn is a convex, symmetrical polytope
parameterized by a center c ∈ Rn and a generator matrix G ∈

Rn×nG (see Fig. 5).

Z = Z(c, G) = {c + Gβ | ∥β∥∞ ≤ 1} (5)

The Minkowski sum of Z1 = Z(c1, G1) and Z2 =

Z(c2, G2) is Z1 ⊕ Z2 = Z (c1 + c2, [G1 G2]). To Check
collisions between two zonotopes, [59, Lemma 5.1] is used:

Proposition 6 [59, Lemma 5.1]: Z1 ∩ Z1 = ∅ iff c1 /∈

Z(c2, [G1 G2])

Per [29, Theorem 2.1], zonotopes can be parameterized
using a half-space representation P = {x | Ax ≤ b}, where
x ∈ P ⇐⇒ max(Ax − b) ≤ 0 and x /∈ P ⇐⇒

5ϵ represents the allowable deviation from the socially acceptable path. The
Average Displacement Error denotes the average error between the planned
path and the ground-truth path.

max(Ax −b) > 0 (see Fig. 5(b)), which we show is useful for
collision checking. In the special case of a 2-D zonotope, the
center-generator representation to the half-space representation
is given analytically as follows:

Proposition 7 [26, Proposition 2]: Let C =[
−G[2, :] G[1, :]]

]
and lG[i] be the norm of the i th

generator lG[i] = ∥G[:, i]∥2, the half-space representation of
a 2-D zonotope:

A[i, :] =
1

lG[i]
·

[
C

−C

]
∈ R2nG×2 (6)

b = A · c + |AG| 1m×1 ∈ R2nG (7)

where i = 1, . . . , nG indexes the number of generators.
In this work, we use zonotopes to represent the social

reachable set of each agents, i.e., the ego-agent and pedes-
trians. We seek to learn a sequence of social zonotopes for
the ego-agent Zego

q , each of which contains two consecutive
waypoints of the ego-agent’s future social trajectory T ego

[t,t f ]
,

thereby approximating the agent’s continuous-time motion
similar to [26].

Definition 8 (Social Zonotope Zego
q ): A social zonotope for

the ego-agent’s q th step is Zego
q = Z

(
cq , Gq

)
, satisfying that

the future traj . . .T ego
[t,t f ]

∈

t f −1⋃
q=t
Zego

q .

V. SOCIAL ZONOTOPE NETWORK

This section introduces the Social Zonotope Network (SZN)
architecture and the loss functions used during training, which
are designed both for shaping the social zonotopes and for
ensuring the physical viability of the path for bipedal locomo-
tion. The key feature of our social zonotope network is to learn
the zonotope representation directly as an output of the neural
network enabling real-time reachability-based planning and
collision avoidance in the MPC introduced later in Sec. VII.

A. Learning Architecture

We use a conditional variational autoencoder (CVAE) archi-
tecture to learn the ego-agent’s future trajectory conditioned
on the final destination goal, the immediate change in the
ego-agent’s state, and the surrounding pedestrians’ past trajec-
tories. The proposed architecture uses Multi-Layer Perceptrons
(MLP) with ReLU non-linearity for all the sub-networks.

Our Social Zonotope Network (SZN) is comprised of two
coupled neural networks to not only predict the reachable
set of the surrounding pedestrians, but also learn the social
reachable set of the ego-agent as shown in Fig. 6.

1) Pedestrian Prediction Network (PPN): Our pedestrian
prediction network (shown in Fig. 6(a)) is inspired by PEC-
Net [42], where the endpoint of the predicted pedestrian
trajectory T pk

t f
(t f = 8 indicating a 8-step horizon) is learned

first, and then the future trajectory for the [t, t f ] horizon
is predicted. Our proposed network deviates from PECNet
in three ways. First, the pedestrian future trajectory is also
conditioned on the immediate change in the ego-agent’s
state T ego

t+1 (shown in red in Fig. 6(a)). This coupling of
the pedestrian prediction and ego-agent planning networks
is intended to capture the effect of the ego-agent’s control
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Fig. 6. The Social Zonotope Network (SZN) is comprised of two coupled neural networks to both predict the reachable set of the surrounding pedestrians and
learn the social reachable set of the ego-agent. (a) shows the pedestrian prediction network, conditioned on the pedestrian endpoints (T pk

t f
) and the immediate

change in the ego-agent’s state (T ego
t+1 ). (b) shows the ego-agent social network conditioned on the pedestrians’ future prediction (cpk

[t,t f ]
), the immediate change

in the ego-agent’s state (T ego
t+1 ), and the ego-agent’s goal location (G). Dashed connections are used during training only. The input and output variables to the

neural networks are color-coded with figures. Note that, one of the key features of these two networks is to output a sequence of predicted future zonotopes
instead of waypoints (see the final output block of ESN on the right). This zonotope representation enables collision avoidance for navigation safety.

on the future trajectories of the surrounding pedestrians [12],
[17]. Second, the output of the network is the pedestrian’s
future reachable set parameterized as zonotopes Z pk

[t,t f ]
rather

than point-based trajectories for robust collision checking and
uncertainty parameterization [26], [27], [28]. Third, we replace
PECNet’s social pooling module with a simple ego-agent
sensory radius threshold for computational efficiency, which
simplifies integrating our SZN into MPC for a unified predic-
tion and planning framework in Sec. VII.

The pedestrians’ past trajectories T pk
[tp,t] are encoded by a

neural network Eped (shown as the purple arrow in Fig. 6(a)),
while the incremental change in the ego-agent state repre-
senting the ego-agent control is encoded by Enext (shown
as the red arrow in Fig. 6(a)). This allows us to condition
pedestrian trajectory predictions on the ego-agent’s control.
The resultant latent features Eped(T pk

[tp,t]) and Enext(T ego
t+1 ) are

then concatenated and used as the condition features Fcond. The
pedestrian’s endpoint locations are encoded as Eend as seen
by the orange arrows in Fig. 6(a). The resultant latent features
Eend(T pk

t f
) are then concatenated with Fcond as global features

Fglobal and encoded by the latent encoder Elatent. We randomly
sample features from a normal distribution N (µ, σ ) generated
by the Elatent module, and concatenate them with Fcond. This
concatenated information is then passed into the latent decoder
Dlatent. Then Dlatent outputs the predicted endpoint that is
passed again through Eend. The output is concatenated again
with Fcond and passed to another encoder Pfuture to output the
predicted zonotopes of the pedestrians Z pk

[t,t f ]
.

2) Ego-Agent Social Network (ESN): Our ESN architecture
is shown in Fig. 6(b). The surrounding pedestrians’ future
zonotope centers cpk

[t,t f ]
are aggregated through summation

to take into account the collective effect of surrounding
pedestrians6 while keeping a fixed-input-size architecture [40],
[60], [61]. The summed pedestrian features are then encoded
by Efuture as seen by the green arrows in Fig. 6(b). The
goal location for the ego-agent is encoded by Egoal, while
the incremental change in the ego-agent state is encoded by

6Other human trajectory learning modules include a social module to
take into account the surrounding pedestrians effect such as social non-local
pooling mask [42], max-pooling [41], and sorting [44].

Fig. 7. Our zonotope shaping loss functions. The loss aims to learn
interconnected zonotopes that engulf the ground truth path.

Enext as seen by the orange and red arrows respectively in
Fig. 6(b). The resultant latent features Efuture(

∑m
k=1 cpk

[t,t f ]
),

Egoal(G) and Enext(T ego
t+1 ) are then concatenated and used as

the condition features Fego
cond for the CVAE. The ground truth

of the ego-agent’s future trajectory T ego
[t,t f ]

is encoded by Etraj
as shown by the cyan arrows in Fig. 6(b). The resultant
latent features Etraj(T ego

[t,t f ]
) are then concatenated with Fego

cond
as global features Fego

global and encoded by the latent encoder
Eego

latent. Similarly, we randomly sample features from a normal
distribution N (µ, σ ) generated by the Eego

latent module, and
concatenate them with Fego

cond. This concatenated information
is then passed into the latent decoder Dego

latent, resulting in our
prediction of the ego-agent’s future reachable set Zego

[t,t f ]
.

Remark 1: Including the Enext encoder in both the PPN and
ESN facilitates seamless integration with a step-by-step MPC,
as one of the MPC’s decision variables, i.e., 1 pego, is used
as inputs to Enext as detailed in Sec. VII.

B. Zonotope Shaping Loss Functions

We propose novel zonotope shaping loss functions for both
the PPN and the ESN to achieve three goals: (i) position the
zonotope centers close to ground truth future trajectories; (ii)
ensure intersection of the zonotopes representing consecutive
walking steps to approximate continuous time; and (iii) reduce
the size of the zonotopes to mitigate conservativeness from
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overapproximation. Based on these goals, we implement the
following losses, also illustrated inFig. 7.

1) Minimize average displacement error between the
predicted centers and midpoint of the ground truth
trajectory Tmid,i :

LADE =

∑t f −1
i=1 ∥Tmid,i − ci∥

t f − 1

2) Minimize final displacement error between the last pre-
dicted center and the final midpoint of the ground truth
trajectory:

LFDE = ∥Tmid,t f −1 − ct f −1∥

3) Contain the midpoint between the current center and
previous center cp

mid,i in the current zonotope:

Lprev =

t f −1∑
i=0

ReLU(Ai · cmid,i−1 − bi ),

where cmid,−1 is the initial point of the ground truth
trajectory T[t,t f ], i.e., the current location of the ego-
agent.

4) Contain the midpoint between the current center and the
next center cn

mid,i in the current zonotope:

Lnext =

t f −1∑
i=0

ReLU(Ai · cmid,i+1 − bi ),

where cmid,t f is the endpoint of the ground truth trajec-
tory T[t,t f ].

5) Regulate the size of each output zonotope by penalizing
the norm of the generators:

LG =

nG∑
i=1

∥lG[i] − di∥,

where di is the desired length for each i th generator.
We sum the zonotope shaping losses listed above into a total
loss term LZ . Similar to PECNet [42], we use Kullback-
Leibler divergence to train the output of the latent encoder,
aiming to regulate the divergence between the encoded distri-
bution N (µ, σ ) and the standard normal distribution N (0, I):

LKL = DKL
(
N (µ, σ ) ∥ N (0, I)

)
Next, we introduce robot-specific losses for ESN to promote
locomotion safety and ensure that the Digit robot is able to
reach consecutive zonotopes in consecutive walking steps.

C. Incorporating Robot Safety Specifications

To deploy the learning-based social path planner on the
Digit robot, it is essential to consider the features of bipedal
locomotion such as kinematic and dynamic constraints. To this
end, we introduce additional losses to ensure the learned path
is viable for bipedal locomotion.

Signal Temporal Logic (STL) is a well-established tempo-
ral logic language to formally encode natural language into
mathematical representation for control synthesis [62]. More
importantly, the quantitative semantics of STL offer a measure

of the robustness of an STL specification ρ(st , φ), thereby
quantifying the satisfaction or violation of the specification
φ given a specific signal st . Positive robustness values, i.e.,
ρ(st , φ) > 0, indicate specification satisfaction, while negative
robustness values indicate a violation. The authors in [63]
present STLCG, a tool that transforms STL formulas into
computational graphs to be used in gradient-based problems
such as neural network learning. To this end, we leverage a
similar technique to formally incorporate desired locomotion
safety behaviors into our learning framework by encoding STL
specifications as additional loss functions that penalize STL
formula violation [63], [64].

We derive locomotion specifications based on our previously
introduced Reduced-Order Model (ROM) safety theorems [3]
and our empirical knowledge about the locomotion safety of
Digit [25] during our experiments. To maintain balance, we
must bound the ROM Center of Mass (CoM) velocity based
on step length and heading change [3]. Therefore, we design
STL specifications to regulate cego

[t,t f ]
to limit the sagittal and

lateral COM velocities as well as the heading change between
consecutive walking steps, based on prespecified thresholds.

1) Locomotion Velocity Specification φvel: Let svsag

[t+1,t f ]
and

svlat
[t+1,t f ]

be signals representing the velocity of cego
[t,t f ]

(via finite
difference) in the sagittal and lateral directions, respectively.
The locomotion velocity specification has:

φsag = □[t+1,t f ](s
vsag

[t+1,t f ]
≤ vmax ∧ svsag

[t+1,t f ]
≥ vmin),

φlat = □[t+1,t f ](s
vlat
[t+1,t f ]

≤ vlat ∧ svlat
[t+1,t f ]

≥ −vlat),

φvel = φsag ∧ φlat, (8)

where □[a,b](c) denotes that specification c must be satisfied
for all t ∈ [a, b]. We represent this via a loss:

Lφvel = ReLU(−ρ((svsag , svlat), φvel))︸ ︷︷ ︸
velocity violation

(9)

2) Heading Change Specification φ1θ : Let s1θ
[t+1]

be a signal
equal to the heading change between cego

t and cego
t+1. The

heading change specification is:

φ1θ = □[t+1,t f ](s
1θ
[t+1,t f ]

< 1θmax ∧ s1θ
[t+1,t f ]

> −1θmax)

Therefore, we propose the following loss:

Lφ1θ
= ReLU(−ρ(s1θ , φ1θ ))︸ ︷︷ ︸

heading change violation

(10)

We sum the STL locomotion losses into a single term LSTL.
The network is trained end to end using the following loss
function:

L = α1LK L + α2LZ + α3LSTL (11)

where αi are weighting coefficients.

VI. ZONOTOPE REFINEMENT FOR SOCIAL ACCEPTABILITY
AND UNCERTAINTY PARAMETERIZATION

In this section, we introduce two types of zonotope refine-
ments for the ego-agent based on (1) personal space preference
for increased social acceptability, and (2) modeling error
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compensation of robot dynamics discrepancy between the
ROM and the full-order model of our Digit robot.

Remark 2: Our key insight is that, by using zonotopes as
the output format for our neural networks, we can easily
postprocess the network outputs to incorporate sources of
error that would be either difficult for the neural network to
learn directly, or may change at runtime when the network
cannot be retrained.

A. Personal Space Modulation

One key consideration for social acceptability is the personal
space surrounding every agent [65]. We leverage the adaptable
nature of zonotope parameterization, which can be modulated
in specific directions, to develop personal space generators.
These generators are inspired by the sociological study of
proxemics [65] and its application to social navigation [66],
[67]. The personal space generator matrix, GPS, is formulated
as follows:

GPS
= diag(a, b) ·

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(12)

The parameters a and b represent the scalar distances that
define the personal space along the sagittal and lateral axes,
respectively. These distances are rotated by the angle θ to
align the personal space with the ego-agent’s current walking
orientation in both directions as shown in Fig. 8(a). We then
modify the ego-agent’s zonotope in a straightforward way:
Ẑego

= Z (cego, [Gego GPS
]).

B. Robot Modeling Error Compensation

Using zonotopes as a representation of reachable sets allows
for online compensation for the robot dynamics discrepancy
between the ROM and the full-order model of our Digit robot.

We learn the modeling errors using Gaussian Process (GP)
regression [68], [69], which we train offline. Our model’s
input is the current sagittal velocity of the robot vloc

q and
the MPC previous optimal solution for (vloc

∗
, u1θ

∗
). We chose

these parameters as representative state variables because they
effectively represent the key parameters contributing to the dis-
crepancy between the ROM and low-level ALIP controller [1].
The GP model then outputs the expected mean deviation
µ = (µx , µy) and variance σ = (σ 2

x , σ 2
y ) in robot’s Euclidean

position at the next walking step (See Fig. 2). The Gaussian
mean from the GP model is used to design a new generator
matrix Gµ

= diag(µx , µy) such that the ego-agent’s zonotope
becomes Ẑego

q+1 = Z (cego, [Gego GPS Gµ
]) to compensate for

the anticipated mismatch between the ROM dynamics and the
full-order dynamics (see Fig. 8(b)).

VII. SOCIAL MPC

To safely navigate the human-crowded environment we
propose to solve the following trajectory optimization problem
that encodes the SZN in the previous section as constraints:

min
X,U

N−1∑
q=0

J (xq , uq) + JN (xN ) (13a)

Fig. 8. Two types of zonotope refinements: (a) zonotope refinement based
on personal space preference for improved social acceptability, where the
generators in GPS are in the local sagittal and lateral directions as shown by
the pink arrows. (b) zonotope refinement based on a learned GP model of the
model discrepancy between ROM and full-order models, where the generators
in Gµ are in the global x and y directions as shown by the orange arrows.

s.t. xq+1 = 8(xq , uq), ∀q (13b)
x0 = xinit, (xq , uq) ∈ XUq , ∀q (13c)

pego
q+1 ∈ Ẑego

q+1(1 pego
q , Eq), ∀q (13d)

Ẑego
q+1(1 pego

q , Eq)
⋂
Z pkq

q+1 = ∅, ∀ q, kq (13e)

where the decision variables include a state sequence X =

{x1, . . . , xN } and a control sequence U = {u1, . . . , uN−1},
the running and terminal costs (13a) are designed to reach
the goal and promote social acceptability, subject to the ROM
dynamics (13b) (Sec. III-A). Constraint (13d) requires the
ego-agent at the next (q + 1)th walking step to stay within the
reachable set, while constraint (13e) requires the ego-agent
to avoid collision with the pedestrians. Eq = (T pk

[tp,t],q ,G)

denotes the environment state at the q th walking step. Next,
we will introduce the kinematics constraints in Sec. VII-A,
and navigation constraints in Sec. VII-B, social acceptability
cost function (Sec. VII-C), and finally reformulate the MPC
in (13) with a version for implementation (Sec. VII-D).

A. Kinematics Constraints

To prevent the LIP dynamics from taking a step that is
kinematically infeasible by the Digit robot, we implement the
following constraint

XUq = {(xq , uq) | xlb ≤ xq ≤ xub and ulb ≤ uq ≤ uub}

(14)

where xlb and xub are the lower and upper bounds of xq

respectively, and ulb and uub are the bounds for uq (See Fig. 4).

B. Reachability and Navigation Safety Constraints

To enforce navigation safety (i.e., collision avoidance),
we require that Digit remains in the social zonotope Zego and
outside of the surrounding pedestrians reachable set Z pk .

1) Reachability Constraint: For the robot’s CoM to remain
inside the desired zonotope for the next walking step Ẑego

q+1,
we represent the zonotope using half-space representation as
shown in Prop. 7. The constraint is reformulated as such:

max( Âego pego
− b̂ego) ≤ 0 (15)
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Fig. 9. Illustration of the terminal goal angle θG , a state dependent on the
initial state x0. θG is designed to guide the ego-agent towards the final goal
location. SZN-MPC optimizes over N walking step horizon such that the
ego-agent heading at the end of the planning horizon θN aligns with θG(x0).
After executing a walking step (see the figure on the right), we update θG(x0)
based on the new initial state x0 for the ego-agent.

Fig. 10. Illustration of the social acceptability cost. In the initial step
in the optimization horizon (figure on the left), the learned social path
Ẑego(1 pego

0 ,E0) is shown in the red zonotopes, and the active constraint
is x1 ∈ Ẑego

1 (1 pego
0 ,E0). In the following step in the optimization horizon

(figure on the right) the learned social path Ẑego(1 pego
1 ,E1) (shown by the

cyan zonotopes) is based on the current environment state E1 and ego-agent
current location pego

1 , and the active constraint is x2 ∈ Ẑego
2 (1 pego

1 ,E1). The
social acceptability cost aims to minimize the difference between the centers
ĉsocial

q (red dots) of Ẑego
q (1 pego

0 ,E0) ∀q and the ego-agent ROM CoM pego
q

(cyan dots). The arrows between the social path centers ĉsocial and ego-agent
ROM CoM pego indicate the distance that the social acceptability cost aims
to minimize ∥ĉsocial

q − pego
q ∥.

2) Navigation Safety Constraint: For pedestrian collision
avoidance, we require that the reachable set of the ego-agent
does not intersect with that of the pedestrians for each walking
step. Therefore, we design a new zonotope for the ego-agent
as Minkowski sum of the ego-agent’s zonotope and the
pedestrian’s zonotope centered around the ego-agent Zmink

=

Z (cego, [Gego GPS Gµ G pk ]) to check for collision with the
pedestrians’ zonotope following Prop. 6. We then represent
Zmink using a half-space representation parameterized by Amink

k
and bmink

k , as per Prop. 7, and require that the pedestrian
position is outside the Minkowski-summed zonotope. Thus,
for each k th pedestrian, we have the following constraint:

max(Amink
k pk − bmink

k ) > 0. (16)

C. Cost Function and Social Acceptability Metric

Our MPC cost function is designed to drive the CoM state
to a goal location G and to promote social acceptability. The
terminal cost penalizes (i) the distance between the current
ROM state and the global goal state G in the 2D world
coordinate, and (ii) the ego-agent heading angle deviation from
the heading angle pointing toward the final goal location (see
Fig.9) to avoid abnormal walking gaits, such as the robot
moving toward the goal while walking backward.

JN (xN ) = ∥xN − xG∥
2
W1

+ ∥θN − θG(x0)∥
2
W2

(17)

where xG = (G, vterminal), G = (xdest, ydest), and θG(x0) is the
angle between the ego-agent’s current position and the final
goal location G (see more details in Fig. 9).

The MPC constrains the ROM CoM pego
q to stay within the

ego-agent’s zonotope (13d) and avoid collisions (13e). These
constraints, along with the changes in the environment (Eq ̸=

Eq+1, ∀q), might cause the generated ROM CoM pego
q trajec-

tory to deviate from the learned social path Ẑego
q+1(1 pego

0 , E0)

with the centers ĉsocial
q , ∀q . This social path is generated

from the initial environment E0. Therefore, we incorporate a
social acceptability metric by creating a cost that penalizes
deviation of the ROM CoM pego

q from the learned social
path Ẑego

q+1(1 pego
0 , E0) as shown in Fig. 10. We set the social

acceptability metric as: (1) the distance between the ROM
CoM pego

q and the centers of the learned social path ĉsocial
q ,

and (2) the difference between the ego-agent current heading
θq and social heading angle θ social, i.e., the angle between the
ego-agent’s initial position and the ĉsocial

N , as shown in Fig. 10.
Thus, we set the running cost of social acceptability as follows:

Jsocial(xq) = ∥ĉsocial
q − pego

q ∥
2
W3

+ ∥θ social
− θq∥

2
W4

(18)

Including such social acceptability metric as a cost function,
will guide SZN-MPC to generate the CoM trajectory that (1)
tracks the learned social path Ẑego

q+1(1 pego
0 , E0), (2) is within

the next zonotope based on the current environment state Eq ,
and (3) is collision-free (i.e., constraints (13d)-(13e)).

Remark 3: The initial output of the neural network
Ẑego

q+1(1 pego
0 , E0) is not guaranteed to be collision-free at every

walking step in the planning horizon. Therefore, we treat social
acceptability as a cost, not a constraint, to prioritize safety.

D. Social Zonotope Network MPC Formulation

To enable numerical implementation, we reformulate our
Social Zonotope Network MPC (SZN-MPC) shown in (13)
based on the aforementioned costs and constraints as follows:

min
X,U

N−1∑
q=0

Jsocial(xq) + JN (xN ) (19a)

s.t. xq+1 = 8(xq , uq), ∀q (19b)
x0 = xinit, (xq , uq) ∈ XUq , ∀q (19c)

max( Âego
q+1 pego

q+1 − b̂ego
q+1) ≤ 0, ∀q (19d)

max(Amink
q+1 pkq+1

−bmink
q+1 ) > 0, ∀ q, kq (19e)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 22,2024 at 04:30:48 UTC from IEEE Xplore.  Restrictions apply. 



SHAMSAH et al.: SOCIALLY ACCEPTABLE BIPEDAL ROBOT NAVIGATION VIA SZN MODEL PREDICTIVE CONTROL 11

where the kinematics constraint in (19c) is implemented
using the local dynamics (1x loc, vloc). We provide detailed
implementation parameters in Table I.

VIII. RESULTS

In this section, we comprehensively analyze our framework
via three experiments. The first experiment assesses social
acceptability and locomotion feasibility of our proposed SZN-
MPC. The second experiment benchmarks SZN-MPC agaist
a baseline approach of LIP-based MPC using adiscrete-time
control barrier function (DCBF-MPC) for dynamic obstacle
collision avoidance and trajectory planning. The final experi-
ment tests the feasibility of implementing SZN-MPC on our
Digit robot hardware. The section starts with implementation
details.

A. Implementation Details

1) Training: The social path planner module introduced
in Sec. V was trained on the UCY [70] and ETH [71]
crowd datasets with a standard leave-one-out approach, similar
to prior studies [40], [41], [42], [72]. More specifically,
we excluded the UNIV dataset from the training examples,
and used it for testing.7 To evaluate the performance of incor-
porating robot-locomotion-specific STL specifications into the
training, we trained two neural network models with and
without the added robot-specific losses introduced in Sec. V-C.
We employ a historical trajectory observation T pk

[−8,0]
for all

neighboring pedestrians that are within a radius of 4 m and
a prediction horizon T̂ ego

[0,8]
. For both pedestrians and the ego-

agent, the duration of 8 timesteps takes 3.2 s (8×0.4 s = 3.2 s).
The network architecture details are shown in Table II. The
SZN is implemented and trained using PyTorch [73].

2) Pedestrian Simulation: To simulate pedestrian motion
in simulation, we use SGAN (Social Generative Adversarial
Network) [41], a state-of-the-art human trajectory prediction
model, following the approach taken in [17]; this ensures a
fair evaluation by avoiding simulating pedestrians with our
own model. SGAN is designed to represent social interactions
and dependencies between pedestrians by considering social
context, including how people influence each other and move
in groups. To achieve this, SGAN incorporates historical
trajectories of pedestrians and the ego-agent. This enhances
the realism of the simulation by accounting for interactions
between the ego-agent and pedestrians in the environment.

3) Testing Environment Setup: The environment for all
simulations is an open space of 14 × 14 m2, with randomly
generated pedestrians’ initial trajectory. The goal location is
G = (6, 12) m, and the ego-agent starting position is uniformly
sampled along the y-axis as such x0 = (0,U[0,13], 0) with
θ0 = 0. The MPC is solved with a planning horizon of
N = 4. SZN-MPC parameters are included in Table. I.
Simulations and training are conducted using a 16-core Intel
Xeon W-2245 CPU and an RTX-5000 GPU with 64 GB of
memory. The SZN-MPC is implemented using do-mpc Python
libraray [74] and CasADi [75]. Digit is simulated using the

7The datasets can be found in [40].

TABLE I
SZN-MPC PARAMETERS

MuJoCo simulator provided by Agility Robotics [25] and
visualized using Nvidia Isaac Gym [76], which allows an
animation of pedestrian characters in the environment.

B. Experiment 1: Social Acceptability and Locomotion
Feasibility

We now evaluate the social acceptability of our system’s
generated paths, and the feasibility of the generated path for
bipedal locomotion.

1) Setup and Metrics:
a) Social acceptability: We quantify social acceptability

using two methods. First, we measure the average displace-
ment error (ADE) and final displacement error (FDE) of ESN’s
planned path compared to the ground truth:

ADE =

∑t f −1
i=1 ∥T ego

mid,i − cego
i ∥

t f − 1
, (20)

where cego
i is the ground truth data and T ego

mid,i is the ESN
prediction output. Second, we compare our social acceptability
metric when running SZN-MPC with and without the social
acceptability cost function. For Digit to achieve a socially
acceptable path, it must track the path produced by ESN,
by assuming that ESN’s ADE = 0.218 < ϵ as defined in
Definition. 4.

b) Locomotion feasibility: For locomotion feasibility,
we compare the tracking performance of the ROM to the social
path with and without the locomotion losses introduced in
Sec. V-C.

2) Results and Discussion: Fig. 11(a) shows that ESN
produces an ADE= 0.218 m over the prediction horizon of
7 timesteps,8 and FDE= 0.447 m. Fig. 11(b) shows that we
are able to reduce the social acceptability cost when running
SZN-MPC (19) with the social running cost Eq. (18), thus,
promoting social acceptability by tracking the path of ESN.
Fig. 12 shows the results of a planned trajectory of SZN-MPC
with and without social acceptability cost (18).

We find that integrating locomotion losses into ESN training
reduces the number of locomotion safety violations (i.e.,

8The prediction horizon timesteps is 7 and not 8, since the displacement
error is calculated based on the middle points T ego

mid of T ego
[1,8]

.
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Fig. 11. Quantitative results of social acceptability: (a) Show the displace-
ment error between the prediction of ESN cego and the ground truth data
T ego

mid . The data is collected based on the UNIV dataset with 7831 unique
frames. The solid line shows the average displacement error at each prediction
horizon. (b) shows the social acceptability metric for 5 different trials with
30 pedestrians and 100 walking steps in each trial. The social acceptability
metric is reduced when Problem (19) is solved with the social cost (18), thus
yielding a socially acceptable path.

Fig. 12. Qualitative results of social acceptability: comparison of different
social acceptability levels. (a) shows a socially acceptable trajectory generated
by SZN-MPC with social acceptability cost (18), as the ego-agent’s planned
path (shown in blue) follows the predicted social path of ESN (shown in
red), while (b) shows a trajectory generated by SZN-MPC without social
acceptability cost (18) where a larger deviation is observed between the
ego-agent’s planned path and the predicted social path of ESN.

Fig. 13. Violin plots of ESN test results with and without STL locomotion
losses are shown in blue and red, respectively. The shaded green region is
where the heading change specification (a), and locomotion velocity specifi-
cation (b) are satisfied, i.e., ρ(s1θ , φ1θ )) < 0 and −ρ((svsag , svlat ), φvel) < 0.
The solid vertical line represents the mean value of −ρ, while the dot
represents the median. The data is collected based on the UNIV dataset with
7831 unique frames. (c) Shows the social acceptability metric when ESN is
integrated with SZN-MPC with and without the locomotion losses.

specifications (9) and (10), as seen in Fig. 13(a)-(b). This
means that SZN-MPC can generate trajectories that achieve
improved tracking of the socially acceptable path as shown in
Fig. 13(c). These results indicate that locomotion losses shape
our ESN output to comply with the capabilities of bipedal
locomotion.

Fig. 14. Block diagram of (a) coupled SZN-MPC and (b) decoupled
SZN-MPC.

C. Experiment 2: Benchmarking

We compare coupled and decoupled versions of our method
with a baseline approach for LIP-based MPC that uses a
discrete-time control barrier function (DCBF-MPC) for col-
lision avoidance of dynamic obstacles [6], [57]. We compare
the conservativeness of the produced trajectory, social accept-
ability, safety and optimality, and finally the computational
cost.

1) Setup of Baselines:
a) Coupled SZN-MPC: In this setup, the prediction

(PPN) and planning (ESN) networks are coupled during
trajectory optimization, where the MPC reasons about the
effect of the ego-agent’s control on the future prediction of
the pedestrians. A block diagram of this model is shown in
Fig. 14(a).

b) Decoupled SZN-MPC (dec): In this setup, PPN and
ESN are decoupled. Before each solve of (19), the pedestri-
ans’ future prediction is conditioned on the optimal solution
from the previous MPC solve for the ego-agent and is fixed
throughout the optimization for the current solve. That is, the
PPN module is queried only once for each MPC solve. A block
diagram of this model is shown in Fig. 14(b).

Remark 4: For clarification, our decoupled SZN-MPC is
not considered as the category of the decoupled social naviga-
tion literature as explained in Sec. II-A, since the PPN module
is conditioned on the ego-agent next planned walking step.
Thus, our decoupled SZN-MPC can be viewed as a coupled
social navigation method in the literature.

c) DCBF-MPC: We compare our path plan to that gener-
ated by a LIP-based MPC with a DCBF for navigation safety,
where we substitute (19d) and (19e) with a DCBF:

h( pego
q+1, pkq+1

) ≥ (1 − γ )h( pego
q , pkq

), ∀ kq (21)

where (1 − γ ) is a class K∞,e, 0 < γ ≤ 1 [58], [77], and
h( pego

q , pkq
) is a distance metric defined as:

h( pego
q , pkq

) = ∥
1
r
( pego

q − pkq
)∥ − 1 (22)

and the optimization is initialized with h( pego
0 , pk0

) ≥ 0 .
For this model, we also use PPN as a prediction module
for the surrounding pedestrians, and SGAN as the pedestrian
simulator.
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Fig. 15. Storyboard snapshots of SZN-MPC trajectory at different walking steps. The ego-agent (cyan) successfully reaches the goal (yellow ⋆) while avoiding
pedestrians (green). The dashed circle is the sensory radius of the ego-agent. Blue dots represent the CoM of ROM, and black × is the desired foot placement.
Green dots are unobserved pedestrians.

Fig. 16. Benchmarking results for the ego-agent’s (a) velocity, (b) optimality: number of walking steps to reach within 1 m of the final goal, (c) frequency, and
(d) safety: minimum distance to pedestrians. The data consists of 20 different trials with random initial conditions and a fixed goal location (see Sec. VIII-A3).
Each trial is limited up to 100 walking steps. The velocity data is collected before reaching the goal, to avoid collecting a stopping velocity. The frequency
is calculated based on a data collection of 300 walking steps, and the green shaded area in (c) is the minimum required computation time of SZN-MPC for
Digit hardware implementation. (d) the dashed red line is 0.5 m which is r in (22), and what is considered as d in navigation safety in Definition. 3.

2) Results and Discussion: SZN-MPC outperforms the
other baselines in creating socially acceptable robot motion
while maintaining safety (snapshots of SZN-MPC are shown
in Fig. 15). Our method has slower computation time, but is
still fast enough for real-time implementation. We detail and
discuss these results below.

a) Conservativeness: In Fig. 16(a), all three models
produce relatively similar median velocities over the testing
data. However, coupled SZN-MPC and decoupled SZN-MPC
produce more consistent velocities. Our proposed method is
more efficient with respect to the number of steps taken to
reach the goal Fig. 16(b), and has less variation in velocity
while maintaining similar safety performance (see Fig. 16(a)
and (d)). The high variability in velocity from DCBF-MPC
indicates adaptability in a dynamic environment, but this does
not translate to a safer path in a densely crowded environment.
Indeed, it generates the same level of safety as SZN-MPC,
since it results in a similar minimum distance to the surround-
ing pedestrians (See Fig. 16(a) and (d)).

b) Social acceptability: SZN-MPC produces a more con-
sistent and predictable behavior for the ego-agent compared
to DCBF-MPC, as indicated by the the smaller interquartile
range in Fig. 16(a). Predictability of the ego-agent behavior in
a social context is desirable by pedestrians as it is perceived
to be less disruptive.

Remark 5: The coupled SZN-MPC and decoupled SZN-
MPC produce similar results. We believe that this is because,
although the decoupled SZN-MPC only evaluates the PPN
module once for each MPC solve and fixes the pedestrian
prediction during the optimization, this MPC is re-solved

for every walking step. Thus, this receding-horizon strategy
indirectly couples the pedestrian prediction with the ego-agent
planning.

c) Safety and optimality: All three methods produce
comparable safety performance by maintaining a similar min-
imum distance to the pedestrians as shown in Fig. 16(d).
However, SZN-MPC consistently generates a more optimal
path, as indicated by the lower number of steps taken to reach
the goal (see Fig. 16(b)). Thus, we are not sacrificing safety
by moving faster. SZN-MPC generates optimal paths for the
ego-agent due to its proactive approach, i.e., the SZN-MPC
generates future reachable sets that take into account not
only the collision avoidance but also social influence from all
surrounding pedestrians. On the other hand, DCBF-MPC is
reactive, as it only reacts to the PPN predictions of the pedes-
trians to avoid collisions. This reactivity leads to the “freezing
robot problem” [39], as evidenced by the low velocities that
DCBF-MPC generates, specifically in environments with high
crowd densities 16(a).

Remark 6: The pedestrian simulation lacks assurance of
generating non-adversarial paths. Despite considering the
ego-agent’s position, there are occasional cases where the
simulator generates paths for pedestrians that intersect with
the ego-agent and other pedestrians. In our real-world
experiments, we operate under the assumption of pedestrian
collaboration and non-adversarial behavior towards the ego-
agent, following social norms.

d) Computational cost: The three models’ computational
costs are different by orders of magnitude, where DCBF-MPC
is 102 times faster than the coupled SZN-MPC and 10 times
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Fig. 17. A storyboard snapshots of the hardware experiments with 5 pedestrians. In this experiment, the first group consists of three stationary pedestrians
standing in place, while the other group consists of two pedestrians walking towards Digit.

faster than the decoupled SZN-MPC as shown in Fig. 16(c).
Note that, the MPC is used as a step planner for Digit, and it
only needs to be solved once before the swing phase of the
walking motion ends. Since the commanded step duration is
0.4 s, which is the minimum computational time required for
hardware implementation, the SZN-MPC needs to be solved
at a rate of at least 2.5 Hz (Sec.VIII-D1.a). Based on the
testing parameters (Sec.VIII-A), the coupled SZN-MPC is not
viable for hardware implementation. Therefore, we conclude
the decoupled SZN-MPC outperforms the coupled version, and
use the decoupled SZN-MPC for our hardware implementa-
tion. Computational efficiency can be improved by reducing
the planning horizon N and the number of pedestrians in the
environment.

D. Experiment 3: Hardware Validation in A Human Crowd

We conduct a series of hardware experiments to showcase
the versatility of our proposed method in reliably navigating
social settings with pedestrians across various scenarios. We
also seek to validate our network architecture choices for
learning the pedestrians’ future path prediction and the ego-
agent’s future path directly as zonotopes, which facilitate
real-time implementation of our framework on Digit’s onboard
PC.

Remark 7: The personal space modulation and modeling
error compensation in Sec. VI are included in this hardware
experiment. Without such refinements, we found that Digit’s
trajectory was often very close to the surrounding pedestrians.
A key feature of the zonotope parametrization is that it allows
us to compensate for desired behaviors downstream without
the need to retrain the SZN.

1) Setup:
a) Low-level full-body control: At the low level we use

the Angular momentum LIP planner introduced in [1], and

a Digit’s passivity controller with ankle actuation which we
have previously shown to exhibit desirable ROM tracking
results [3]. Here we set the desired walking step time and the
desired lateral step width to be 0.4 s and 0.4 m, respectively.

b) Experiment design: Our experimental setup uses an
indoor VICON motion capture system [78] to measure the
current position of the surrounding pedestrians pk0

. The coor-
dinates of pedestrians are sent over to SZN-MPC every 0.4 s
to match the human crowd dataset SZN is trained on. SZN-
MPC then solves for the ego-agent’s social trajectory and
sends the next desired CoM velocity and heading change
(vloc

q+1, θq+1) to the low-level controller. The prediction, plan-
ning, and low-level control are executed on Digit’s onboard
PC and in real-time, with a walking step horizon N = 4.
The experimental space in 6 × 3 m2, Digit’s starting position
is pego

0 = (0, 0) m with θ0 = 0◦, and the goal location is
diagonally across the experiment space at G = (5.72, 1.18) m
(see Fig. 17).

2) Results and Discussion: Our framework is demonstrated
in various mock social scenarios.9 In Fig. 17, we depict a
social scenario involving two groups of pedestrians. The first
group consists of three stationary pedestrians, while the other
group consists of two pedestrians walking towards Digit. Our
results show that SZN accurately predicts the two groups’
behaviors and safely navigates toward the goal location marked
by the yellow star. Digit adjusts its position closer to the
stationary group to avoid collision with the approaching pedes-
trians. Three different scenarios are also shown in Fig. 18.
In Fig. 18(a), pedestrians move towards the center of the
space from different directions and continue their path out
of the experimental space. In Fig. 18(b), one group walks
alongside Digit in a row while the other group of pedestrians

9Videos of the experiments, code, and supplemental materials are found
here https://szn-mpc.github.io/
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Fig. 18. Snapshots of three different testing scenarios. (a) depicts pedestrians walking in different directions. (b) illustrates a group of pedestrians walking
alongside Digit in a row while the other group walks towards Digit. (c) demonstrates two groups walking in the direction opposite to Digit. In the first column,
green arrows indicate the direction of the pedestrians’ movement, while a cyan arrow indicates Digit’s direction, and the yellow star is the final goal position
for Digit.

Fig. 19. Hardware experiment results: in (a) we show the torso heading
tracking performance, and CoM sagittal velocity tracking performance in (b),
and in (c) we show the experimental CoM position with superimposed Digit
illustration. The vertical gray lines indicate the foot contact switching instants
of each walking step.

walks in the opposite direction. In Fig. 18(c), two groups of
pedestrians walk towards Digit but with a slightly different
lateral direction. In all scenarios, Digit successfully generates
socially acceptable and safe paths while maintaining proactive
forward motion.

Fig. 19 illustrates the tracking performance comparisons
between the desired (vloc, θ) from SZN-MPC and the actual
hardware responses of Digit. Fig. 19(a) shows the tracking
performance of the heading for Digit θ , and Fig. 19(b) shows
the CoM sagittal velocity vloc tracking performance. The
continuous desired velocity profile is the desired continuous
ROM velocity based on vloc [1], [3]. SZN-MPC updates the

target parameters (vloc, θ) at every walking step, with vertical
gray lines marking the foot contact events. Discrepancies
are bound to occur when using a ROM plan to control a
full-order system. These issues become especially noticeable
with elements like body orientation (see Fig. 19(a)), which
the ROM does not explicitly account for. While our current
framework enables compensating for this model mismatch at
runtime, for future work, we aim to explore incorporating more
accurate models into our SZN-MPC.

Altogether, our hardware experiments demonstrate the effi-
cacy of our proposed approach; our design choices for the
SZN architecture, the ROM-based motion planner, and the
reachable-based collision avoidance collectively enabled safe
and real-time social navigation on Digit.

IX. LIMITATIONS AND DISCUSSIONS

We now discuss the limitations of our proposed framework,
including the assumptions underpinning our social acceptabil-
ity evaluation, the computational demands of our approach,
and the constraints related to the locomotion gait of our bipedal
robot.

A. Social Acceptability Evaluation and Datasets

The core assumption underlying our framework is that the
paths recorded in human crowd datasets [70], [71] repre-
sent socially acceptable trajectories. Although this assumption
may hold true, we acknowledge that in practical, real-world
implementations, human crowds may behave differently in
the presence of a bipedal robot. This presents a significant
challenge. Collecting data on human’s social reaction with
Digit does not ensure that pedestrians will behave naturally.
Since the presence of bipedal robots in social settings is still
relatively new and potentially intimidating, it may influence
pedestrian’s social navigation behavior. One way to potentially
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address this issue would be to use a human pedestrian simula-
tion in which the simulated pedestrians perceive the robot as
another pedestrian within the scene, similar to the approach
used in this work. However, accurately simulating pedestrian
interactions remains a challenging task.

We base the design of socially acceptable paths for the
ego-agent on the past paths of pedestrians. To achieve more
comprehensive socially acceptable behavior for the ego-agent,
further considerations could include (i) design of a natural
walking gait for the robot such that the pedestrians are more
at ease around the robot ego-agent; (ii) analysis of the facial
expressions of surrounding pedestrians and adjusting the ego-
agent’s path accordingly; and (iii) incorporation of the social
scenario context such as shopping mall, airport, and hospital.

SZN is trained to directly output zonotopes that represent
the future trajectory prediction of the pedestrians and the
ego-agent. While this approach inherently compensates for
prediction distribution errors of the neural network, it does
not explicitly incorporate confidence bounds on these errors,
as seen in [26]. Unlike [26], where the zonotopes are con-
structed after predicting the Gaussian distribution of the future
trajectories—an approach that is computationally expensive
and limits real-time implementation—our method avoids this
by directly outputting zonotopes during training, a key feature
of our proposed method that significantly improves efficiency
for real-time integration with our MPC. Integrating such
quantitative bounds into the neural network training, partic-
ularly through loss functions that regulate the length of the
generators, we could provide statistical guarantees, ensuring
that the predictions remain robust to potential errors. We leave
this for future work.

B. Computational Cost and Outdoor Implementation

We opted for a relatively straightforward neural network
architecture to enable real-time implementation. However,
processing large crowds in real-time can be challenging. This
issue could be mitigated by employing a more advanced
filtering scheme (rather than the simple radius threshold used
in our study) to exclude pedestrians that do not impact the ego-
agent’s path. Ideally, this new filtering scheme could enable
an optimized neural network design that does not increase
the computational burden during the trajectory optimization
phase. Additionally, outdoor deployments may increase com-
putational demands due to the complexity of the environment,
which includes not only pedestrians but also static and
dynamic obstacles and other environmental components. Using
sensors to track pedestrians and processing this data on the fly
for SZN-MPC could extend the solve time beyond acceptable
limits.

C. Locomotion Gait

In our implementation, we constrain the walking gait to
maintain stable torso Euler angles and fixed arm motion.
In human locomotion, particularly in narrow spaces such as
corridors, socially acceptable behaviors often involve adjusting
the torso yaw angle while continuing straight center-of-mass
motion. By adjusting the torso, a person can reduce their

TABLE II
NETWORK ARCHITECTURE PARAMETERS

effective width, making it easier to pass by others without
direct contact. This subtle change in body orientation helps to
communicate intent and awareness of social norms, facilitating
smoother and more courteous interactions in confined areas.
In scenarios where forward movement is obstructed by stand-
ing pedestrians, the capability to walk sideways could provide
a more efficient and socially acceptable solution to navigate
around other pedestrians. Without this capability, the robot is
forced to either come to a complete stop or walk backward.

D. Environment and Task

Our framework only considers an open space environ-
ment with no static obstacles and a simple reach-avoid task.
To expand this capability, more complex navigation tasks in
an environment with both dynamic and static obstacles can
be implemented by using high-level planners hierarchically
connected as a layer on top of the SZN-MPC, e.g., formal task
planning methods as in [3]. This hierarchical approach allows
for better handling of more sophisticated tasks and possibly
adversarial environmental events. Furthermore, the modeling
error GP in Sec. VI-B can be expanded to include terrain
profile uncertainty, enabling the robot to navigate complex and
rough terrain [69], [79].

We acknowledge that a social environment may include
various dynamic agents beyond walking pedestrians, such
as bicycles, cars, and scooters. These agents typically move
faster and are geometrically larger than pedestrians. For faster-
moving agents, their observed past trajectories implicitly
encode the velocity information, since for faster-moving agents
the spacing between the discrete position observations of the
pedestrian (T pk

[tp,t],q ) will be longer than slow-moving agents
given a constant step time (0.4 s for the dataset we use).
This observation will allow SZN to predict future trajectories
that account for the observed velocity in an implicit way.
In the case of larger agents, our framework can be further
enhanced by identifying the type of agent [80] and adjusting
the generators of the predicted zonotopes to accommodate
their size and motion characteristics. Exploring these dynamic
agents different from pedestrians is out of the scope of our
framework, which merely focuses on pedestrian-based social
navigation.
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X. CONCLUSION

Integration of bipedal robotic systems in real-world environ-
ments is still an open problem, specifically in human-oriented
environments. These environments are less predictable and
require a nuanced level of social interaction between the robot
and humans.

Towards solving this problem, we presented a novel
approach for socially acceptable bipedal navigation. At the
core of our framework is SZN, a learning architecture for
reachability-based prediction of future pedestrian reachable
sets and planning a socially acceptable reachable set for
the robot parameterized as zonotopes. Zonotopes allowed for
efficient modulation of the reachable set based on modeling
uncertainty and personal space preferences. Our integration
of SZN into MPC allowed for real-time pedestrian trajectory
prediction with bipedal motion planning. SZN-MPC optimizes
over the output of the neural network, with a novel cost
function designed to encourage the generation of socially
acceptable trajectories, striking a balance between efficient
navigation and adherence to social norms. The extensive
validation through simulations and hardware experiments
solidifies the effectiveness of the proposed framework.

APPENDIX A
DERIVATION OF LINEAR INVERTED PENDULUM MODEL

In a manner similar to the derivation of the step-to-step
discrete Linear Inverted Pendulum (LIP) dynamics as in [6]
and [57], the continuous motion of the LIP dynamics in the
sagittal direction is governed by ẍ loc

= −(g/H)u f , where g is
the gravitational acceleration, H is CoM height, and u f is the
sagittal distance of the stance foot from CoM. The closed-form
solution is given by[

x loc(t)
vloc(t)

]
=

[
1 sinh(ωt)/ω
0 cosh(ωt)

][
x loc(0)

vloc(0)

]
+

[
1 − cosh(ωt)
−ω sinh(ωt)

]
u f

where ω =
√

g/H . Setting each step duration to a constant
T , such that the state at the (q + 1)th step is xq+1 = xq(T ),
we obtain the step-to-step discrete LIP model as:[

x loc
q+1

vloc
q+1

]
=

[
1 sinh(ωT )/ω

0 cosh(ωT )

][
x loc

q
vloc

q

]
+

[
1 − cosh(ωT )

−ω sinh(ωT )

]
u f

q

Therefore the sagittal CoM position change in one walking
step can be expressed as:

1x loc
= x loc

q+1 − x loc
q = vloc sinh(ωT )/ω + (1 − cosh(ωT ))u f

q

To obtain the dynamics x = ( p, vloc, θ), where p = (x, y),
we introduce the heading change based on u1θ

q = θq+1 −θq to
the sagittal dynamics and obtain the following set of dynamics
as in (3):

xq+1 = xq + 1x loc cos(θq)

yq+1 = yq + 1x loc sin(θq)

vloc
q+1 = cosh(ωT )vloc

q − ω sinh(ωT )u f
q

θq+1 = θq + u1θ
q
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