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Abstract—Humanoid robots have great potential to perform
various human-level skills. These skills involve locomotion, ma-
nipulation, and cognitive capabilities. Driven by advances in
machine learning and the strength of existing model-based
approaches, these capabilities have progressed rapidly, but often
separately. Therefore, a timely overview of current progress and
future trends in this fast-evolving field is essential. This survey
first summarizes the model-based planning and control that have
been the backbone of humanoid robotics for the past three
decades. We then explore emerging learning-based methods, with
a focus on reinforcement learning and imitation learning that
enhance the versatility of loco-manipulation skills. We examine
the potential of integrating foundation models with humanoid
embodiments, assessing the prospects for developing generalist
humanoid agents. In addition, this survey covers emerging re-
search for whole-body tactile sensing that unlocks new humanoid
skills that involve physical interactions. The survey concludes
with a discussion of the challenges and future trends.

Index Terms—Humanoid robotics, Loco-manipulation, Model
predictive control, Whole-body control, Imitation learning, Foun-
dation models, and Whole-body tactile sensing.

I. INTRODUCTION

Humanoid robots are well suited for executing human-level
tasks, as they are built to (ideally) replicate human motions
in achieving various whole-body loco-manipulation tasks,
e.g., applications ranging from manufacturing to services,
as shown in Fig. 1. Their anthropomorphism makes them
stand out from other robot forms in terms of these human-
like tasks. Humanoid robots can interact with humans for
physical collaboration tasks, such as collaboratively moving a
heavy and large table upstairs and human assistance. However,
simultaneously achieving these intricate tasks while addressing
highly complex robot dynamics is still challenging, let alone
safe physical collaborations with humans and/or operations in
unstructured environments. As a promising direction to solve
this problem, humanoids could exploit the abundance of data
available for and/or from humans to quickly acquire motor and
cognitive skills. Therefore, leveraging human knowledge for
humanoid embodiment is potentially a fast route to embodied
intelligence.

*co-corresponding authors
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Fig. 1. Humanoids executing locomotion and manipulation tasks: (a) HRP-4
wipes a wood board while adapting to terrain [1]; (b-g) Object pick and place
by Digit, Hector [2], Atlas, H1, Justin [3], and Apollo; (h) iCub pushes a
cart [4]; (i) Nadia opens a door [5]; (j-k) Object manipulation by Figure 01
and Optimus; (l) MIT humanoid whole-body push recovery [6].

Cognitive and autonomous capabilities in robotics at large
are thriving at an unprecedented pace. Perception algorithms
can detect, classify, and segment a wide variety of objects
in real time. Model-based methods that leverage predictive
control and reactive control have enabled agile and reliable
locomotion and manipulation. Meanwhile, deep learning poli-
cies have demonstrated convincing control results on robot
hardware through exploration and imitation. Large foundation
models trained on massive, internet-scale datasets began to
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Fig. 2. This survey begins by defining relevant concepts of humanoid robots and their locomotion and manipulation capabilities. Centered around achieving
humanoid loco-manipulation tasks, the core of this survey delves into two main categories of methods: the traditional planning and control approaches, such
as contact planning, motion planning, and control, as well as the emerging learning-based approaches, including skill learning and foundation models. In
addition, this survey highlights whole-body tactile sensing as a crucial modality to achieve contact-rich loco-manipulation.

show capabilities of open-world reasoning. Consequently, the
building of autonomous humanoid robots for real-world ap-
plications has become possible, leading to the emergence of
many humanoid robot companies and concrete deployment ap-
plications. Especially with powerful GPU-based parallelization
capabilities, companies such as NVIDIA and companies with
physical humanoid technologies, such as Boston Dynamics,
Tesla, and Figure began collaboration on the embodied intel-
ligence of humanoid robots.

Acknowledging the rapid advancements in humanoid
robotics, this article reviews recent developments in Humanoid
Locomotion and Manipulation (HLM). As laid out in Fig. 2,
humanoid robotics is a multidisciplinary field that spans do-
mains in design, actuation, sensing, control, planning, and
decision-making. In this survey, we mainly examine task
planning, motion planning, policy learning, and control from
the perspective of model-based methods and learning-based
methods. Each of these topics has extensive studies, and we
aim to spotlight representative works within each topic. For
each section, we provide survey papers for further reading. We
first synthesize traditional model-based methods for planning
and control. Then, we shift our focus to more recent learning-
based approaches, especially those leveraging reinforcement

learning, imitation learning, and foundation models.
Model-based methods serve as the cornerstone for enabling

HLM capabilities. These methods depend critically on physical
models, which can significantly influence the quality, speed,
and guarantees of motion generation and control. Over the
past decade, planning and control techniques have shown a
trend of converging to the predictive-reactive control hierarchy,
employing a whole-body model predictive controller (MPC)
or simplified model (centroidal dynamics) MPC coupled with
local task-space Whole-Body Controllers (WBC) [7]. These
planning and control techniques are usually formulated as
Optimal Control Problems (OCPs) that are solved by off-
the-shelf or customized numerical solvers. Although these
numerical optimization methods are well-established, research
continues to focus on enhancing their computational effi-
ciency, numerical stability, robustness, and scalability for high-
dimensional systems.

Learning-based approaches have witnessed a rapid surge in
humanoid robotics and achieved impressive results that attract
an increasing number of researchers to the field. Among the
diverse learning approaches, Reinforcement Learning (RL) has
proven its ability to achieve robust motor skills. However,
despite its ability to discover novel behaviors via trial and
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error, pure RL without demonstration data is often pro-
hibitively inefficient for HLM tasks, which are characterized
by high degrees-of-freedom robots and sparse reward settings.
Therefore, training RL in simulation and transferring to the
real world has become the prevalent method, though it faces
the challenge of bridging sim-to-real gaps. However, imitation
learning (IL) from expert demonstrations has proven to be
an efficient method of acquiring motor skills. IL techniques
such as behavior cloning [8] have shown impressive abilities
to mimic a wide range of skills. In pursuit of versatile and
generalizable policies through IL, many researchers and com-
panies have focused on scaling data. Whereas robot experience
data can be diverse and high-quality, its acquisition is both
expensive and time-consuming. Thus, learning from human
data, which is abundant and readily available from Internet
videos and public datasets, emerges as a pivotal strategy for
humanoid robotics. Learning from humans is a unique ad-
vantage exclusive to humanoid robots. However, even though
humanoid robots may attain human-level motor skills, a deeper
question of embodied intelligence persists: how to learn the
intentions (source) behind human actions rather than merely
replicating the observed motions (outcome). It is hypothesized
that understanding human intention is achieved via Foundation
Models (FMs) capable of semantic interpretation of the envi-
ronment and the task. This hypothesis motivates us to include
FMs as a part of our survey.

The remarkable success of FMs has sparked a surge in
general robotics research, as highlighted by several compre-
hensive surveys [9, 10]. This paper reports on the application
of FMs for humanoid robots. FMs offer a promising solution
to the persistent challenge of generalizability in robotics by
efficiently harnessing internet-scale datasets to acquire exten-
sive knowledge. A pre-trained FM exhibits capabilities for
open-world reasoning and multimodal semantic understand-
ing. These capabilities are invaluable for robots engaged in
complex physical environments requiring long-term, logically
coherent task planning. Within the realm of humanoid robots,
FMs have been successfully implemented as task planning
modules in hierarchical planning and control frameworks.
However, FMs have not yet achieved robust execution of low-
level sensorimotor skills in an end-to-end process. Despite
the limited number of works dedicated to FMs for humanoid
applications, this field is increasingly active and poised for
significant future developments.

A. Survey Goals and Roadmap

The survey serves as an effective resource for graduate
students and researchers new to the field, offering a com-
prehensive review of humanoid technical methods, while also
providing perspectives for humanoid experts in academia and
industry with the latest advancements.

This survey is related to survey papers on humanoid
robotics [11, 12], and to the topics of model-based plan-
ning [13] and control [7], and learning-based methods [14].
Distinct from these survey papers, which focus on particular
sub-fields of humanoid robots, our paper aims to present a
broader overview, covering planning, control, and learning

topics, including RL, IL, and foundation models. These pro-
vide new insights, augment the loco-manipulation capabilities
enabled by traditional model-based approaches, and meet the
current trends of humanoid robots within both academia and
industry. In particular, we ask the following questions:

• Q1: What are the state-of-the-art methods, both model-
based and learning-based, that have already achieved
loco-manipulation skills on humanoid robots?

• Q2: What gaps still exist in achieving versatile and
generalizable humanoid robots?

• Q3: What methods are promising for addressing these
gaps?

As shown in Fig. 2, this survey is organized in the following
order. We first establish the background, defining humanoid
robots and the key capability of locomotion and manipulation
in Sec. II. We detail whole-body tactile sensing in Sec. III.
We then present traditional approaches that achieve loco-
manipulation, including contact planning (Sec. IV), motion
planning (Sec. V), and control (Sec. VI).

We then examine the state-of-the-art learning-based al-
gorithms. In Sec. VII, we explore approaches using rein-
forcement learning and imitation learning to acquire loco-
manipulation skills. In Sec. VIII, we discuss how foundation
models become the backbone of semantic understanding and
decision-making for effective humanoid task planning. Finally,
we highlight significant challenges in this field and present
our perspectives on potential future research directions and
emerging opportunities in Sec. IX.

II. BACKGROUND

In this section, we discuss the level of anthropomorphism
of humanoid robots. We then focus on its main capabilities:
bipedal locomotion and whole-body manipulation. Finally, we
detail the combined loco-manipulation skills with the state-of-
the-art methods and current challenges.

A. Humanoid Robots

A humanoid robot refers to any anthropomorphic robot that
resembles the form of a human [11]. Typically, a humanoid
robot possesses a torso, two arms, and two legs, though the
degree of anthropomorphism may vary. For instance, some
humanoid robots feature simple hands or wheeled legs [15].
The level of anthropomorphism can be evaluated in terms of
differences (with the human) in weight, limbs’ sizes, and the
degrees of freedom in all joints.

The primary focus of this review is on humanoid robots
that emulate human morphologies and functionalities, rather
than those closely mimicking human visual appearance and
external look. Because of their similar morphology to humans,
humanoid robots could, in principle, exploit the abundant data
that can be collected from human demonstration. In this sense,
human skills are more conveniently transformable to humanoid
robots. By means of scaling data and computation, humanoid
robots will be more capable of versatile and generalizable
skills.

From the perspective of human-robot interaction, humanoid
robots would be more favorably received. This is because their



4

human-like behavior confers in them more trust in usability
as a humanoid would generate motions in an expected and
predictable way by human users. This facilitates psychological
comfort and also promotes effective collaboration between hu-
mans and robots, particularly in close-contact interaction tasks.
Besides, humanoid robots are well-suited for environments
designed for humans.

B. Bipedal Locomotion and Navigation

Bipedal locomotion: Bipedal locomotion is a significant
characteristic of humanoid robots. Therefore, in the past
three decades, bipedal locomotion has been a prolific field of
research in the humanoid domain. Interested readers can refer
to the excellent reviews (most of which are recent) [16, 17, 18],
and the monographs [19, 20]. In summary, model-based
bipedal locomotion has evolved significantly, progressing from
passive walking [21, 22] to quasi-static walking [23], and then
to dynamic walking [19]. Bipedal walking on flat surfaces has
been well explored and mastered through periodic motions
with model-based methods [19, 24]. These approaches have
also expanded to more agile motions such as jumping [25, 26]
and back-flipping [27].

Bipedal locomotion under external perturbations and force
loads has been extensively studied. Such capabilities lay the
foundation for simultaneous locomotion and manipulation, the
focus of this survey. Model-based approaches, such as those
in [2, 28, 29, 30], have been developed to achieve such
capabilities. For example, a passivity-based controller with
task space dynamics is introduced in [29], where external
forces are integrated as part of the generalized forces that
describe the robot’s dynamics. Payload is incorporated into a
simplified rigid body model to enable dynamic walking while
carrying in [2]. In [28], any external force is incorporated as
part of the LIP MPC.

In addition to model-based methods, bipedal locomotion
has also been successfully addressed by learning-based meth-
ods [31, 32, 33], particularly in the context of periodic motions
on flat surfaces. Furthermore, learning-based approaches have
also demonstrated capabilities in more complex settings, such
as running [34], jumping [35], and handling non-periodic
motions such as stair climbing [36] and parkour [37]. Similar
to the trend in model-based methods, learning-based methods
have further extended their capabilities to handle external
forces and payloads [38, 39].

Bipedal Navigation: Proficiency in bipedal locomotion has
naturally progressed to advancing humanoid robots’ ability to
effectively navigate complex environments, including indoor
and outdoor areas with uneven terrain and dynamic obstacles.
A navigation stack often incorporates a hierarchical structure:
a global path planner and a local step planner. The global
path planner [40, 41, 42, 43, 44] is typically responsible for
understanding the overall navigation task and generating a path
that avoids obstacles and reaches the target location. On the
other hand, local step planners, e.g., [45, 46, 47] focus on
determining the precise foot placements that adhere to the
bipedal dynamics within the immediate surroundings of the
robot while also tracking the global path.

From the aforementioned navigation stack, bipedal naviga-
tion capabilities have progressed from static obstacle avoid-
ance on flat terrain [48] to more challenging scenarios, in-
cluding locomotion through height-constrained space [43, 49],
avoiding dynamic obstacles in a constrained environment [50],
navigating dynamic social environments [51], and traversing
rough terrains [40, 41, 42, 52, 53, 54]. A persistent challenge
for these methods is that they are tailored to specific use case
scenarios and lack the versatility to handle a wide range of
different situations.

While bipedal locomotion and navigation have been widely
studied, real-world deployment remains a significant challenge
due to inherent uncertainties. Uncertainty can arise from the
environment and the robot model. Real-world environments
have uneven, varying terrain, dynamic obstacles, and occlu-
sion, making it difficult to ensure the safety and robustness
of bipedal navigation. On the other hand, model uncertainty
arises from discrepancies in the mathematical representation
of the robot model and the physical system. Model uncer-
tainty also exists in most current navigation frameworks that
employ reduced-ordered models at the high level for collision
avoidance and goal-reaching tasks and a full-order model at
the low level for tracking high-level commands. A coupled
framework that considers both the navigation task and whole-
body control stability and accuracy is still under-explored.
Although previous works have addressed various aspects of
environment uncertainties [55] and model uncertainties [56],
a comprehensive navigation stack capable of handling the full
spectrum of real-world uncertainties is still essential.

C. Whole-body Manipulation
Anthropomorphic manipulation has been the inspiration for

bimanual manipulation [57], loco-manipulation, and dexterous
manipulation [58]. The ultimate form of anthropomorphic
manipulation is whole-body manipulation, referring to the
ability to manipulate objects using any part of one’s body.
For example, humans use their elbows or hips to hold a
door open for convenience; humans use their palms or fists
instead of fingertips to provide large forces; humans curl their
little fingers to hold a small object while still using other
fingers for manipulation. In comparison, most robots often
have predefined end-effectors, such as foot soles or fingertips,
as the only parts allowed to physically interact with the world.
Whole-body manipulation is a grand problem that shares
challenges in bimanual manipulation, loco-manipulation, and
dexterous manipulation. This general ability has yet to be
developed, but its emergence will indicate a breakthrough for
robotic manipulation.

The idea of whole-body manipulation was originally studied
in the whole-arm manipulation community [59]. Whole arm
manipulators were designed and built to explore the benefit
of manipulating objects with all surfaces of a robot manipula-
tor [60]. This brings a unique challenge that manifests itself in
all the system levels in perception, estimation, planning, and
control. Since there are an infinite number of such contacts, the
planning complexity suffers from the combinatorial explosion
of contact modes [61] and exponential computational costs
from the high degree of freedom of the system [57].
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TABLE I
TAXONOMY OF WHOLE-BODY LOCOMOTION AND MANIPULATION

(a) Whole-body
Manipulation

(b) Whole-body
Loco-manipulation

(c) Loco-
manipulation

Object movement
(Manipulation) ✓ ✓ ✓

Robot self mobility
(Locomotion) ✗ ✓ ✓

All surface interaction
(Whole-body) ✓ ✓ ✗

Numerous breakthroughs in mechanical design, control, and
planning have been achieved in the endeavor to address the
challenges of whole-body manipulation. On the mechanical
design side, robots made with soft materials and full-body
sensing, such as Punyo [62], provide whole-body manipulation
capability in a built-in manner.

For control, the coordinative and contact-rich nature requires
forceful and compliant control. Traditionally, robot arms were
hard-coded to switch across different control strategies ac-
cording to task requirements [57]. Different task requirements,
such as reaching a point or wiping a table, require different
control strategies, such as pure position control or hybrid
force position control. However, it is still unclear how to
define and enumerate the control strategies for whole-body
manipulation. In addition, a general control framework that can
take in the sensor data, perform state estimation, and reactively
control each body contact has yet to exist [63]. Such general
frameworks require innovations in advanced hardware and
algorithm architecture, including whole-body sensing [64] and
robot designs with compliance and force control capabilities
for reactive manipulation [65].

From the planning perspective, the challenge of whole-body
manipulation can be potentially alleviated via human behavior
imitation algorithms [66, 67, 68]. Most of these works focus on
simple manipulation strategies such as whole-body grasping
and pushing. To enable the robot to mimic more complex
human whole-body manipulation behaviors, it is important
to address the cross-morphology gap between humans and
humanoids.

To achieve humanoid whole-body manipulation, full-stack
system integration at all system levels is crucial. In the future,
we expect to see hardware advances in whole-body sensing,
compliant materials, and force-transparent mechanism design.
Significant improvements on the algorithm side will also
be needed. While classical planning and control approaches
suffer from huge complexity issues, pure learning methods
lack the flexibility to react to contacts and adapt to different
tasks. We foresee that the solution will be an integrated
approach, which combines the strength of both. Ultimately,
this could lead to more complex, human-like capabilities in
humanoid robots, merging improved control, adaptive learn-
ing, and comprehensive sensing. Furthermore, addressing the
core issues in loco-manipulation will also shed light on whole-
body manipulation, as both areas involve handling complex,
contact-rich interactions on different body parts.

(a) Whole-body Manipulation (c) Loco-manipulation(b) Whole-body 
Loco-manipulation

Fig. 3. (a) Whole-body manipulation exemplified by human and humanoid
Justin [69] interacting with objects using all surfaces. (c) Loco-manipulation
involves simultaneous locomotion and manipulation, as shown in the col-
laborative tasks performed by humans and a humanoid [28]. (b) Whole-body
loco-manipulation is an intersection of (a) and (c), as exemplified by a human
and a humanoid HRP-4 [70] pushing heavy objects using their legs and arms.

D. Loco-manipulation

One of the key features of humanoid robots is their ability
to simultaneously perform locomotion and manipulation (ab-
breviated as loco-manipulation hereafter) tasks. As suggested
by its name, loco-manipulation involves both the movement
of objects through manipulation and the mobility of the robot
self through locomotion. In a more general case of whole-
body loco-manipulation, the whole-body refers to the use of all
body surfaces to interact with the environment. We summarize
the relationship between loco-manipulation, and whole-body
manipulation in Table I. Both whole-body manipulation and
loco-manipulation highlight the importance of utilizing phys-
ical contact. As shown in Fig. 3, loco-manipulation considers
the movement of the robot itself while it manipulates an object,
whereas whole-body manipulation emphasizes leveraging all
accessible robot contact surfaces, such as using the chest as
extra support to move large objects.

Loco-manipulation capability has been widely demon-
strated on quadruped robots, specifically those achieving loco-
manipulation capability by using their limbs as manipula-
tors [71, 72, 73]. For quadrupeds with upper-body manip-
ulators, whole-body control is widely adopted for pick and
place tasks from the model-based [74, 75] and learning-based
community [76, 77].

Loco-manipulation for humanoid robots is particularly chal-
lenging, compared with quadrupeds. Humanoid robots have a
smaller support region on the ground and a higher center of
mass, which is challenging for dynamic balance. Therefore,
early humanoid frameworks focus on separate control for lo-
comotion and manipulation. For example, in locomotion tasks,
most studies constrain the upper body to remain upright, which
simplifies the whole-body problem to a bipedal locomotion
problem that considers only the low limbs. Conversely, in most
table-top manipulation tasks, the lower body of the humanoid
remains stationary [78, 79]. In such cases, any external force
exerted on the upper body is treated as a disturbance to the
legs, whose goal is to solely maintain balance. On the contrary,
in [1], there is no such categorization of contacts: all contacts
contribute simultaneously to achieve the task and balance.
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Humanoid loco-manipulation requires a holistic and strate-
gic use of the entire body to explore the humanoid’s full
behavioral capability space. Additionally, whole-body loco-
manipulation needs to schedule contact for all limbs to simul-
taneously achieve robust movement and safe object interaction.
Acquiring this technique unlocks a broad range of useful tasks
such as opening doors [80, 81], pushing trolleys [82, 83],
rolling large bobbins [84], or climbing ladders [85, 86].

Discussion: From the planning and control perspective,
should we design a unified framework for humanoid robots to
achieve agile locomotion and dexterous manipulation simulta-
neously, or treat them as separate problems in a hierarchical
framework? A unified framework generates coherent whole-
body motions, similar to how humans move and manipulate
objects. The unified framework would allow simultaneous op-
timization of locomotion and manipulation, adapting to a wider
range of tasks without needing to switch between modes.
Considering a hierarchical framework might seem a modular
solution since each layer can be optimized independently, the
overall framework accommodates new tasks or modifications
easily. The main downside is the lack of mutual awareness
between layers. For example, if the locomotion layer does not
account for manipulation needs (e.g., positioning the robot for
optimal reach), the overall performance may be suboptimal.

III. TACTILE SENSING

Humanoid locomotion and manipulation involve extensive
physical interactions with the environment and objects, re-
quiring multimodal sensing for understanding the environ-
ment, tracking manipulated objects, and evaluating how con-
tact impacts the balance of both the robot and the objects.
Visual sensors have shown effectiveness in object tracking
and simultaneous localization and mapping (SLAM) [84],
while proprioceptive sensors are usually combined to estimate
contact information in contact-rich tasks [80]. These sensory
modalities have been widely adopted in existing systems and
have been thoroughly reviewed in the literature [12]. This
survey complements existing research by focusing on a less
explored but equally critical sensing modality: tactile sensing.

Mimicking the human sense of touch, tactile sensing pro-
vides more accurate and comprehensive contact information
over large areas of robot skin compared to proprioceptive
sensors [87], and allows the robot to perceive complex envi-
ronments and assess object properties through physical inter-
actions, especially in scenarios where vision is occluded [88].
Additionally, tactile sensing can be used to estimate contact-
based object properties such as roughness, texture, and weight,
complementing traditional visual information such as location,
shape, and color [89]. A combination of tactile with other sen-
sory modalities can significantly enhance humanoid perception
capabilities in solving complex loco-manipulation tasks.

Numerous studies have developed tactile sensors based
on various transduction principles that can sense normal
and tangential forces, vibration, temperature, and pre-contact
proximity information. Comparative studies of various sensor
designs can be found in [90, 91, 92]. This survey instead
focuses on their application in humanoid loco-manipulation,

Tactile Sensing on Hands (Sec. III-A)

(b) (c)

Tactile Sensing on Feet (Sec. III-B)

(f)

Whole-body Tactile Sensing (Sec. III-C)

(g)

(h)

(i)

(a)

(d)

(e)

Fig. 4. Tactile sensing on humanoid robots, exemplified by (a) REEM-C
fully covered with artificial skin [64] (image copyright: A. Eckert), which
cover three body regions: hand, feet, and the whole body. (i) Hand tactile
sensors demonstrated by (b) Shadow-Dexterous-Hand equipped with tactile
sensors on palm and fingertips [93], (c) Allegro Hand equipped with DIGIT
sensors [94], and (d) BioTac [95] tactile sensors for dexterous manipulation;
(ii) Tactile sensors on foot soles for (e) obstacle recognition [96] and (f)
terrain classification [97]; (iii) Whole-body tactile sensors for (g) whole-body
manipulation by Punyo-1 [62] and whole-body human-robot interaction by
(h) iCub [98] and (i) REEM-C [99, 100]

categorized into three areas: (i) tactile sensing on hands,
(ii) tactile sensing on foot soles, and (iii) whole-body tactile
sensing. The following sections review recent advancements
in each domain, emphasizing their roles in balancing control,
scheduling contacts, and enhancing interaction capabilities, as
illustrated in Fig. 4.

A. Tactile Sensing on Hands

Tactile sensors on dexterous hands provide contact informa-
tion, addressing the challenges in object manipulation such as
grasped object controllability and object property estimation.
In this subsection, we survey studies that integrate tactile
perception into the control, planning, and learning of complex
manipulation tasks. Due to the similar nature of contact-
rich interactions, the tactile sensing techniques on hands also
offer valuable insights for whole-body tactile sensing and
manipulation, which is discussed in Sec. III-C.

To achieve the grasping objectives, sensed contact forces
serve as real-time feedback in force or impedance control
loops to regulate the desired object behavior [101]. Moreover,
slip detection and prediction based on tactile sensor data
are used to adapt grasping forces, thereby enhancing grasp
stability [102, 103, 104].

More complex in-hand manipulation tasks demand interac-
tive perception beyond static object models. Dynamic contact
information, including real-time tracking of object states,
monitoring contact stability [105], and predicting interaction
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outcomes [94], i.e., how contact forces affect the balance of
both objects and the robot, are crucial to achieving complex
interactive behaviors. However, due to the inherent complexity
of multi-contact dynamics and increased dimensionality of
the contact state space, model-based methods still struggle
to match human-level dexterity and versatility in multi-finger
manipulation.

Alternatively, model-free Reinforcement Learning (RL) has
shown the ability to address complex contact interactions.
These approaches integrate tactile measurements directly into
the state space to train end-to-end policies [93, 106]. Tactile-
based RL faces two main challenges: (i) the high-dimensional
input space of raw tactile sensor data and (ii) the diffi-
culty of accurately simulating contact physics for sim-to-real
transfer. To tackle these challenges, dimensionality reduction
techniques such as spectral clustering, principal component
analysis [107] and autoencoders [108] have been explored,
while [93] employs Deep Reinforcement Learning (DRL) to
manage high-dimensional input space. Moreover, there have
been increasing efforts in developing tactile simulators [109,
110] to improve the accessibility of simulated tactile data and
facilitate zero-shot sim-to-real transfer [111].

Besides task-specific RL, other learning methods have
been sought for more generalizable policies. [112] employs
diffusion policy to achieve complex and long-horizon bi-
manual manipulation tasks, while recent work has integrated
tactile sensing into foundation models alongside vision and
language [113, 114]. Though limited to simple control tasks,
these models may eventually enable more natural and versatile
physical interactions in humanoid robots.

Advancing robot hands with tactile sensing for humanoid
tasks requires addressing the dual demands of high dexter-
ity for delicate manipulation and high payload capacity for
heavy object lifting. While human hands naturally achieve this
balance, most robotic hands prioritize dexterity but support
limited payloads. In the short term, swappable modular hands
tailored to specific tasks are practical, but the long-term
goal should be a unified hand combining both capabilities.
A promising approach involves multimodal sensing modules,
integrating sensors optimized for different force ranges and
resolutions. Progress in sensor design, material science, sensor
fusion, and high-fidelity simulation is critical to this effort.

B. Tactile Sensing on Feet
Besides manipulation, tactile sensing has started to gain

traction for locomotion problems. For legged locomotion,
estimation of Ground Reaction Forces (GRFs) and terrain
properties is critical for maintaining whole-body stability on
diverse, uneven surfaces. While vision and proprioception
sensors can provide an indirect estimation of the terrain, these
sensing modules lack the capability of accurately estimating
GRFs and various terrain properties. Tactile sensing on foot
soles has the potential to provide direct, unobstructed, and
accurate contact measurements, but remains largely underex-
plored.

To measure GRFs, existing works use Force/Torque sensors
mounted on ankles [115, 116] or load-cell sensors for point-
wise measurement [117]. However, such methods inform

only the zero moment point and lack accurate information
on contact patch location, force distribution, and detailed
terrain properties. To obtain such information, contact sensing
arrays [118] and multimodal sensing suites [97, 119, 120] have
been integrated into legged robotic systems for diverse contact
information.

To date, tactile sensors for legged systems have been mainly
applied for monopods, quadrupeds, and hexapods, enabling the
functionalities of classifying terrain [121, 122, 123], detecting
contact forces and soil flow [124], detecting contact angle
[125] and type (e.g., surface, edge, or no contact) [126, 127],
and estimating 3D pressure distribution [123].

Building tactile sensors for humanoid feet is more challeng-
ing due to larger impulse and shear force during intermittent
ground contact caused by fewer legs and heavier robot weight.
Another challenge lies in developing robust and reliable sen-
sors capable of withstanding various terrains, prompting re-
searchers to seek durable materials and dependable mechanical
designs. In addition, humanoids have stricter requirements for
system integration. For example, the computing and power
units of an adult-size humanoid robot are potentially more
distal from the foot.

Few studies have built tactile sensors for humanoid robots.
These sensors are mostly used for applications including
terrain classification [97, 128] and ground slope recogni-
tion [118]. The sensed tactile information should aid the
control of humanoid dynamics and enhance the locomotion
performance. A notable work in this direction [96] reconstructs
the pressure shape of the foothold, enabling the recognition of
uneven terrain and replanning footsteps in real time.

To enable robust humanoid locomotion in the wild, future
directions for tactile sensing of feet need to address the
following challenges: (i) how to accurately estimate more
terrain properties such as stiffness, damping, plasticity, het-
erogeneity, and porosity; (ii) what are the appropriate metrics
to measure the level of terrain complexity such as density,
height, slickness, and roughness (e.g., size and wavelength
of rocks in terrain), and the effect induced by weather and
lighting conditions (e.g., rainy, snowy, sunny, night); and (iii)
how to fuse terrain tactile sensing with other conventional
sensing modules such as proprioception and visual perception
to jointly inform postures, speeds, and gaits for intelligent,
terrain-aware locomotion.

C. Whole-body Tactile Sensing
Whole-body tactile sensing extends the aforementioned

single-body sensing to all parts of the body, enabling humanoid
robots to interact with unknown environments not only by the
fingertips or foot soles but also by the arms, legs, and torso.

With explicit tactile feedback, humanoid robots such as
iCub and REEM-C have achieved whole-body compliance [99,
129], controlling the contact force from whole-body regions.
This level of contact awareness facilitates safe and intuitive
physical human-robot interactions including dancing with hu-
man [100]. Contact awareness is also useful for improving
balance and collision avoidance in unstructured environments.

Large-area tactile sensing significantly enhances a robot’s
ability to handle large objects, including object identification
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through tactile exploration and whole-body manipulation. For
example, [130] enable a humanoid robot NAO, covered with
artificial skin over its entire upper body, to classify large, heavy
objects with different weights and textures. [88] demonstrate
whole-arm tactile sensing by reaching objects in cluttered
spaces while regulating contact forces across its arms. Close-
proximity whole-body capacitive sensing is implemented
in [131], enabling a cobotic humanoid with workers close-
presence awareness. The same technology is used to draw
semantics in human-humanoid physical interaction in [132].
Moving away from traditional methods [133] that prioritize
collision-avoiding trajectories, [134] utilize tactile feedback
to detect and clear movable obstacles, thereby solving the
problem of navigation among movable objects. Additionally,
with tactile sensors covering their arms and chest, humanoid
robots HRP-2 and Punyo-1 can use their entire upper body
to grasp and lift large, heavy boxes [135, 136] or various
household items [62].

However, current works of tactile-based whole-body ma-
nipulation are still limited to grasping or simple pick-and-
place motions with the upper body. This is due to the sig-
nificant challenges of whole-body manipulation, as discussed
in Sec. II-C, including understanding the complex contact dy-
namics of multiple contacts, handling the high dimensionality
of the sensor data, and addressing the sim-to-real gap.

Despite the promising potential that tactile sensors provide,
human-like loco-manipulation with more dynamic interactions
and contact shifting, such as transferring weight to one arm
to free the other for tasks like opening a door, requires
sophisticated integration of all system levels in perception,
planning, and control. A major challenge in tactile perception,
and a hurdle for a tight integration with planning and control,
is the difficulty in dynamically reasoning about contacts.
This involves not only estimating contact points and static
object models but, more crucially, understanding how these
contacts and changes of contacts impact the system in real-
time, including the balance of both the robot and the object.
Such information is vital for a planner to make informed
decisions and, in a learning framework, can enhance sample
efficiency.

Conclusion: Tactile sensing is yet an underexplored modal-
ity for advancing humanoid loco-manipulation, providing di-
rect contact information necessary for tasks involving complex
interactions with environments and objects. While tactile per-
ceptions have significantly enhanced humanoid tasks, achiev-
ing human-level dexterity and versatility remains challeng-
ing, requiring further research into dynamic perception, and
multimodal sensing integration to enable systematic, real-time
decision-making during interactions. This includes optimizing
contact scheduling on whole-body based on object properties
like size and weight, and understanding how contact dynamics
affect robot and object balance during simultaneous loco-
manipulation. Moreover, the design of whole-body tactile
systems should account for varying sensor resolutions and load
requirements, i.e. hands need higher resolution for delicate
tasks, while body skin can operate at lower resolution but
withstand higher payloads. For further reading, we recommend
a survey paper on humanoid tactile sensing [90], and a book

Multi-contact Loco-manipulation Task Illustration
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Fig. 5. An illustration of a task sequence for loco-manipulation planning in
humanoid robots, involving carrying and placing a box and pushing a cart. The
planning techniques explored include (a) multi-contact trajectory planning and
(b) whole-body pose planning, highlighting their contact and state planning
strategies. Additionally, the pros and cons of categorized approaches in (i)
sampling-based, (ii) optimization-based, and (iii) learning-based methods are
summarized.

chapter on tactile sensing technologies with an emphasis on
deployment on humanoid robot [137].

IV. MULTI-CONTACT PLANNING FOR HUMANOIDS

Multi-contact planning remains one of the most challenging
tasks in robotics. Specifically, in the context of humanoid
whole-body loco-manipulation, a planner ought to solve tra-
jectories that handle rich interactions with environments or ob-
jects. Particularly, besides robot state trajectories, the planner
is also expected to decide contact position (or contact loca-
tion), contact mode, and contact force in a loco-manipulation
task. Given the underactuated nature of humanoid robots and
the addition of manipulation interaction dynamics, maintaining
balance and manipulating objects rely solely on these contact
interactions, which already makes multi-contact planning a
challenging problem. Moreover, the diverse physical properties
of environments and objects (e.g., rigid or soft, fixed or
movable) complicate the problem even further.

Over the past decade, the field has produced fruitful results
in multi-contact humanoid planning, demonstrating promis-
ing potential across various locomotion and manipulation
tasks [3, 138, 139, 140]. However, these works require pre-
planned contact mode sequences before planning robot whole-
body motion trajectories [141], leaving an open problem: how
to solve the locomotion and manipulation contact planning
problem simultaneously with the whole-body trajectory plan-
ning in a unified fashion, a.k.a, Contact-Implicit Planning
(CIP) [142, 143]. The primary challenge of this CIP lies in
its high computational burden and combinatorial complexity



9

Contact-Implicit Trajectory Optimization (CITO)

Whole-body Motion

Contact Mode and Contact Force

Sticking Contact Sliding ContactNo Contact

Contact PositionContact Position

Fig. 6. An illustration of Contact-Implicit Trajectory Optimization (CITO)
that simultaneously plans contact mode, contact position, contact force, and
whole-body motion. However, solving CITO problems online for humanoid
loco-manipulation tasks still poses a challenge.

of identifying potential contact mode sequences. Therefore,
selecting suitable approaches depends on the specific problem
requirements, including factors such as solving time, numeri-
cal robustness of the solution, resolution of the solution, and
dependency on numerical models.

To choose appropriate multi-contact planning algorithms for
a high degrees-of-freedom underactuated system, state-of-the-
art approaches present three main categories: (i) searching, (ii)
optimization, and (iii) learning, as illustrated in Fig. 5.

A. Search-based Contact Planning

Search-based approaches employ state expansion that allows
exploring configurations to make and break contacts; collisions
and kinematic feasibility are often checked during each search
step. Heuristics can be applied in search-based methods for ef-
ficient exploration. The search result is an optimal sequence of
contact modes that ensure stability and task efficiency. Whole-
body motions can be optimized during the search to verify
the dynamic feasibility of candidate contact sequences [144]
or after the search in a contact-before-motion style [145].
Search-based methods are commonly used for gait planning in
legged robot locomotion [146, 147, 148, 149]. Expanding their
capabilities in more intricate multi-contact loco-manipulation
planning, [150] implement a graph search method for hu-
manoid grasp contact planning and replanning. [151] introduce
a contact-before-motion planner for multi-contact behaviors.

However, search-based methods usually struggle to cover
the entire exploration space in a limited time budget for online
planning and may result in solutions with high variance. To
tackle this, [152] incorporates control variate and importance
sampling as statistical variance-reduction techniques for faster
solution convergence. [153] avoids the time-consuming re-
planning by incorporating only forward path expansion with
informed possible paths to achieve reliable online kinodynamic
motion planning.

Furthermore, the feasibility guarantee of the results via
search-based methods can be made through Pose Optimization
(PO), a subset of multi-contact planning in humanoid loco-
manipulation. This holds true when the contact locations, tim-
ings, and manner of interaction are predetermined—such as in
scenarios where a humanoid safely assists a person [140] with
feasible contact locations through point cloud processing. PO
focuses on leveraging optimization-based techniques to plan
whole-body poses and kinematic configurations at specific
time steps, given a predefined contact mode. While PO is
limited to handling discrete keyframes and does not account
for continuous dynamics, this makes it highly suitable as
a subsequent pose generator for gradient-free multi-contact
planners, reducing the kinematic computation load during the
search process. Furthermore, task-oriented objectives can be
incorporated during PO, such as to maximize the interaction
force [154, 155] and to efficiently retarget the operator’s
motion into safe and feasible robot poses [156]. Given a
nominal pushing pose, Farnioli et al. [157] optimizes the
distribution of reaction forces among all contacts to guarantee
the friction constraints in heavy object pushing. Kinematics-
and-mass-model-based posture generator is employed on HRP-
4 humanoid to leverage leaning pose and body contacts to
improve force in a heavy object pushing task [70]. A kino-
dynamics-based PO approach is used in generating optimal
humanoid pushing poses for dynamic non-prehensile loco-
manipulation [158]. Search-based multi-contact planning and
PO are often paired with online whole-body control that
effectively tracks the optimal pose while adaptively interacting
with the environment and objects. We detail the whole-body
control strategies in Sec. VI.

B. Optimization-based Contact Planning
Unlike search-based contact planning, which primarily

checks kinematic feasibility for expansion and often requires
additional lower-level planning to generate dynamically feasi-
ble motion, optimization-based contact planning [142] offers
the possibility of simultaneous planning of whole-body motion
and contact interactions, as illustrated in Fig. 6. This approach
integrates dynamics directly into the contact planning process,
eliminating the need for a hierarchical structure. A Contact-
Implicit Trajectory Optimization (CITO) is formed by incor-
porating contact dynamics into the trajectory optimization for-
mulation, allowing the solver to determine the contact modes,
contact forces, contact positions, and whole-body motions all
at once [159, 160, 161].

Due to the inherently large problem size, CITOs often rely
on speed-up strategies, such as warm-starting with reasonable
initial guesses for fast convergence [162] and separating into
contact planning and whole-body motion planning subprob-
lems in a hierarchical fashion [163]. With the increasing de-
mand for computation efficiency, CITOs have witnessed a rise
in computation speed via sequential quadratic programming
(e.g., [142]), differential dynamic programming (e.g., [164]),
and iterative linear quadratic regulator (e.g., [165]). These
improvements have even enabled the use of CITO in a
Model Predictive Control (a.k.a. CI-MPC) framework for real-
time planning on quadruped robots [166, 167] and robotic
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arms [168, 169]. However, for the humanoid robots, applying
CITO to loco-manipulation has yet to be achieved.

Migrating such CITO as real-time CI-MPC to humanoid
loco-manipulation problems presents its own set of challenges,
including high-dimensional space of optimization variables,
complex/undifferentiable contact dynamics models, proper
modeling of interaction dynamics, resolution of initial guess,
and tedious tuning. Although the body of literature on CITO
and CI-MPC for humanoid robots is quite limited, recent
efforts have demonstrated viable strategies for accelerating
such methods. To achieve real-time CITO in multi-contact
humanoid motion generation, [164] improves the time stepping
integrator-based method [170] by introducing a smooth-max
function to approximate the contact impulses. [171] incorpo-
rates dynamic complementarity conditions in the rigid contact
model and improved solving time in contact implicit humanoid
locomotion problems. [166] leverages structure exploitation
and offsets the time-consuming Linear Complementarity Prob-
lems (LCPs) by pre-computing its constant terms offline for
improved online computation efficiency.

Furthermore, the potential to harness and combine the ad-
vantages of search-based and optimization-based methods re-
mains largely unexplored. For example, [172] enhanced CITO
by incorporating a graph-search-based contact sequence gen-
erator and neural-network-based capturability prediction for
efficient and robust disturbance rejection in humanoid multi-
contact locomotion. To improve the robustness of CITO, [173,
174] also show that considering the uncertainty in the opti-
mization results in solutions robust against perturbation from
the terrain contact.

C. Learning-based Contact Planning

In addition to search-based and optimization-based meth-
ods, learning-based approaches have demonstrated promising
potential in planning for multi-contact tasks, such as using
reinforcement learning to plan for velocity commands and
contact sequences [175, 176]. These learning-based planners
are mostly modular, making it possible to form a hierarchical
architecture with model-based planners and controllers at the
low level. Compared with traditional optimization-based or
heuristics-based approaches, learning-based elements enhance
the computation efficiency in multi-contact planning. For
example, [177] learn a prediction of centroidal dynamics
evolution for efficient contact sequence generation under 0.1 s,
allowing a 300 times computation speed boost compared to
traditional optimization-based methods.

In addition, learning-based approaches can assist contact
prediction, which allows additional information for contact
(re)planning in real time. Precise contacts are often hard
to obtain from motion capture data, making it challenging
to learn directly from data. To synthesize plausible motion,
a naive supervised learning approach often leads to objects
moving without any contact or significant penetration between
the predicted human body and the objects. [178] introduced
contact correction and predicts motions relative to the contacts
predicted. [179] separate the contact prediction and whole-
body motion prediction by first predicting the contact positions

of a moving object, which are then used as a constraint
to synthesize whole-body motion. These models have the
potential to serve as a loco-manipulation planner for humanoid
robots. [180] learn to find from the video scenes the affordance
(i.e., potential contact points for task execution). These con-
tacts can be used as heuristics for subsequent motion planning.

Conclusion: While significant progress has been made in
humanoid multi-contact planning, future work should focus
on developing more integrated approaches that combine the
strengths of search-based, optimization-based, and learning-
based methods. Specifically, addressing the computational
complexity of CIP and improving real-time performance will
be key. Future directions could explore hybrid approaches
that incorporate efficient contact sequence generation/contact
dynamics, apply contact-implicit constraints in real-time, and
achieve learning-based contact prediction to enhance robust-
ness and adaptability in complex loco-manipulation tasks.
The readers are recommended to further read the survey on
humanoid multi-contact planning [141].

V. MODEL PREDICTIVE CONTROL FOR
LOCO-MANIPULATION

Optimization-based Model Predictive Control (MPC) has
advanced significantly in robotics. The advantages of its flexi-
bility to define versatile motion objectives, rigorous mathemat-
ical formulations, and widely available solvers establish MPC
as one of the most popular approaches to trajectory planning
for locomotion and manipulation.

A uniform optimization formulation of the loco-
manipulation planning problem seeks an optimal state
trajectory and control input over a finite horizon in the future.
MPC is often formulated as an Optimal Control Problem
(OCP):

min
x(·),u(·),λ(·)

L(x(·),u(·),λ(·)) (1)

s.t. ẋk = f(xk,uk,λk) (2)
htask(xk,λk,uk) = 0 (3)
gtask(xk,λk,uk) ≥ 0 (4)

where x(·),u(·),λ(·) are the trajectories of the states, control
inputs, and constraint forces, respectively. L(·) is the cost
function. The dynamics is represented in (2). htask and gtask
are other tasks represented as equality and inequality con-
straints. htask are holonomic constraint tasks to be enforced
strictly (e.g., a contact-explicit formulation [181]), and gtask
are unilateral constraints to encode set-valued tasks (e.g., joint
limits, non-sliding contact with fiction cones, etc.).

Depending on the choice of dynamics models (2), costs, and
constraints, the OCP formulation is commonly transformed as
a linear convex MPC (e.g., [2, 181]) or a Nonlinear MPC
(NMPC) (e.g., [182, 183]). Table II summarizes recent MPC-
based works on humanoid robots in loco-manipulation tasks.

A. Simplified Models

In pursuit of high-frequency online planning with
lightweight computation for motion control, simplified dy-
namics models, or reduced-order models (ROMs) are often
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TABLE II
RECENT MPC APPROACHES ON HUMANOID LOCO-MANIPULATION

Paper Robot
Model∗ Interaction Modeling Method Locomotion (L) and Manipulation (M) Planning MPC

Frequency
Solving
Method

[185] SRBM Optimizing external wrench(es) at contact(s) Unified 20 Hz QP
[2] SRBM Predefined external force Unified 300 Hz QP
[186] SRBM Negligible object dynamics Separated: L: MPC; M: Keyframe interpolation − QP
[187] LIPM Negligible object dynamics Separated: L: MPC; M: Retargeting through teleoperation − QP
[117] CD Optimizing external wrench(es) at contact(s) Unified offline SQP
[28] CD Predefined external wrench Unified − QP
[188] CD Optimizing external wrench(es) at contact(s) Unified 5 Hz/offline SQP
[189] CD Optimizing external wrench(es) at contact(s) Unified 10 Hz Interior-point
[183] CD Estimated as external wrench through sensors Unified 5 Hz Interior-point
[190] WBD Optimizing external wrench(es) at contact(s) Unified 100 Hz DDP

∗ SRBM - Single rigid-body model; LIPM - Linear inverted pendulum model; CD - Centroidal dynamics; WBD - Whole-body dynamics.

Interactive Dynamics

Model Predictive Control

Loco-manipulation Dynamics Models

Simplified Models Whole-body Models Mixed-fidelity Models

  Object modeling    External force Interaction with
environment

CD+WBK WBDSRBMLIPM

Speeding up nonlinear MPC

Light computation load
Low model accuracy

High model accuracy
High computation load

Balanced computation load
Trajectory discrepency

    Structure Exploitation              Initialization

       Linearization      Sampling

    Fast & numerically robust Fewer iterations 
to convergence

Linearizing at each time
step as QP problem

Suitable for discontinuous
dynamics & gradient-free 

Near: WBD
Distant: Reduced-order

Fig. 7. An illustration of model predictive control in humanoid robotics, show-
casing three primary categories of dynamics modeling in loco-manipulation:
(i) simplified dynamics, (ii) nonlinear dynamics, and (iii) Mixed-fidelity
dynamics. The figure also highlights the consideration of interactive dynamics
modeling with environments and/or objects for loco-manipulation tasks.
Additionally, four common approaches to speeding up/simplifying NMPC are
summarized.

employed in MPC. For example, the Single Rigid Body Model
(SRBM) can be linearized by providing explicit foot position
sequence reference and be formulated in a linear convex
MPC [184]. Using SRBM, [181] realizes dynamic aerobatic
behaviors on the MIT humanoid. Extending to humanoid loco-
manipulation, [2] achieves object-carrying and rough terrain
locomotion by simplifying the interaction dynamics as external
gravitational forces applied to robot CoM.

On the other hand, the Linear Inverted Pendulum Model
(LIPM) has been a popular choice as a linearized dynam-
ics model for humanoid locomotion [23] and in multi-
contact [191]. To further extend the capability of rough terrain
walking, the Prismatic Inverted Pendulum Model (PIPM) is
used to allow CoM movements on a non-flat surface [192,

193]. Extending LIPM to loco-manipulation tasks is achieved
through teleoperation [187]. However, such model inherently
lacks the ability to address contact interactions and loco-
manipulation dynamics, necessitating a lower-level whole-
body control for balancing and manipulation tasks.

B. Whole-body Models
While simplified dynamics models offer computation ef-

ficiency, they often lack model accuracy and have limited
capability of whole-body motion planning due to high simplifi-
cation assumptions. Conversely, whole-body models are more
accurate representations of the robot dynamics and are better
suited for planning versatile motions and interactions with
objects and the environment. NMPC comes into play when
constraints or cost functions become nonlinear, for example,
dynamics constraints formed by kinodynamics and Whole-
Body Dynamics (WBD).

In the context of humanoid motion planning, kinodynamic
constraints are often referred to as the combination of Cen-
troidal Dynamics (CD) and whole-body kinematics (WBK)
constraints [188], where CD is derived from the total momenta
of the system, and captures the effect of full-body inertia of
a multi-linkage dynamics system [194]. For example, achiev-
ing consensus between CD and full-body kinematics in one
Trajectory Optimization (TO) generates versatile humanoid
motions [188].

On the other hand, leveraging the WBD in MPC has become
a popular approach recently. Joint-space WBD, described
in (5), accurately models a free-floating articulated robot such
as a humanoid robot. WBD provides flexibility in defining ar-
bitrary and allowable contact in dynamics modeling, including
interaction forces through manipulation. However, the inherent
high nonlinearity and nonconvexity impose significant compu-
tational burdens on WBD-based Nonlinear Programs (NLP),
making them challenging for real-time planning. The numeri-
cal accuracy of solutions is often compromised to exchange for
real-time application (e.g., [6]), even with accelerated solving
methods for NLPs (e.g., Sequential Quadratic Programming
(SQP), Differential Dynamic Programming (DDP)). This com-
putation issue is pronounced in high-degree-of-freedom hu-
manoids performing loco-manipulation tasks, such as human-
robot payload transportation, that demand additional modeling
of object dynamics, safety-critical control, and robust trajec-
tory solutions. Therefore, a major focus of this section is the
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discussion of different approaches to speed up NMPC while
maintaining its solution accuracy.

C. Mixed-fidelity Models

Instead of using full joint-space dynamics across the entire
horizon of an MPC, mixing multiple models of varying
abstraction levels demonstrates improved performance and
efficiency.

As one way to mix models, cascaded-fidelity models (a.k.a.
hierarchical dynamics) use different models to govern different
segments of the horizon [195, 196, 197]. These methods
typically employ high-fidelity (e.g., full-order) models in near
horizons and low-fidelity (e.g., simple) models for distant hori-
zons, thus maintaining the solution accuracy in near horizons
while solving the myopic issue by allowing a longer horizon
using simple models. This approach could be suitable in loco-
manipulation tasks as it would either simplify interaction
dynamics as simple external forces or impose the object
dynamics as part of CD in the far horizons to allow improved
real-time computation compared to full dynamics models.

Another way to mix models is to have different dynamics
models overlap between their horizons. In such cases, achiev-
ing a consensus between these overlapped models is necessary.
To solve problems with such mixed-fidelity models, [198]
decomposes a single TO that incorporates both dynamics
into two subproblems and then alternates between the two to
achieve consensus. In a similar vein, [199] alternate between
the CD and WBK subproblems. Overall, model simplification
over MPC horizons will remain an effective approach [7]. On
the other hand, mixed-fidelity models demonstrate superior ca-
pability but require careful consideration of combined models.

D. NMPC Speed-up

NMPC Speed-up via Structure Exploitation: NMPC prob-
lems often involve complex dynamics and constraints that
can be computationally intensive to solve. Exploiting the
structure within these problems can significantly enhance their
solvability and efficiency, such as extracting variables that
directly interact with each other, identifying repetitive and
symmetric structures, and arranging block-diagonal structures.
One of the most common approaches to solving NMPC is
direct methods, which transform NMPC into a Non-Linear
Program (NLP) with the complexity of O(N3), where N is
the problem size [200]. Some direct methods, such as direct
multiple shooting and direct collocation, result in sparse NLPs,
whose computation complexity can be reduced to O(N) [201].
Another approach to solve NMPC is single-shooting methods,
such as DDP [202] and its variant, Iterative Linear Quadratic
Regulator (iLQR) [203], which only retains the first-order
derivative approximation of dynamics and exhibits a linear
increase in computation over the horizon [204]. With proper
exploitation of the sparsity structure through the hypergraph
approach, [205] shows improvement of the nonlinear solver in
computation efficiency. Recently, a numerically robust solver,
FATROP [206], solves constrained OCP problems in a direct
multiple-shooting fashion efficiently by employing a structure-
exploiting linear solver. In NMPC problems, FATROP achieves

comparable solve time compared to ACADOS SQP solver
while retaining similar numerical robustness to the interior-
point-method-based IPOPT solver. Furthermore, AdaptiveNLP
leverages the previous NLP structure to significantly reduce
the overhead and update time for constructing the current
NLP [207]. Due to the static nature of most inequality con-
straints on humanoid robots, such as joint states, actuation, and
control barriers function, providing a smaller set of inequality
constraints with this memory-aware and adaptive solver has the
potential to accelerate humanoid loco-manipulation NMPC. As
an increasingly popular approach, structure exploitation has
vast potential due to the minimal trade-off in the numerical
robustness of the solution.

NMPC Speed-up via Linearization: Another way to tackle
computational burdens brought by NMPC is successive lin-
earization, which involves linearization at every timestep
around the nominal system state and control input. The
linearized dynamics become piece-wise affine, which can be
formulated in a large, sparse Quadratic Program (QP) and
can be solved online [208, 209]. Aiming for highly effi-
cient optimization-based planning, ReLU-QP [210], a GPU-
accelerated QP solver, has improved MPC real-time control
frequency in humanoid balancing tasks from original 65 Hz
to more than 1300 Hz. Successive linearization, however,
sacrifices model fidelity and inevitably results in motion errors
compared to using accurate nonlinear models. In practice,
trading model accuracy for speed is often a preferred strategy
because a controller may not be able to track the accurate
full-order trajectory with high precision, and therefore it is not
practically beneficial to pursue accurate trajectories generated
from the full-order, nonlinear model.

NMPC Speed-up via Warm Start: The real-time requirement
motivates many researchers to seek a better initialization.
One simple yet effective approach is to warm start with
the solution from the previous iteration. While promising in
reducing computation burden, this approach highly depends on
the quality of previous solutions and is sensitive to changes
in dynamics or task constraints across time steps, which
are common for contact-rich, multi-task loco-manipulation.
Another common approach is to offload the computation
burden from online to offline, e.g., the gait library [211]. It
can be regarded as a specific type of warm-start technique
and requires only a cheap online interpolation among the
gaits to obtain an approximately optimal full-body trajectory.
Similarly, [190] use memory of motions to warm-start an MPC
and overcome the sensitivity of initial conditions. A proper
initialization from memory usually takes only a few iterations
to achieve convergence, which enables online NMPC with
full-body dynamics. Combining offline memories with online
planning is a promising research direction. However, the key
challenge lies in the management of massive trajectories with
limited storage. In Sec. VII-E, we discuss a solution from the
learning community: learning compact models to distill from
large-scale offline trajectories.

NMPC Speed-up via Sampling: Real-time sampling-based
planning, such as Model Predictive Path Integral (MPPI)
control [212], is a simple and effective scheme. How-
ever, extending MPPI to high-dimensional loco-manipulation
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Fig. 8. Loco-manipulation skills from model-based methods. (a) Getting up
from a chair [138]. (b) Multi-contact balancing [3]. (c) Door traversal [218].
(d) Transporting a bulky beam [117]. (e) Collaborative carrying [28]. (f)
Rolling a bobbin [82]. (g) Box loco-manipulation [219].

tasks presents significant computational challenges, especially
within contact-implicit settings. Two primary techniques have
enabled the recent success of MPPI: reducing the search space
and leveraging parallelization in modern simulators. To limit
the search space, researchers use suboptimal planners to guide
the search, apply constraints, and employ spline control points
to reduce the number of planning knot points [213]. Further-
more, advancements in sampling speed also facilitate real-time
planning. For instance, MuJuCo MPC (MJPC) [214] leverages
the established parallelization capabilities of MuJuCo [215]
on multi-core CPUs. Additionally, modern simulators such as
IssacLab [216] and MuJuCo can roll out thousands of samples
on GPUs, which allows additional randomization for robust
control [217].

E. Environment and Object Interaction Models for Loco-
manipulation

In this subsection, we survey motion planning algorithms
for loco-manipulation tasks that involve interactions with the
environment and/or objects with large weights and sizes,
specifically in the context of loco-manipulation MPC. Assum-
ing the sequence of contact modes is defined through contact
planning methods outlined in Sec. IV, the loco-manipulation
MPC algorithms find a feasible trajectory that leads to a
viable state over a horizon, while satisfying the dynamics
constraint and contact stability constraints. The existing loco-
manipulation MPC algorithms differentiate the interaction with
a fixed environment and a manipulated object.

1) Interaction with a static environment: An environment,
including static surfaces such as the ground and walls, provides
contact forces that contribute to the robot’s stability and enable
interactive tasks such as walking and pushing. An example
of a static environment is in Fig. 8 (a) and (b). Since the
environment is static, the robot does not need to consider the
environment’s state or stability during planning. Instead, the
robot is often required to deal with acyclic contact patterns
and non-coplanar contacts given specific environment geome-
tries. This challenging problem is referred to as multi-contact
planning (MCP) [86, 141, 220]. MCP is a widely studied

area that involves both contact planning and motion planning.
Since contact planning has been discussed in Sec. IV, in this
subsection, we focus on the motion planning aspect of MCP,
specifically in terms of real-time multi-contact MPC. Given a
sequence of contact modes, MCP aims to find feasible motion
and contact wrenches of all contacts.

Multi-contact MPC for humanoid robots can be solved by
optimization-based methods [188, 189]. Among these meth-
ods, Centroidal Dynamics (CD) is the most common model
due to its accurate representation of contact forces and the
system’s centroidal momentum. Despite the model’s accuracy,
CD contain a nonlinear term derived from the cross-product
between the state (CoM position) and control (contact wrench),
posing a challenge to trajectory optimization. Using multi-
contact MPC as a motion planning technique also has limited
dynamic locomotion capabilities because it treats arms and
legs uniformly as general contacts, making it less efficient at
handling frequent contact switches compared to pure loco-
motion models such as the linear inverted pendulum model
(LIPM). Although MPC has the ability to plan contact with
any surface of the robot, the regularization of the planned
contact forces usually requires accurate joint torque sensing
or whole-body tactile sensing (Sec. III-C), which still has
significant space to explore and presents great potential for
rich and safe environment interaction.

2) Modeling interaction with a manipulated object: In the
context of loco-manipulation MPC for humanoid robotics,
modeling strategies for manipulated objects represent a crucial
aspect and an area of ongoing research, alongside contact
planning. An object can be a free-floating body (e.g. a box),
a fixed-base articulated mechanism (e.g. a door or drawer),
or actuated joints (e.g. another robot) [221], as shown in
Fig. 8 (c-g). Unlike interactions with a static environment, the
contact force exerted by an object depends not only on the
robot’s joint torque but also on the object’s mass and inertia.
As a result, interacting with objects in loco-manipulation
tasks introduces significant complexity. Planning such tasks
typically requires accurate knowledge of the object’s state and
physical properties, especially when handling heavy, irregular,
or dynamically moving objects.

To overcome the challenge of unknown object states and
properties, adaptive control schemes and online estimation
techniques have been proposed to improve robustness, com-
pensating for dynamic effects and varying external loads.
For instance, [222] compensate for the dynamic effects of
an object as residual dynamics, thereby avoiding the need
for extensive predefined object parameters. [223] estimate the
robot’s reflected inertia online to compensate for constantly
changing external loads. [224] estimate the object’s mass to
select the optimal whole-body manipulation strategy for bulky
objects. In addition, to address object state feedback, wide-
angle camera dense tracking is proposed to aid in tracking
large objects [84]. However, application to MPC-based ap-
proaches poses additional challenges in terms of prediction of
compensation for the object dynamics in the preview horizons,
prediction of object motion evolution, and increased density
of the online computation load due to such integrations. [225]
makes the initial step toward estimating and simplifying the
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evolution of centroidal momentum through supervised learning
to maintain a convex CD-based MPC formulation in humanoid
locomotion.

Given the diversity of tasks, creating a unified model for the
robot-object system is essential. We introduce two common
approaches to incorporate object dynamics into the MPC-
based planning process [191].

The first approach models the manipulated object as external
wrenches and plans the control input to compensate for
them [2, 70, 189]. This approach offers a flexible solution, as it
integrates well with the MPC regardless of the linearity of the
MPC model, which treats all contacts as external wrenches.
However, the contact wrench needs to be predefined, for
example, to compensate for the gravity of the object or to exert
a user-specified pushing force. Obtaining accurate contact
wrenches for dynamic tasks like swinging a baseball bat is
already inherently challenging, especially when considering
their evolution over the entire prediction horizon in MPC.
Static/quasi-static assumptions are usually made to neglect
the dynamics of the object, resulting in less dynamic loco-
manipulation motions. Another aspect to note, the contact
wrenches can be applied at the contact location [82] or at
the CoM of the robot [2, 28]. In the former setting, the object
affects the contact wrenches for both self-balance and object
manipulation. In the latter setting, the object affects only the
contact wrenches that are responsible for balance, and contact
wrenches for object manipulation require additional regulation.
For example, the loco-manipulation MPC approach in [2]
adjusts the foot contact wrenches to the weight of an object
applied to the robot CoM and additionally regulates the object
position via hand contact wrenches with a separate controller.
Unlike MCP, such loco-manipulation MPC prioritizes mobility
over manipulation and typically employs specialized locomo-
tion models, such as a linear inverted pendulum model (LIPM).
These models introduce additional assumptions for bipedal
locomotion, such as assigning foot contact for locomotion and
hand contact for manipulation, maintaining body height, and
conserving angular momentum, making them computationally
efficient in an online MPC setting but less general.

The second planning approach incorporates the object’s
dynamics directly into the robot’s dynamic equation of motion,
creating a unified robot-object dynamic system [158, 191].
This approach eliminates the static/quasi-static assumption
from the first approach and leverages the time-varying robot-
object dynamics in MPC to achieve more dynamic and
adaptive loco-manipulation behaviors. In such planning prob-
lems, the interaction wrenches are usually treated as control
variables, and contact stability constraint on the interaction
wrenches is enforced to securely attach the object to the robot.
The planner generates the combined motions for both the robot
and the object, leading to their desired states. Compared to
modeling objects as external wrenches, this method requires
a perfect knowledge of the object’s state, which is more
challenging from the sensing perspective.

3) Interaction with a dynamic environment or deformable
objects: Dynamically changing environments, such as those
with a moving surface [226, 227] or with physical human
interactions [28], introduce additional challenges to loco-

manipulation planning and control. Similar to a dynamic object
manipulation problem, the interaction model between the robot
and the dynamic environment is also time-varying. Although
one can infuse the dynamics of the object with the robot
model to form unified dynamics, it is impractical to model
the dynamics of the environment numerically in most cases.
Therefore, in an MPC setting, the planner may require sensor
feedback to predict the movement of the environment and
replan the loco-manipulation motion adaptively [226, 228]. For
example, interacting with an environment that involves humans
requires the anticipation of human intentions for collabora-
tive manipulation such as lifting payload [28]; see a more
challenging recent achievement in direct human-humanoid
physical interaction [229]. For such tasks, the interaction
force is an important way of communicating intentions, which
can be measured as force feedback signals to trigger robot
movements. However, the evolution of such sensed forces can
not be well-predicted beyond the current timestep for MPC
to leverage, suggesting further static/quasi-static assumptions
are required. Otherwise, the robot can only treat the dynamic
environment as a disturbance and counteract it through reactive
control (e.g., whole-body control). Given the challenge of
dealing with the changing environment, loco-manipulation in
a dynamic environment is largely unexplored.

In addition to rigid objects with regular geometries, de-
formable objects are ubiquitous in our real world, such as
those in caregiving or housekeeping scenarios. Modeling the
dynamics of these objects requires a deep understanding of
their physical properties and behaviors, such as flexibility,
elasticity, and deformation under force. Consequently, simplifi-
cations tailored to specific problems and applications are often
necessary [230, 231]. For example, to plan the manipulation
of a deformable belt, [232] simplify the motion of the belt by
representing only its tail movement in a 2D plane. However, to
fully exploit the object’s deforming property for effective loco-
manipulation, integrating accurate deformable objects [233]
into robot models is essential. Although this area is relatively
underexplored for humanoid loco-manipulation, such integra-
tion opens up significant opportunities beyond basic pick-and-
place operations, enabling robots to tackle more intricate and
delicate tasks.

Conclusion: With the advanced capabilities of gradient-
based numerical optimization in motion planning, MPC is
gaining popularity in humanoid loco-manipulation, showcas-
ing numerous variations in recent years of literature. The
essence of this method lies in making reasonable choices
regarding the dynamics model, constraint, task definitions, and
computation requirements. These choices often require expert
design and tuning to trade-offs among task versatility, solution
feasibility, and optimality. By identifying the computation
intensities and proper dynamics representation of the loco-
manipulation tasks, one can offset the computation load by
introducing simplified models and relaxed constraints in MPC.
In addition, the MPC efficiency can greatly benefit from proper
solver choices, an evolving area presenting opportunities for
research on both solver-level and problem-formulation-level
innovations. For further reading, we recommend the survey
on MPC for legged and humanoid robots [13]. Additionally,
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loco-manipulation tasks present further challenges due to the
complexity of dynamic interactions with both the environment
and objects, which leaves open questions on how to choose
and formulate the interactive dynamics effectively based on
the specific task requirements in an MPC setting.

VI. WHOLE-BODY CONTROL

Whole-Body Control (WBC) represents a body of con-
trollers that generate joint torques, constraint forces, and
generalized accelerations to achieve a given set of desired
dynamic tasks [11]. Three common cases necessitate a compu-
tationally efficient whole-body controller that can track desired
trajectories and send torque commands to a physical robot.
(i) The desired trajectory is computed based on a reduced-
order model. Such a trajectory encodes only an important
subset of the robot’s full-body motion (e.g., desired CoM and
end-effector trajectories in operational space [234]) and does
not contain information for all joints. (ii) The trajectories are
planned with a full-order model but are too computationally
heavy [211] to be used in real-time, particularly for humanoids
in loco-manipulation scenarios. (iii) Environmental uncertain-
ties and planning inaccuracies induce disturbances that require
robust WBCs to compensate [235]. Therefore, the WBC has
been widely used in the humanoid community.

The WBC solves an instantaneous control problem (i.e.,
only for the current timestep). This control scheme employs
Euler-Lagrangian dynamics to express equation (2) as

M q̈ − JTλ− ST τ = −Cq̇ −G (5)

where the decision variables X = [q̈,λ, τ ]T are generalized
accelerations, external forces, and joint torques, respectively.
M,C,G are the spatial inertia matrix, bias terms (i.e., centrifu-
gal and Coriolis forces), and the gravity term, respectively.
J is the Jacobian, and S is the selection matrix. Given the
selection of decision variables X above, (5) becomes linear,
which enables the WBC to be computed in real time.

For a humanoid robot with a floating base, the rank of S
is smaller than the dimension of the generalized position q.
This implies that the humanoid system is underactuated; it
requires physical contact with the environment to maintain
balance and achieve mobility and manipulation tasks. The
contact constraint is described using contact Jacobian Jc:

Jcq̇ = 0 ⇒ Jcq̈ + J̇cq̇ = 0 (6)

These underactuated and contact-constrained dynamics (5),
(6) represent the main ingredients in solving the WBC for
humanoid robots.

A. WBC Dynamic Tasks

A dynamic task vector ei can be expressed as a linear
equation with respect to decision variables:

ei = Ai(q, q̇, t)

q̈
λ
τ

− bi(q, q̇, t), (7)

where t is the time. Dynamic tasks can be equality constraints
(ei = 0), inequality constraints (ei ≤ 0), or cost terms (|ei|2).

The main idea of WBC is that the linear equation (7) is
sufficient to universally describe a diverse set of locomotion
and manipulation tasks.

Although the appropriate set of WBC tasks depends on
factors ranging from robot morphology to available hardware
sensing, we highlight some of the common tasks for loco-
manipulation. A task for tracking reference joint-space ac-
celerations q̈d can be formed by setting Ai to a selection
matrix and setting bi = q̈d. Similarly, a task for tracking a
desired operational-space acceleration is derived through the
end-effector’s Jacobian [236]. A task for tracking a desired
centroidal momentum rate ḣd can be formed by differentiating
the centroidal momentum h [237]. Other potential WBC tasks
include capture point [238], reference reaction forces [181]
and collision avoidance [239]. The source of these dynamic
tasks varies and may be predefined, computed online (e.g.,
from an MPC), or commanded through teleoperation.

MPC is commonly used to provide WBC with dynamic
tasks in operational space. For example, an SRBM-based
MPC [234, 240] outputs the centroidal trajectories and end-
effector trajectories as dynamic tasks in operational space.
These operational-space tasks can also be converted to joint
accelerations and thus become joint-space tasks. For instance,
whole-body inverse kinematics [241] is a common approach
for this conversion. Additionally, Riemannian motion pol-
icy [239] and kino-dynamics fabric [219] can construct diverse
joint acceleration from a hierarchy of primitive motions.

Teleoperation provides an interactive way to generate dy-
namic tasks such as the robot’s posture, walking direction,
and grasp targets [242]. WBC setpoints are often mapped to
a visual interface, enabling an operator to modify controller
setpoints on the fly. This mapping may be direct [243]
or retargeted in order to account for the robot’s morphol-
ogy [244] or to ensure the feasibility of the commanded
motion [156, 245]. Virtual-Reality (VR) interfaces enable
spatially mapping handheld controllers to WBC poses. This
approach has been deployed in various loco-manipulation
scenarios, including doorway traversal, object grasping, and
pushing tasks [246, 247]. Haptic feedback can inform an
operator of the WBC state through various modalities, such
as force feedback indicating CoM stability margin [248] and
vibrating gloves indicating contact during manipulation [116].
Mapping to dynamic WBC setpoints, such as the capture point,
has also been demonstrated and can account for variation in the
natural walking frequency of the operator and robot [249, 250].
As shown in Fig. 9, to achieve a desired list of dynamic tasks,
WBC approaches can be categorized based on closed-form or
optimization-based approaches.

B. WBC in Closed Form

An inverse dynamics controller is among the early works
that address the WBC problem in closed form. In particular, it
solves a single dynamic task: achieving the desired generalized
acceleration q̈ = q̈d. The closed-form torque τ can be solved
from (5) if we can measure all constraint forces λ. However,
λ are usually unattainable due to the lack of sensing and
estimation capability. To derive torque analytically, several
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Fig. 9. Whole-body control is categorized into closed-form approaches and
optimization-based approaches. Both approaches can incorporate multiple
dynamic tasks and resolve task conflicts.

methods [251, 252, 253] project the system dynamics (5) into
a constraint-free manifold, establishing an equation between
only q̈ and τ . [251] project (5) into the actuated joint space,
resulting in an equation of constrained dynamics independent
of the constraint forces λ. [252] use orthogonal decomposition
of the constraint Jacobian J to project (5) into the nullspace
of the constraints. Although different projection techniques
are used, [253] show that these projections produce equivalent
torque results. However, from the perspective of solving speed
and numerical stability, orthogonal decomposition [252] is
favored as it is faster and does not require the inversion of
the inertia matrix.

Other than the task of tracking generalized acceleration
q̈ = q̈d, a set of operational-space tasks and constraints can
be achieved given the redundancy in the degrees of freedom
of humanoid robots. As a multi-task example, a humanoid
robot is often tasked to generate interaction forces with a low
priority while maintaining the whole-body balance with a high
priority. Operational-Space Control (OSC), a.k.a task-space
control, achieves multiple dynamic tasks by prioritizing tasks
in a hierarchy [251, 254]. Tasks with low priorities are solved
within the null space of the high-priority tasks, enforcing that
hierarchies are strictly maintained among tasks. Such a task
hierarchy is also named the stack of tasks [255].

Overall, closed-form approaches are computationally effi-
cient and are straightforward to implement. However, they
have difficulty in incorporating inequality tasks, such as
joint limit and obstacle avoidance. Although this issue can
be addressed within the closed-form approach, such as us-
ing a smooth operator [255], much of the community uses
optimization-based methods that address this issue efficiently.

C. WBC through Optimization

In contrast with closed-form approaches, there have been
a variety of studies formulating the WBC as an optimization
problem. These optimization-based methods enhance the flex-
ibility of WBC, enabling the modular addition and removal of
dynamic tasks [256, 257], including inequality tasks.

A salient feature of optimization-based WBC is the resolu-
tion of conflicting dynamic tasks through two prioritization
schemes: strict task hierarchy [258] or soft task weight-
ing [117, 237, 238, 259]. Due to the linear property of both
the dynamics equation (5) and dynamic tasks (7), optimization-
based WBC is often formulated as a Quadratic Program (QP),

which can be solved efficiently to a global optimum and enjoys
a wide range of solver selections.

A strict task hierarchy can be ensured through a cascaded
hierarchical QP. This method sequentially solves a series
of QP subproblems with tasks from high to low priorities;
lower-priority QPs produce solutions within the combined null
space of all preceding QPs [258]. The sequential solve of QP
terminates either when it successfully solves all subproblems
or when it encounters an infeasible subproblem and thus skips
all the remaining low-priority tasks [260]. Hierarchical QP
is essentially equivalent to the closed-form stack-of-tasks ap-
proach, with the benefit of incorporating inequality constraints
more naturally. However, solving multiple QP subproblems
imposes significant computation and memory burdens. Addi-
tionally, the hierarchical QP inherits a common issue of OSC:
the task Jacobians becomes rank-deficient when approaching
singularities, which induce large unstable movements [261].

In contrast, weighted QP addresses these issues via arbitrat-
ing dynamic tasks as soft constraints in cost functions, using
weights to express their relative priority. Therefore, weighted
QP can be regarded as a special case of hierarchical QP with
only one hierarchy or vice-versa as documented in [262].
Such a setup enjoys the benefit of solving only a single
optimization, which is faster than a hierarchical QP and can
be further accelerated by exploiting sparsity and warm-start.
However, tuning weight parameters can be burdensome for a
large number of tasks, and can lead to instability [263]. Even
with well-tuned parameters, the loss of strict task priorities
means low-priority tasks can interfere with high-priority ones.
Nevertheless, weighted QP is still widely applied in many
robotics studies due to its easy setup and computation effi-
ciency compared with hierarchical QP. For example, many of
the weighted QP methods were designed during the DARPA
Robotics Challenge [117, 237, 238, 264].

D. WBC for Loco-manipulation
WBC for loco-manipulation aims to achieve the desired

motion while maintaining instantaneous balance and contact
stability. Given the desired motion and contact sequence,
loco-manipulation control can be categorized into two folds.
(i) When all interactions with the environment and objects
are static or quasi-static, they can be modeled as external
wrenches. In this case, the WBC solves a robot balancing prob-
lem with the external wrenches as dynamic tasks. (ii) When the
manipulated object has a substantial mass or is dynamically
moving, such as carrying a heavy box, the object becomes an
integral part of the robot-object system. Therefore, the WBC
must account for the balance of both the robot and the dynamic
object.

1) Interaction as an External Wrench: In this first category,
a subset of contacts is responsible for interacting with the
environment or objects to apply a desired wrench. This desired
wrench can be specified by a user or derived from the
estimated object weight. Considering the desired wrench from
the interaction, the remaining contacts maintain the system
balance using three distinct strategies.

The first strategy involves simultaneously optimizing con-
tact wrench, joint acceleration, and joint torque using the
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robot’s full-body dynamics, as detailed in Sec. VI-C. In this
approach, the desired wrench for interaction is a dynamic task
within the WBC. The WBC must also satisfy the dynamics
constraint, contact stability constraint, and balance stability
constraint. The contact stability constraint enforces that the
resultant contact wrench lies inside the contact wrench cone
(CWC) [265], maintaining firm and stable contact. The bal-
ance stability constraint designs a desired rate of centroidal
momentum, often based on feedback in the CoM position and
body orientation [194]. In the presence of state deviations,
the balance stability results in a redistribution of the contact
wrenches or a movement of the centroidal state to counteract
and restore stability [82].

The second strategy, known as pre-optimization [3, 266],
involves two stages in sequence. First, it determines the
optimal distribution of contact wrenches based on the desired
rate of centroidal momentum derived from the balance stability
of CD. The second stage computes the joint torques needed to
realize the contact wrench using inverse dynamics of full-body
dynamics. Note that, deriving the desired rate of centroidal
momentum in the first stage is particularly challenging due to
the non-holonomy [267] of angular momentum, i.e., the kinetic
momentum of rotation is not directly related to the orientation
of body links. As a result, the body orientation requires
additional regulation (e.g., joint-level postural feedback [3])
beyond simple feedback on angular momentum.

To address the non-holonomy issue, the third strategy uses
post-optimization [268]. The main idea is to treat the floating-
base robot as a fixed-based system when calculating joint
torques. The underactuated portion of the obtained torque is
then mapped to contact wrenches through an optimal distribu-
tion problem. This method avoids the challenge of specifying
the momentum of rotation in the pre-optimization strategy.

2) Interaction as a Unified Robot-Object Model: A unified
robot-object system can leverage the additional object to
regulate the robot’s dynamics. This yields more dynamically
feasible behavior when carrying heavy or dynamically-moving
objects. The unified model incorporates each manipulated ob-
ject as an additional “robot” – either a passive object or a real
robot – and connects the robot and object via action-reaction
force pairs [269]. The balance stability must consider the
combined CoM and inertia of the robot-object system [221].
Additionally, the contact stability between the robot and the
object is maintained to ensure that the object remains securely
attached. While direct control of the interaction forces is fea-
sible, adaptive force control that regulates the relative position
between the object and the robot offers greater robustness.
This approach mitigates the impact of inevitable inaccuracies
in modeling inertia parameters and stiffness properties [191].

Conclusion: The core of whole-body control lies in address-
ing an inverse dynamics problem to produce joint-level torque
control. However, this problem is challenging due to the under-
actuation and contact-constrained nature of humanoid robots.
Closed-form approaches such as inverse dynamics control and
operational-space control are computationally efficient. There-
fore, they have been traditionally prevalent. On the other hand,
optimization-based strategies, particularly quadratic programs,
are increasingly favored as they adapt more effectively to

a wide range of task specifications and offer more reliable
solutions. Undoubtedly, both lines of WBC research have
significantly advanced the progress of humanoid robot control
over the past two decades. In the near term, optimization-
based WBC will continue to be a popular choice for low-level
control to achieve high-level loco-manipulation tasks. We also
see neural WBC [270, 271, 272] gaining popularity, as we
will discuss in the following section. For further reading, we
recommend the survey on optimization-based WBC for legged
robots [7] and the chapter on closed-form WBC techniques for
humanoid robots [11].

VII. LEARNING LOCO-MANIPULATION SKILLS

Robot skill refers to the ability to use its own percep-
tion, planning, and control capabilities to complete speci-
fied tasks autonomously [273]. Among a variety of robot
skills, loco-manipulation is highly valuable for augmenting
and complementing human capabilities. Traditionally, loco-
manipulation skills are developed from human designer knowl-
edge, distilled into pre-programmed planners or controllers.
In contrast, learning-based methods leverage computation and
data. Although learning skills require collecting extensive data
from either autonomous exploration or expert guidance, this
approach is powerful as it tends to yield novel behaviors that
are difficult to encode from human knowledge.

This section reviews learning-based approaches that explore
two main directions: (i) enhancing a specific skill in terms of
agility, robustness, and safety, and (ii) broadening the overall
skill set of robots, revolving around two pivotal goals: versa-
tility and generalization. Versatility refers to the capability of a
single framework or policy to master multiple skills, whereas
generalization involves adapting existing skills to new, out-of-
distribution tasks and environments.

Among learning-based methods, Reinforcement Learning
(RL) without demonstration and learning from demonstration,
also known as Imitation Learning (IL), have shown remarkable
proficiency for robotic skill learning. RL has been successful in
coordinating complex full-body motions for humanoid robots,
including dancing [270, 274], agile soccer maneuvers [275],
and robust locomotion [35, 39]. However, RL policies are often
fine-tuned for specific tasks within specific environments.
This limitation largely stems from the reward function being
narrowly tailored to a specific task, and the policy only capable
of learning from the same or similar environments. In contrast,
IL addresses this problem by leveraging large datasets of
demonstrations [37, 276]. Recent advancements in IL have
demonstrated promising results for scaling to a large number
of skills [8], showing potential for solving complex multi-skill
tasks.

For the basics of RL and IL, we refer readers to the
survey paper [277]. In this section, we discuss these methods
for learning humanoid loco-manipulation skills. As shown in
Fig. 10, we introduce RL in Sec. VII-A and IL in Sec. VII-B
and Sec. VII-C. Thereafter, we discuss the benefits of combin-
ing model-based and learning-based methods in Sec. VII-D.
Finally, we discuss methods for learning versatile skills with
a single policy in Sec. VII-E.
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A. Skill Learning: Reinforcement Learning from Scratch

RL, enhanced by modern deep learning toolchains and
algorithms, has garnered significant attention in the field of
robotics over the past decade. RL promises an effective way
to learn motor skills by rewarding desirable behaviors and
penalizing undesired behaviors, with minimal or no supervi-
sion during training. The end-to-end RL policies translate raw
sensory input to actuation and are executable in real time.

RL provides distinct benefits but also comes with its own
challenges. Compared with model-based methods, numerous
RL methods are model-free (see Sec. VII-E for model-based
RL), eliminating the need for accurate dynamics. Furthermore,
RL does not require demonstration data, making its training
setup straightforward. However, it often requires meticulous
design of reward functions to shape the policy’s behavior.
In addition, deploying a learned policy on robot hardware
often encounters a sim-to-real gap, a well-known issue induced
by the inaccurate physical model used by the simulator.
Policy learning from scratch often requires extensive and time-
consuming interactions with the environment without a guar-
antee for task completion. For example, popular RL algorithms
such as Proximal Policy Optimization (PPO) [278] and Soft
Actor-Critic (SAC) [279] fail to achieve most humanoid loco-
manipulation tasks [280], partly due to the complexity of these
tasks, the sample inefficiency, and the sparse reward design.

1) Improving Learning Efficiency: Several approaches have
been proposed to improve learning efficiency. Curriculum
learning expedites training by allowing the policy to achieve
simple tasks in the early stage of training and then progres-
sively increasing the task difficulty and complexity [281].

Another approach is to promote exploration. Researchers use
curiosity mechanisms, which encourage visiting unexplored
states, to intrinsically motivate learning without explicit re-
ward design [282]. This has been shown to overcome the
sparse reward setting and achieve complex loco-manipulation
behaviors such as door opening. [274] also incorporates
curiosity-based rewards to learn versatile loco-manipulation
skills without any motion priors. Lastly, substituting reward
terms with constraints in a constrained RL framework can
significantly simplify reward tuning while achieving state-of-
the-art locomotion performance [283].

2) Addressing Sim-to-real Gap: Sim-to-real is another
formidable challenge in RL. Nevertheless, RL has been suc-
cessfully applied to various areas of robotics, with notable suc-
cess in quadrupeds [284], where the sim-to-real gap has been
consistently overcome. How can we apply the lessons from
quadrupeds to humanoids for optimal loco-manipulation while
avoiding known pitfalls? The success story of quadrupeds
hinges on new investments in infrastructure for affordable
hardware and highly parallel physics engines, spearheaded by
key players in the robotics community. It is also important to
note that quadrupeds benefit from an inherently stable dynamic
system similar to manipulators while operating in less complex
environments compared to typical loco-manipulation tasks.

In contrast, humanoid loco-manipulation faces steeper sim-
to-real challenges. Humanoid robots possess higher DoFs
and unstable dynamics, where the center of mass constantly
moves out of the support polygon. Therefore, learning whole-
body balance control is sensitive to parameters in physics
simulation, underlining the sim-to-real gap due to dynamics
differences between the virtual and real worlds. In addition,
humanoids are expected to perform human-level manipulation
tasks where the differences in observation space and the
complex environment aggravate the sim-to-real-gap due to
appearances.

To address the sim-to-real challenge, a diverse set of
mainstream approaches have been explored for humanoid
robots. Domain Randomization (DR) is among the most
widely adopted approaches. It varies the properties of a robot
model, such as mass, friction, and actuator dynamics, to
train a generalized policy robust in the real world. Many
humanoid works [39, 275] achieve sim-to-real transfer through
DR. While DR is straightforward to set up, policy training
is sensitive to the parameter randomization range, inducing
laborious tuning: a larger range is challenging for the policy
to fit all physical parameters (i.e., fail to learn), and a smaller
range does not cover the full spectrum of parameters that can
occur in the real physical world (i.e., fail to transfer).

In addition to adopting a diverse set of parameters in DR,
System Identification (SI) is another popular approach to
enhancing model fidelity by approximating the system’s input-
output behavior from real-world data. Real-to-sim techniques
use optimization [285] or search [286] to obtain simulation
parameters that can best explain the real robot trajectories
collected from policy execution. However, it is challenging
to collect high-quality, real-world data covering the full space
of states and actions, particularly for versatile, safety-critical
humanoid tasks.
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Different from SI, which uses real-world data to obtain an
accurate model, Domain Adaptation (DA) uses real-world data
directly to fine-tune a simulator-trained policy. In DA, the
parameter distribution in simulation is defined as the source
domain, and parameter distribution in the real world is defined
as the target domain. The fine-tuning effectively transfers
the policy from the source domain to the target domain.
For example, Sim-to-Lab-to-Real [287] develops a two-stage
transfer: pre-training in simulation and fine-tuning in the real
world. Although only limited hardware data is needed for fine-
tuning, safety is still a major concern. Safety filters are often
deployed to prevent dangerous movements when collecting
real-world data [288].

Despite these efforts to address the sim-to-real gap, a
systematic solution remains elusive, as the aforementioned
approaches are often ad-hoc and case-specific. Against this
backdrop, advancing in humanoid hardware deployment and
developing physics engines that facilitate real-to-sim construc-
tion and sim-to-real transfer will be crucial. Simultaneously,
we must rethink the role of RL to utilize its strengths and
avoid its weaknesses for humanoid loco-manipulation. An in-
depth discussion on how to integrate RL with modern IL is
presented in Sec. VII-B and Sec. VII-C.

Conclusion: RL provides an effective way to learn novel be-
haviors for humanoid loco-manipulation. However, in practice,
the success of RL often relies on informative representations
for both observation and action, extensive reward engineering,
curriculum learning design, and a vast amount of trial-and-
error experiences to estimate gradients. Consequently, using
RL to train robots is almost never practical in the real world,
at least for the current stage of development. Therefore, RL
policies are predominantly trained in simulations. This makes
the sim-to-real gap the Achilles’ heel of RL, significantly
dampening its initial promise. Compared with quadruped
robots, the sim-to-real gap is particularly challenging for
humanoid robots with high DoFs executing complex loco-
manipulation tasks. This is why IL, leveraging limited but
in-domain real-world data, has gained popularity over pure
RL without demonstration data. For further reading in RL,
we recommend the survey on learning-based legged locomo-
tion [277] and the practical lessons for training robotic RL
agent [289].

B. Skill Learning: Imitation from Robot Experience
Imitation Learning (IL) is an umbrella term that represents

a class of algorithms, including supervised, unsupervised,
and reinforcement learning, that train policies from expert
demonstrations. IL is particularly effective for complex tasks
that are difficult to specify explicitly. Three essential steps
exist in IL [299]. The first step is to capture the expert
demonstration. The next step involves retargeting, where these
demonstrations are mapped to the robot motions. The final
step is policy training using the retargeted data. If the captured
motion comes from the same robot, such as from teleoperation,
the retargeting step is unnecessary.

We discuss four possible sources of demonstrations for hu-
manoid robots: (i) policy execution, (ii) teleoperation, (iii) mo-
tion capture, and (iv) human videos, as illustrated in Fig. 10

TABLE III
SKILL LEARNING METHODS BASED ON DATA SOURCE

Methods and Data Pros and Cons Algorithms

RL Without
Reference

✓novel behavior
✗ sim-to-real gap
✗ reward tuning

PPO [278], SAC [279]

IL Robot Execution

✓annotated data
✓dynamically feasible
✗ scarce
✗ limited diversity

Diffusion [276], IRL [290]

IL Teleoperation ✓multimodal behavior
✗ rare full-body motion

BC-RNN [80],
ACT [272, 291]

IL Motion Capture

✓accurate kinematics
✗ small dataset
✗ limited outdoor data
✗ proprioception-only

RL motion imitation
[292], GAIL [293],
AMP [294, 295]

IL Human Video
✓diverse abundant data
✗ non-physical motion
✗ proprioception-only

RL motion imitation [296],
GAIL [297], OKAMI [298]
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Fig. 11. Control flow for learning from teleoperated demonstrations. Expert
data is created from teleoperated trajectories (dashed lines), which in turn is
used to train and deploy an autonomous skill policy (solid lines).

and Table III. We group these data sources into two categories:
The first is robot experience data, representing those directly
obtained from the robots through policy execution or teleop-
eration; The second is human data, which includes human
motion captures and videos of human activities obtained from
the Internet. Robot experiences exhibit smaller morphological
discrepancies and are directly applicable to policy learning but
are typically scarce. Conversely, human data are more abun-
dant, but they present significant morphological differences to
humanoid robots. This section discusses robot experience data,
and the next subsection discusses the human data.

1) Obtaining Robot Experience Data: A reliable way to
obtain robot experience data is to execute existing expert pol-
icy, either model-based or learning-based. However, collecting
data on a physical robot requires a laborious setup of the
environment and raises significant safety concerns. Therefore,
conducting these executions in simulation is a more efficient
approach, although the fidelity of the simulator will inevitably
cause a sim-to-real gap.

Teleoperation is one of the most common ways to directly
capture robot data commanded by human experts. A main
advantage of teleoperation is its ability to provide smooth,
natural, and precise trajectories for a wide range of tasks.
Fig. 11 outlines the control flow of teleoperation data used as a
source of policy training. The first step of this process is gen-
erating the demonstration through teleoperation, represented
by the top path of the control flow (dashed lines). Motion
retargeting maps human measurements from the teleoperation
device to the desired trajectories in the robot domain. Robot
execution data collected from teleoperation can be used to
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train autonomous policies that directly command the robot’s
motion without human intervention (solid lines). In this case,
the retargeting process is not needed.

However, teleoperation for the full-body of a humanoid has
a number of limitations. Firstly, a majority of teleoperation
systems capture only manipulation skills [8]. Generally, Vir-
tual Reality (VR)-based teleoperation schemes cannot sense
the operator’s gait and are restricted to simply commanding
walking speeds and directions via joysticks [246, 300, 301].
Full-body sensing, including human gaits, often requires ad-
ditional equipment such as IMU suits [244, 302] or exoskele-
tons [249]. These devices may be prohibitively expensive,
bulky, complicated to maintain, and lack transparency and
user-friendliness. Secondly, while teleoperation can generate
versatile training data for a wide range of tasks, the utility of
this data may be limited if the robot’s kinematics do not enable
seamless retargeting of reference human motion. Additionally,
retargeting dynamic tasks such as walking or pushing an object
is sensitive to the dynamic model of the human demonstrator
[244] and requires meeting high synchronicity [302] and rich
sensory feedback.

Although both teleoperation data and policy execution data
are recorded from robots, they exhibit distinct characteris-
tics. During teleoperation, human instructors tend to provide
diverse demonstrations even for the same task. Therefore,
teleoperation data are often multimodal, i.e., given a specific
task, there exists a distribution of plausible ways to accomplish
the task. In contrast, data from executing a single policy are
often unimodal, i.e., given an input, the output is often fixed.
Different policy learning approaches have been proposed to
address these multimodal and unimodal data features.

2) Approaches to Learning from Robot Experience Data:
From unimodal policy execution data, which contains paired
observations and actions, IL approaches are often used for pol-
icy distillation. Behavior Cloning (BC) casts IL as a supervised
learning problem, which remains one of the most straightfor-
ward approaches for robot skill learning [303, 304]. Another
IL technique is Inverse Reinforcement Learning (IRL), which
reconstructs rewards from the data in addition to training an
RL policy. The IRL study in [290] infers a generalizable
reward of the expert demonstration for bipedal locomotion and
then uses this reward to train an RL policy in unseen terrains.

To capture the data multimodality and produce diverse fu-
ture actions, Action Chunking Transformer (ACT) [272, 291]
is adopted to handle distribution shifts due to the compounding
error inherent in naive BC. Recently, diffusion policy [276],
a BC method, shows the ability to acquire multimodal lo-
comotion skills by learning from a large dataset collected
from multiple expert policies. However, obtaining these skills
requires large-scale versatile data, which motivates the scaling
of data collection via teleoperation in industrial companies,
e.g., Tesla and Toyota Research [8].

Conclusion: Although collecting high-quality data demands
considerable effort and resources, IL from robot experience
remains a reliable method for attaining skills with expert-
level performance. Industrial companies and research labs are
increasingly focusing on scaling data collection to develop
a broader range of diverse policies through IL. Especially,

teleoperation is one of the most popular ways to collect
humanoid robot experiences nowadays. For further reading on
collecting robot experience data, we recommend the survey on
humanoid robot teleoperation [305]. We also find the survey
on imitation learning of humanoid bipedal locomotion [299]
a decent summary.

C. Skill Learning: Imitation from Human Data

While robot experiences can serve as a reliable data source,
collecting loco-manipulation data directly from robots remains
a formidable challenge. Collecting teleoperation data, even
though it is one of the most commonly used approaches, is
costly and time-consuming to scale. Besides, gathering robot
data by deploying existing model-based methods or trained
policies presents additional difficulties. These methods raise
safety concerns on hardware or suffer from significant sim-to-
real gaps. Furthermore, model-based methods based on human
knowledge (e.g., dynamics models, heuristic trajectories) tend
to generate consistent but similar behaviors, leading to limited
data diversity.

Learning from a large, diverse corpus of human data mit-
igates these challenges. Humans use loco-manipulation skills
in their daily lives almost reflexively. Therefore, recording
human data is more accessible and scalable. Training policies
to imitate human data can greatly simplify the synthesis of
loco-manipulation behaviors. Recent research efforts in 3D
human motion data archival have surged in the vision and
computer graphics communities. As shown in Fig. 12, there are
currently two primary approaches to acquire 3D human motion
data: (i) recording directly from motion capture systems and
(ii) reconstructing from 2D videos.

1) Obtaining Human Data: Various tracking systems
are used to obtain human motion data. As shown in
Fig. 13, [179, 306] captures humans interacting with var-
ious objects while moving around. The following datasets,
CMU [307], SFU [308], LAFAAN [309], and AMASS [310],
are commonly used because they provide a wide variety of
human motions. However, motion capture data often require
heavily instrumented environments and actors, making them
expensive to scale. Besides, indoor lab settings provide little
exposure to outdoor activities.

Alternatively, videos and images obtained from the Internet
offer a rich and diverse source of human motion data, in-
cluding athletic performances, artistic dances, or daily chores.
However, compared to the aforementioned data sources, mo-
tion extracted from internet data is usually of lower quality,
containing noise, jittery, and non-physical artifacts due to
occlusion and motion blurs. Therefore, the reconstruction of
accurate 3D human poses from 2D data remains an active
research topic in the computer vision community.

Animation is also a widely explored approach to obtaining
human motion data. Although animation is effective in design-
ing expressive motions for virtual human characters, the pro-
cess often requires the use of sophisticated animation tools by
professional animators [311], which makes it less scalable than
motion capture or Internet videos. To address this limitation,
researchers have been pursuing motion generation, leveraging
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Fig. 12. A pipeline for learning from human data. The 3D human motion
data can be recorded from motion capture systems or reconstructed from
2D human videos. Robot motion is retargeted from 3D human motion for
imitation learning.

(b)

(a)

Fig. 13. Motion capture of human data. (a) The human interacts with
household items [179]. (b) The human interacts with items with whole-body
manipulation [306].

human data to generate diverse and realistic motions; see a
comprehensive survey in [312]. Our focus here is on training
IL policies to generate physically plausible actions that achieve
the motions demonstrated in human data. The training pipeline
is shown in Fig. 12.

2) Challenges in Learning from Human Data: Using offline
human motion data (from any source) to train humanoids
inevitably creates an embodiment gap both in observation and
action spaces due to different body proportions, joint config-
urations, and mass distributions between most humanoids and
humans. Closing this embodiment gap requires retargeting,
which involves mapping the motion collected from a source
skeletal model to a target robot model. Previous work in
computer graphics and robotics has explored various retarget-
ing strategies, such as joint correspondence [244, 272, 313],
task-space correspondence [291], contact points [221], fin-
gertips [314], gait synchronization [249, 302], and motion
feasibility filter [156, 271]. Developing systematic solutions
for retargeting the entire human body, including dexterous
hands, remains a critical topic for advancing humanoids.

Another correspondence problem is that these human data
are only proprioception-based, which lacks sensory input and
action output. Notably, these human data lack tactile or force
measurement from interactions, which limits the capability of
learning for loco-manipulation with rich physical interaction.
To solve this issue, IL trains control policies that track ref-

erences within a physical simulator. Specifically, IL control
policies accept state-only references instead of state-action
pairs and output control signals. The physical simulator plays a
key role in providing sensory input and validating the physical
feasibility of the policy action.

3) Approaches to Learning from Human Data: Examples of
learned human-like motions include walking using Generative
Adversarial Imitation Learning (GAIL) [293, 297]. Extending
the GAIL framework, Adversarial Motion Prior (AMP) [315]
is applied to locomotion tasks in [294] and [295]. Recently,
RL-based motion imitation using motion capture data has
shown successful transfer to humanoid robots [271, 272, 313,
316]. However, most of these works achieve only relatively
conservative loco-manipulation behaviors. Highly agile be-
haviors, as shown in DeepMimic [317], still exist only in
simulators, and similar capabilities have yet to be replicated
with real robots.

Human motion imitation can also achieve robust policies
capable of rich interactions with objects in unstructured en-
vironments. For example, [296, 318] demonstrates the learn-
ing of full-body gymnastic skills for humanoids in physics
simulation, utilizing video reconstruction data and RL-based
motion imitation. [319, 320] learns loco-manipulation poli-
cies enabling simulated humanoid characters to carry boxes.
Furthermore, [292] mimics motion capture data to achieve
playing basketball and grasping objects. However, many of
these approaches still rely on privileged information, such as
the ground truth of object and ego poses, from the simulator,
which limits their extension to real-world hardware.

Conclusion: Transferring skills from humans, especially
through Internet-scale datasets, unlocks a broad range of
loco-manipulation capabilities for humanoid robots. Although
learning from human data holds great promise, a large body
of what has been achieved in simulation has yet to be real-
ized in real-world robots. Developing affordable and capable
humanoid robots and high-fidelity simulators of real-world
loco-manipulation scenarios can accelerate progress in this
research direction. As we witness an increasing accessibility
of humanoid robots in the market, we foresee that imitation
from human data will enable humanoid robots to acquire a vast
and diverse skill set. This skill set is fundamental to building
humanoid foundation models discussed in Sec. VIII.

D. Skill Learning: Hybrid Methods

Approaches that combine learning-based methods (IL and
RL) and model-based methods are illustrated in Fig. 14.

1) Combining Pure RL and IL: The combination of IL
and pure RL without demonstration data has led to effective
sim-to-real transfer. A two-stage teacher-student paradigm is
widely adopted [37, 39, 321]. In these works, a teacher policy
is first trained from simulated privileged observation using
pure RL. Then, a student policy clones the behavior of the
teacher, achieving a similar performance using only partial
observations. The trained student policy is readily deployable
on hardware with onboard observations. Another two-stage
paradigm [322] reverses the order of the two policies. It
uses IL first to pre-train an imitation policy from expert
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data. Then, an RL policy fine-tunes the imitation policy for
further improvement. This RL allows achieving performance
beyond the IL expert and adapting to different environments
or tasks [323].

2) Learning to Track Trajectory Reference: Combining
model-based methods with learning-based methods is exten-
sively explored. Numerous works on quadruped robots [324,
325] use MPC to generate reference motions and use them as
imitation rewards for RL-based motion imitation. However,
calculating MPC online can prolong the training time and
MPC may occasionally fail to find a feasible solution. Online
RL that tracks offline-generated trajectories avoids this prob-
lem and has achieved effective RL policies for versatile bipedal
locomotion [35, 326, 327]. Supervised learning is also used
to mimic TO-generated offline motions. For example, [328]
allows humanoid robots to achieve brachiation on monkey
bars. In addition to enhancing learning methods with model-
informed trajectories, a learned policy can also suggest good
warm starts or hyperparameters for model-based methods, thus
significantly reducing the iterations required for convergence
to an optimal trajectory.

3) Learning to Augment Trajectory Reference: Rather than
tracking the reference trajectory, augmenting the reference
with a residual is another popular approach. Early work on
dynamic movement primitives [329] modifies the reference
trajectory by learning a task-specific force output, which
achieves a humanoid racket swing. A milestone in trajectory
augmentation is the demonstration of bipedal locomotion
in [330]. Since then, many works on trajectory augmentation
have achieved dynamic locomotion [331, 332]. Recently, loco-
manipulation skills are also achieved through augmenting TO-
based reference trajectory [333]. Beyond joint-level reference,
a policy can also augment the task-space reference. For
example, [334] learn a locomotion policy to adapt the foot
placement reference derived from inverted pendulum models.

Both imitation and augmentation of the reference trajectory
share benefits and drawbacks. As a benefit, using references
expedites the learning process and provides an effective way
of learning complex skills. However, both methods rely on
predefined trajectories and, therefore, have limited potential
to learn emergent, diverse behaviors.

Conclusion: Learning-based methods, especially pure RL
without demonstration data, present robust and emergent
behaviors, while IL enables effective learning of complex
behaviors. Model-based methods take advantage of human
knowledge and the power of numerical optimization to provide
references for efficient learning. Overall, combining model-
based and learning-based approaches has achieved efficient,
versatile, and high-performing humanoid tasks that outperform
single methods alone. Many existing works have shown suc-
cessful humanoid hardware deployments using hybrid meth-
ods.

E. Representation and Composition for Versatile Skills

A good representation of skills makes it easy to compose
tasks. In general, a skill can be represented explicitly as a state-
action trajectory that accomplishes a task or implicitly as a

RL Teacher

a

s
privileged 
state

IL Student

a

o

IL Pre-train

âŝ

RL Fine-tune

a

o

a

o

Motion 
Trajectory

a
δa

o

Motion 
Trajectory

3) Augmenting Reference

1) Combining RL and IL

2) Tracking Reference

MPC or TO

MPC or TO

Environment

Environment

Environment

Environment Expert Data

Fig. 14. The frameworks of combining model-based methods and model-free
methods for skill learning.

network structure and its learned weights. In this subsection,
we explore implicit representations for skill composition to
achieve versatile, multi-skill tasks.

1) Skill Composition via Mixture of Experts: Recent
learning-based approaches enable smooth transitions between
multiple skills. Among them, Mixture of Experts (MOE)
is widely used. MOE employs a hierarchical architecture;
it first trains multiple distinct skills, implicitly encoded in
low-level expert policies, and then learns a high-level policy
to select [335] or blend [336] these expert networks. This
architecture allows for smooth transitions between skills and
facilitates the completion of diverse tasks. However, MOE en-
counters expert imbalance issues favoring certain experts while
degrading others; which could diminish the diversity provided
by the experts. Instead of obtaining and then blending multiple
policies, structured representations improve memory efficiency
and allow a single policy to achieve multiple tasks. Next,
we introduce three well-received structured representations:
motion representation, goal representation, and state transition
representation, all shown in Fig. 15.

2) Motion Representation: Motion representation extracts
the essential features and temporal dependencies of high-
dimensional long-horizon motions [337]. Specifically, motion
representation encodes high-dimensional motions in a low-
dimensional latent space. Such latent-space representations are
commonly learned in an unsupervised manner using generative
models such as Variational Autoencoders (VAEs) [338] and
Generative Adversarial Networks (GANs) [339]. Compared
to VAEs, GANs have greater potential to generate realistic
motions following the reference data distribution, but they
are often difficult to train. The result of learning motion
representation is often a model that can generate versatile
motions given latent codes. Therefore, the generative model
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can be easily reused to achieve new downstream tasks by
pairing it with a high-level task-specific policy. For example,
several studies [340, 341, 342] learn a high-level RL policy
to efficiently use a reduced-dimensional latent space motion
representation and allow simulated humanoid robots to follow
a set of user-commanded tasks.

3) Goal Representation: Besides motion representation,
another approach to learning a single policy for multiple
tasks is through the representation of goals. The goal is
typically represented as a feature vector, which can be encoded
from an image of the scene in its final state, a natural
language instruction, or a desired state from observing human
demonstrations. This goal representation is often paired with
Goal-Conditioned Policies (GCPs) [343]. Unlike standard RL
policies that achieve only one task, GCPs achieve multiple
tasks within a single general policy conditioned on different
goals. GCPs have achieved versatile humanoid skills using IL
such as diffusion-model based BC [276] and RL with imitation
objectives [271, 313, 344].

4) State Transition Representation: The latent space can
also represent the transition dynamics of a Markov Decision
Process (MDP). In this representation, data collected from the
MDP are used to train a dynamics model that predicts the
transition probability between abstract, compressed represen-
tations of MDP states. This learned dynamics model is often
referred to as a world model [345]. Sampling from a world
model yields imaginary data and can be achieved efficiently
in massive parallel. By leveraging the imaginary data, Model-
Based RL (MBRL) achieves greater efficiency compared to
a typical model-free setting, where interaction data must be
obtained from a simulated or real environment. MBRL has
shown success in agile motor skills on humanoids [346, 347].
Another approach, TD-MPC2 [348], uses the world model
in an MPC fashion, planning actions that lead to imaginary
trajectories with high scores. Beyond data efficiency, the world
model can mitigate the sim-to-real gap by fine-tuning a small
batch of real-world data [349].

Conclusion: Enabling robots to accomplish versatile skills
and multiple tasks is one of the main trends in robot skill
learning. Whereas obtaining and blending single-skill policies
is widely explored, more recent methods put efforts into
achieving multiple tasks in a single policy. This requires a
more structured representation of the skill motion, the task
goal, and/or the environment dynamics. Latent space models,
goal-conditioned policies, and world models are promising
approaches toward this objective. However, many of these
methods are still limited to the computer graphics community
and yet to be implemented on humanoid hardware.

F. Learning for Humanoid Loco-manipulation

Loco-manipulation skills are challenging for learning-based
methods as they often struggle with achieving physically stable
contact or precise contact forces.

While many learning-based approaches, such as
CooHOI [350], demonstrate humanoid loco-manipulation
skills in simulation, the physical interactions with external
environments or objects are often oversimplified. As a
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result, only a few studies demonstrate sim-to-real transfer
for loco-manipulation skills. This subsection overviews a
comprehensive list of studies on learning humanoid loco-
manipulation with hardware implementations. A large part
of these studies rely on RL, with a few examples shown in
Fig. 16. However, RL for loco-manipulation typically involves
complicated reward designs that are fine-tuned for specific
environments and tasks [351, 352], see Sec. VII-A. To enable
loco-manipulation tasks, these methods define the contact
sequence either implicitly using reference trajectory [333, 351]
or explicitly via reward design [274], thus increasing the
success rate of sim-to-real transfer. To address the uncertainty
of the mass and other properties of the manipulated object,
most RL approaches rely on domain randomization to provide
robustness to object parameters [39].

To achieve various loco-manipulation tasks such as playing
soccer that involves ball kicking and falling recovery using
hands [275], employing a hierarchical RL structure that man-
ages distinctly trained skills is a viable strategy. However,
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(a) (b)

(c) (d)

Fig. 16. Learning-based methods for humanoid loco-manipulation skills. (a)
Getting up and chasing a ball [275]. (b) Tying shoelace [272]. (c) Multi-
contact box manipulation [333]. (d) Dancing with a human [270].

hierarchical RL has scalability issues, see Sec. VII-E. On the
other hand, IL methods, particularly those employing RL with
motion imitation, have enabled humanoid loco-manipulation
via teleoperation, as outlined in Sec. VII-B. Although tele-
operation is not autonomous, it is a crucial intermediate
step to collect humanoid data. Such humanoid data has led
to promising developments in autonomous loco-manipulation
skills [271, 272], with the potential for further expansion to
more diverse loco-manipulation tasks.

Conclusion: Although learning-based methods for hu-
manoid loco-manipulation are less developed than model-
based methods, their significance should not be overlooked.
Learning-based methods are potentially more robust, as they
can adapt to unstructured scenarios that model-based methods
struggle to explicitly address, such as recovering from a
fall in an arbitrary configuration [353]. Moreover, learning-
based methods can find emergent behaviors that are challeng-
ing for model-based methods [282]. The recent success of
quadrupedal loco-manipulation [72, 76, 77] shows significant
promise for humanoids. However, transferring these algo-
rithms from quadruped to humanoid is challenging because of
the complex dynamics of humanoids, which require enhanced
safety measures and precise balance control.

VIII. FOUNDATION MODELS FOR HUMANOID ROBOTS

Foundation Models (FMs) are large pre-trained models
using Internet-scale data [354]. Recent progress in FMs such
as Large Language Models (LLMs) and Vision-Language
Models (VLMs) has demonstrated groundbreaking capabilities
in solving a wide range of downstream tasks (through in-
context learning or fine-tuning), such as code generation,
visual question answer, and video understanding [355]. The
common sense reasoning capabilities of FMs have inspired
many explorations of their applications in robotics [9, 10].
Despite this growing interest, research on FMs specifically
for humanoid robots remains sparse. In this section, we first
provide an overview of FMs in the context of general robotics
(e.g., mobile manipulation, instead of humanoids) and then
explore their potential applications to humanoid robots.

Strategies to leverage FMs for robotics can generally be
categorized into two, as shown in Fig. 17. The first strategy

(Sec. VIII-A) elicits actionable knowledge from pre-trained
LLMs/VLMs for robotic tasks, without additional model fine-
tuning. The second strategy (Sec. VIII-B) collects abundant
robotic data to fine-tune or co-train a Robot Foundation Model
(RFM) that generalizes to control tasks with common sense
reasoning capability [356, 357, 358, 359].

A. Applying LLMs/VLMs to Humanoid Robots

Applying LLMs/VLMs to humanoids is still a nascent
field. Many works have shown successful deployment of
LLMs/VLMs on various robot embodiments such as dexterous
hands [360], manipulators [361], mobile manipulators [362],
quadrupedal robots [363], and bipedal robots [364].

Among these works, a majority way of using LLMs/VLMs
is to leverage pre-trained models without robot data. Al-
though these pre-trained models have semantic understanding
capability and context awareness, they often lack embodied
knowledge and can prescribe actions that are ambiguous or
non-admissible. Therefore, considerable research efforts have
focused on task-planning mechanisms to enable the generation
of admissible action plans. For example, SayCan [362] ranks
available actions based on value functions obtained during the
training of corresponding action policies for mobile manipu-
lators. VLM-PC [365] restricts GPT-4o to output plans with
skills available only for quadruped navigation.

The task planning capability of FMs has advanced the
complexity of tasks that a humanoid can accomplish. For
instance, Figure AI demonstrates fast, dexterous manipulation
skills selected by a VLM that interprets natural language com-
mands and the surrounding environment. In [366] and [367],
pre-trained LLMs are used to select skills and task goals
for animated humanoid characters. OmniH2O [271] employs
GPT-4 [355] to select autonomous skills such as greeting a
human. HYPERmotion [368] applies an LLM to construct
task graphs that enable a hybrid wheeled-leg robot to execute
complex loco-manipulation tasks. However, using FMs to
plan with a fixed skill set is limited in skill versatility. In
addition, for complex behaviors such as those in humanoid
loco-manipulation tasks, it is essential to allow FMs to author
the detailed motions of low-level skills, instead of selecting
from existing, relatively-abstract low-level skills.

Thus, many research efforts have focused on identifying
the best bridge between FMs and low-level robot skills. For
example, researchers have proposed to generate code [361,
369] and reward functions [363, 364, 370] as intermediate
representations for bipedal and quadrupedal robots. Compared
to selecting existing skills, these intermediate representations
provide additional flexibility in adjusting the generated motion.
Furthermore, FMs can generate whole-body poses [371, 372]
and whole-body contacts [373, 374] for humanoid robots.
These techniques allow users to intuitively direct a robot’s
behavior through expressive inputs such as natural language,
images, or even gestures.

B. Building Humanoid Foundation Models

While most FMs are developed in the vision or language
domain, building FMs in the robotics domain for embodied
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Fig. 17. Sec. VIII-A details different approaches to applying LLMs and VLMs
in robotics tasks. These approaches prompt pre-trained LLMs and VLMs
to generate task-relevant intermediate representations that can be executed
by low-level policies or controllers. Sec. VIII-B presents two approaches to
building humanoid foundation models. The first approach uses robot data to
train multi-skill policy, and the second approach fine-tunes an existing VLM.
Both approaches directly output actions for low-level humanoid control.

intelligence is a natural extension. Similar to LLM and VLM,
robot foundation models (RFMs) are large models trained from
Internet-scale robotic datasets. The RFMs often process multi-
modal inputs (e.g., egocentric images, and natural language as
task description) and directly interact with the physical world
through robot actions. Leveraging the Internet-scale multi-
modal dataset, RFMs hold the promise of generalization across
diverse tasks and provide a natural interface for human-robot
interaction, both essential for real-world robot applications.

However, building large RFMs presents significant chal-
lenges. Successful implementations are limited to robots that
have stable dynamics and a large amount of high-quality
data collected with significant resources [357, 359, 375, 376].
Recent works have extended such RFMs to floating-base
robots such as drones and quadruped robots [377]. However,
building an RFM for humanoid loco-manipulation remains a
challenging endeavor: the inherent instability in locomotion
and high-dimensional action space in dexterous hands makes
it extremely difficult to collect high-quality data efficiently. In
addition, humanoid robots have critical safety constraints that
often limit the exploration of their full behavioral capabilities,
resulting in a lack of humanoid datasets.

One popular approach to building RFMs is to create a
multi-task sensorimotor control policy using a high-capacity
model that can consume large amounts of robot data. The
trained policy can perform a wide variety of low-level skills,
even for multiple robot embodiments. To enable high-level
reasoning/planning, this approach often employs a hierarchical
framework combining a pre-trained LLM or VLM with the
low-level control policy, initialized from scratch. During train-
ing, this setup aligns the semantic knowledge of the LLM and
VLM with the physical behavior of the control policy, enabling
cross-modal capabilities such as language-to-action. Trans-

former [378] is a common choice for low-level policy due to its
scalability. To enable interactive user commands, the low-level
policy is conditioned on language and/or image inputs, often
tokenized with pre-trained text or image encoders from LLMs
or VLMs. For example, RT-1 [356] and VIMA [358] both
train a language-conditioned visuomotor policy with a large
amount of manipulation data and have demonstrated the ability
to perform a wide range of skills. Despite significant research
efforts in RFMs, applying them to humanoid robots remains an
unexplored research area with limited existing work. Notable
examples include HumanVLA [303] and SuperPADL [304],
which train a humanoid-specific policy aligned with the latent
space of pre-trained VLMs, enabling skills based on image
and language inputs.

To leverage prior knowledge in FMs, another popular ap-
proach is to build a vision-language-action (VLA) model, as
exemplified by RT-2 [357], OpenVLA [359], and Gato [379].
This approach treats robot data (i.e., observations and actions)
as tokens in the language model’s vocabulary, allowing direct
fine-tuning or co-training with existing VLMs. Unlike the pre-
vious approach, VLA outputs actions as tokens directly with-
out relying on trainable low-level policies. The VLA model not
only generates robot actions for diverse skills but also retains
semantic reasoning abilities in the language and vision domain,
enhancing its generalization capacity compared to models
trained in single domains. For example, RT-2 [357] represents
the actions as a string of numbers similar to the tokens from the
pre-trained vision and language tokenizer of the base VLMs.
However, representing actions with stringified numbers can be
token-inefficient with high degrees-of-freedom robots such as
humanoids. Despite the potential of this approach, no existing
work has built VLA for humanoid robots. Recently, NVIDIA
announced their Project GR00T initiative to develop general-
purpose FMs for humanoid robots. The GR00T foundation
model aims to leverage diverse data sources, from internet data
and simulation data to real-robot data, for scalable training.

A key research question in building RFMs is the design of
effective algorithms and model architectures. Although most
of today’s RFMs are based on autoregressive transformer mod-
els [378], their computational inefficiency over long sequences
poses a significant challenge for both training and inference.
This has driven exploration of alternative models that are both
efficient and high-capacity, such as state-space models [380].

The key to the success of training an RFM, especially in
the case of VLA, heavily depends on the choice of input and
output representations. Most RFMs take as input a combina-
tion of task descriptions in language, visual observations of
the surrounding environment, and the history of robot states.
Outputs typically consist of robot actions, derived either from
a multi-task policy (the first approach) or a VLA model (the
second approach). There are variations in the VLA model
where its token outputs specify more than just actions. For
example, Octo [381] and RDT-1B [382] use the token output
for the diffusion denoising process. π0 [375] maps a learned
token to robot actions through a diffusion head, enabling high-
frequency control (up to 50 Hz for a bimanual manipulator
with a wheelbase). GR-2 [383] predicts tokens that represent
future images and actions; thus it functions as both a world
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model and a visuomotor policy. For humanoid robots, input
and output are not yet well defined. For tasks involving
rich physical interactions, the force feedback is as crucial
as egocentric visual input. Given the unstable dynamics of
humanoid robots, a more practical approach is to use end-
effector and body poses as action outputs from the RFM
and adopt additional low-level policies to ensure balance
and safety via high-frequency feedback control. Incorporating
robotic data as a new modality into state-of-the-art FMs would
require significantly more data. Hence, designing effective
input/output representation for humanoid loco-manipulation
tasks still remains an open research question.

Conclusion: With rapid progress in FMs and humanoid
robots, a plethora of research work on embodied intelligence
in humanoid robots is anticipated. In the near term, we expect
research to lean toward methods outlined in Sec. VIII-A as
a more accessible way to leverage the capabilities of LLMs
and VLMs. Meanwhile, we anticipate that the strategy of
training a humanoid FM in Sec. VIII-B will become the
mainstream in the long term as researchers develop a deeper
understanding of incorporating additional modalities in FMs
and with more humanoid robots deployed and data collected.
For further reading of FMs for robotics, we recommend the
survey in [9, 10]. Since most of the FMs are built with the
Transformer backbones, please refer to [378] for a compre-
hensive mathematical foundation.

IX. FUTURE CHALLENGES AND OPPORTUNITIES

A. Challenges in Numerical Optimization
Robotic planning and control techniques that are formal-

ized as numerical optimization problems heavily rely on
advances in applied discrete mathematics and optimization
theory. These advancements address challenges such as non-
convexity, numerical robustness, and real-time resolution per-
formance. However, a plateau may have been reached in
the transfer of these techniques to the field of robotics
at large – humanoids specifically – despite exploiting the
unique properties of robotic models. These properties can
enhance the efficiency of optimization problem formulation
and its resolution by tailoring them to specific applications.
However, as evidenced by the formulation OCP, including
WBC and MPC, inherent physical uncertainties can disrupt
closed-loop performance. Extending these formulations to
loco-manipulation primarily involves (i) augmenting models
to incorporate loco-manipulated counterparts and (ii) refining
contact models formulations to account for various interactions
(e.g., impact [384], rolling, deforming). However, these exten-
sions risk overcomplicating the problem, potentially hindering
effective formalization, even if the resulting formulations are
sparse.

Contact-explicit optimization formulations [6] are gener-
ally preferred due to their faster convergence and simplified
formulation. However, they still suffer from the curse of
dimensionality. Moreover, these formulations have the sig-
nificant limitation of requiring the user to determine the
contact mode sequence for the problem, which generally limits
the ability to generate complex motions. Alternative contact-
implicit formulations introduce complementarity conditions

to eliminate the strict dependence on the contact mode se-
quence [160, 165, 385]. However, contact complementarity
conditions are nonsmooth, introducing severe computational
challenges. Generally, this is tackled via regularizing the
complementarity problem, e.g., [168], which approximates the
constraint with a continuous affine function. Even with this
linearized approximation, contact-implicit approaches struggle
to scale to the high dimensionality of humanoid robots due to
excessive computation and numerical difficulty.

All these approaches, however, still have only local opti-
mality guarantees—if the structure of the problem requires
deviations from the local candidate contact conditions, a
feasible solution, even one that is only locally optimal,
may never be found. Additionally, they are almost always
deterministic in nature, failing to capture the stochasticity
in the state estimates and future contact events. Addressing
this uncertainty and lack of global optimality has led to the
combination of search techniques with traditional trajectory
optimization. For example, Model Predictive Path Integral
(MPPI) [212] samples a variety of random control signals
and their resulting state trajectories to determine the best
action to take. Alternative contacts and objectives can also be
sampled with contact-implicit approaches to help avoid local
minima and find the globally optimal solution to accomplish a
task [386]. Although both of these approaches heavily leverage
computational parallelization for expediency, parallelizing the
underlying optimization algorithms explicitly designed for
trajectory optimization is gaining increasing prevalence, both
on the CPU [387] and GPU [210, 388], as discussed in Sec. V.

Despite the gains in these algorithms for considering the
full system dynamics, the robustness of the mathematical
solution when performing numerical optimization has been
a concern due to the infeasibility of complex optimization
problems, regardless of the computation speed improvement.
As discussed in WBC Sec. VI, arbitrating techniques address
infeasibility by (i) relaxing the hard constraint to the soft con-
straint by combining them in the cost with a weighted sum and
(ii) prioritizing the constraints by achieving the important ones
first. However, how to design a smart solver to automatically
resolve this issue and provide numerical robustness is still an
open question. In addition, weight-tuning in high-dimensional
problems with complex objectives is nontrivial, highly task-
dependent, and can lead to instability [263]. Researchers
have made initial steps to apply auto-tuning techniques to
streamline the tuning process in Optimal Control Problem
(OCP) designs for humanoid robots [389, 390]. Until these
are solved, assigning definitive but non-violating constraints
and designing objective functions while maintaining global
versatility still depend on expert knowledge.

B. Challenge: Lack of Benchmarks for Loco-manipulation

Humanoid loco-manipulation skills are at their infancy com-
pared to other tasks such as humanoid locomotion [391] and
tabletop manipulation [392]. Therefore, many simulators, such
as Isaac Lab [216] or MuJoCo [215], lack large-scale and sys-
tematic benchmarks dedicated to humanoid loco-manipulation
tasks. Developing well-designed tasks and evaluation metrics
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can significantly accelerate research in this field. Recently,
HumanoidBench [280] and Mimicking-Bench [393] offer a
list of loco-manipulation tasks. They provide a standardized
benchmark for evaluating the performance of humanoid al-
gorithms and help verify the reproducibility within MuJoCo
and Isaac Gym. SMPLOlympics [394] presents a collection of
sports as benchmarks for simulated humanoids and shows that
leveraging human-motion demonstrations leads to human-like
behaviors in these sports.

In addition to defining loco-manipulation tasks, the de-
velopment of affordable and capable humanoid robots as
standardized platforms for hardware evaluation can signifi-
cantly accelerate the research. Research efforts on open-source
humanoid hardware and software, such as Hector [2], the MIT
Humanoid [181], the Berkeley Humanoid [395], and the Duke
Humanoid [396] represent valuable contributions. In addition,
an ecosystem in rapid prototyping and production of humanoid
robots also accelerates hardware development, such as the
Robotic Grand Factory [397]. The Robotic Grand Factory has
incubated the Q-series humanoid robots [397] with the state-
of-the-art capability of fast walking, multi-terrain adaptation,
and explosive motions, enabling tasks such as organizing,
storing, and reception.

C. Challenge: Data Scarcity
As discussed in Sec. VII-B, the four data sources present

a trade-off between quality and availability. The lack of high-
quality large-scale robot data becomes a bottleneck for robot
skill learning. To solve the bottleneck, much effort has been
put into data scaling. It is a heated debate in the community
whether scaling is the road toward generalist humanoid robots.

The central question we must answer is which aspect of
human motion we want robots to learn. Some humanoid
tasks can be achieved simply by mimicking 3D human pose
trajectories [271, 272, 298, 302, 313], but a true general-
purpose robot emerges from purposive learning: the ability to
identify meaningful intentions from human data and adapt past
experiences to new tasks or environments [398]. Therefore,
human data must teach the robot not only what humans are
doing, but also how and why they are doing it. Current data
acquisition methods that capture human joint poses only en-
able learning what humans are doing. In this regard, imitation
of human data at the trajectory level is not fundamentally
generalizable due to the inevitable gap in morphology and
in the surrounding environment.

We argue that generalization in loco-manipulation is
achieved by including the motion of the manipulated ob-
jects, enhanced with a greater variety of sensing modalities
instead of data quantity scaling. To develop truly versatile
and adaptive humanoids, human data should also include
that of the manipulated objects, cognitive actions (e.g., trust,
compete, collaborate) paired with multimodal observations
(e.g., whole-body haptic sensing, egocentric images), so that
humanoids can learn the ‘how’ and ‘why’ from human data.
However, instrumenting the environment and the manipulated
objects with force and tactile sensing might be extremely
complex. Therefore, research toward inferring force informa-
tion from vision [399] and human-captured data [400] can

be an intermediary solution to the problem of whole actors
instrumentation. Recent work on collecting human multimodal
observations [401, 402] and human kinetics [403] are a few
examples that aim to bridge the gap between human animation
and humanoid applications. Together with the rapid advance-
ment in humanoid hardware, purposive learning with more
informative human data will become the mainstream approach
to achieve versatile and general-purpose humanoids.

D. Opportunities and Challenges in Foundation Models

Integrating Foundation Models (FMs) into humanoid robots
offers distinct opportunities and challenges. On the opportunity
side, since the majority of data used to train FMs is collected
by humans, the knowledge embedded in these models is inher-
ently biased towards human-like embodiments. Consequently,
humanoid robots could potentially utilize existing knowledge
in FMs more effectively due to a smaller embodiment gap.
This advantage extends beyond planning and control capa-
bilities to include interactions with humans using natural
modalities such as language and gestures. However, challenges
arise from the humanoid form itself. First, the bipedal platform
poses additional challenges in control and safety due to its
inherent instability. Furthermore, it elevates expectations for
naturalness in their movements and interactions, necessary to
avoid the uncanny valley effect.

Another challenge in applying FMs to humanoids arises
from the high inference cost. Running large foundation models
using only onboard computing is not feasible due to the limited
power and computation, which hampers real-time hardware
control. To address this challenge, several solutions have
been proposed. One effective strategy involves adopting a
decentralized hierarchy, where FMs operate over the cloud and
provide only high-level decisions at a lower frequency, while
another controller remains onboard and manages real-time
task execution. However, inference delay and internet latency
might impede the control performance. Another approach is
to enhance the speed of the computing platform and the
efficiency of FMs. For instance, NVIDIA introduced Jetson
Thor, an on-board computing platform designed for humanoid
robots. Google proposed SARA-RT [404], which accelerates
the model speed without compromising its quality.

The training of FM is also resource and time consuming.
For example, training the LLaMA model took 34 days on
992 NVIDIA A100-80B GPUs [405], which incurs high cost,
high energy consumption, as well as carbon dioxide emission.
As FMs scale up further, the training cost would increase
further. A promising approach to maintain a reasonable cost
for training robotics FMs is to leverage parameter-efficient
fine-tuning techniques. For example, OpenVLA leverages
the LoRA technique to fine-tune an FM with a robotics
dataset [359].

A critical component of the humanoid foundation model that
has yet to be developed is a scaling law, similar to the training
of large language models [406]. The scaling law provides
guidance on how we should scale up model, compute, and
data, to meet the desired performance in the most efficient
way. A major research effort focuses on scaling the robotics
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dataset. Open X-Embodiment extends the idea to a much
larger robotics dataset across various robot embodiments and
tasks [376]. Recent work has already explored a data scaling
law for robot manipulation, with a focus on generalization
capabilities [407], as well as model scaling behaviors for
zero-shot capabilities in action selection [408], which marks
important initial steps towards this direction.

X. CONCLUSION

Humanoid robotics is advancing at an unprecedented pace,
as seen in recent groundbreaking innovations from both in-
dustry and academia. Although humanoid robots still face
significant technical challenges, their agility, safety, reliabil-
ity, and versatility have improved significantly through both
model-based and learning-based methods. More opportunities
are emerging through the exploration of new paradigms. Phys-
ically, advanced observers (vision and whole-body tactile sens-
ing) and estimators are emerging for contact-rich whole-body
loco-manipulation. Cognitively, foundation models grounded
on humanoid robots have great potential to unlock the ability
of open-world understanding and the development of general-
ized intelligent agents. More importantly, how to seamlessly
integrate multimodal sensing and foundation models with the
existing planning and control frameworks presents promising
and challenging research questions. In the foreseeable future,
the cost of humanoid robots will continue to decrease, making
them more accessible; their physical capability (hardware
intelligence) and cognitive intelligence will significantly ad-
vance. We look forward to humanoid robots that are re-
sponsive, purposeful, and fully capable of human-like loco-
manipulation tasks in the upcoming decade.
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