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Abstract— We propose an integrated planning framework
for quadrupedal locomotion over dynamically changing, un-
foreseen terrains. Existing approaches either rely on heuristics
for instantaneous foothold selection–compromising safety and
versatility–or solve expensive trajectory optimization problems
with complex terrain features and long time horizons. In
contrast, our framework leverages reactive synthesis to generate
correct-by-construction controllers at the symbolic level, and
mixed-integer convex programming (MICP) for dynamic and
physically feasible footstep planning for each symbolic transi-
tion. We use a high-level manager to reduce the large state space
in synthesis by incorporating local environment information,
improving synthesis scalability. To handle specifications that
cannot be met due to dynamic infeasibility, and to minimize
costly MICP solves, we leverage a symbolic repair process to
generate only necessary symbolic transitions. During online exe-
cution, re-running the MICP with real-world terrain data, along
with runtime symbolic repair, bridges the gap between offline
synthesis and online execution. We demonstrate, in simulation,
our framework’s capabilities to discover missing locomotion
skills and react promptly in safety-critical environments, such
as scattered stepping stones and rebars.

I. INTRODUCTION

Terrain-adaptive locomotion is crucial for enhancing the
traversing capabilities of legged robots and advancing beyond
blind locomotion [1]–[3]. Existing approaches that enable
terrain-adaptive and dynamic locomotion focus on instanta-
neous foothold adaptation [4], [5] around a nominal reference
trajectory. To further enhance the traversability, non-fixed
gait pattern has been studied. In [6]–[8], jumping motions
are generated offline and triggered through heuristics when
facing an obstacle. In [9], [10], the switch between normal
walking and jumping is either embedded inside a reduced-
order model during sampling [9] or decided by a pre-
trained feasibility classifier [10]. However, formal guarantees
on locomotion safety [11], [12], considering the robot’s
physical capabilities for traversing challenging terrains, are
rarely explored—despite their importance in safety-critical
scenarios like hazardous debris and construction sites.

Mixed-integer program (MIP)-based approaches [13], [14]
treat both the contact state and the contact plane selection
for each leg at each timestep as binary variables, and directly
address the interplay between terrain segments and robot
kinematics and dynamics [15]. By relaxing the dynamics
and constraints, a global certificate for the approximated
convex problem (MICP) exists upon convergence, providing

1Ziyi Zhou, and Ye Zhao are with Georgia Institute of Technology.
{zhouziyi, yzhao301}@gatech.edu.

2Qian Meng and Hadas Kress-Gazit are with Cornell University.
{qm34,hadaskg}@cornell.edu.

Dense
Sparse

(b) Abstraction(a) Real World

x

x0

x1

x2

y
y0 y1 y2

(c) Repair

Online
Execution

Offline
Synthesis

Terrain
Polygons

Request
Goals

Strategy

MICP
Planner

Tracking
Controller

State
Estimation

Fig. 1. Upper: terrain abstraction and repair example. (a) Top-down view
of the real-world terrain before abstraction. The red polygons denote the
segmented terrain polygons. (b) Abstraction of the terrain and robot’s skills
(pink) moving from one location to another. (c) Repair process to find a new
skill (blue). Lower: system architecture overview. The solid lines indicate
online communication, while dashed lines represent offline processes. The
request goals in the offline phase are user-defined, while those in the online
phase are provided by a global planner based on the global goal.

an ideal means to formally determine the locomotion feasi-
bility. However, long time horizon and complex features of
surrounding terrains significantly increase the computational
burden for MIP-based methods, preventing efficient online
deployment. Simplifications have been made to enhance
speed, e.g., assuming predetermined contact sequences [16],
[17] and timing [18]–[20], or fixing the number of footsteps
[21], but still face computational challenges in complicated
scenarios with a large number of terrain segments.

To reduce the complexity of navigating challenging ter-
rains, one approach is to break down global, long-horizon
tasks into dynamically evolving, robot-centric local environ-
ments with intermediate waypoints [4]. However, the cor-
responding MIP remains computationally expensive because
it must consider all surrounding terrains. To address this,
we discretize the local environment and restrict the MIP
formulation to solving only individual discrete transitions.
To efficiently compose these discrete transitions with formal
correctness guarantees, we employ Linear Temporal Logic
(LTL)-based reactive synthesis [22] to generate a correct-by-
construction robot strategy that guides the composition of
MIP-based transitions toward the intermediate goals.

In this paper, we combine reactive synthesis and MIP-
based approaches to safely and promptly react to dynamically
changing environments. We abstract the continuous robot
states and local environments into symbolic states, enabling



high-level robot actions on the fly toward challenging terrains
such as obstacles and large gaps, as shown in Fig. 1. We then
solve a MICP to provide a physical feasibility certificate for
each symbolic transition. This integrated framework not only
bridges the gap between high-level abstraction and low-level
physical capabilities but also alleviates the computational
burden of MICP. Guided by the synthesis-based symbolic
planner, each MICP can consider shorter time horizons and
fewer terrain features than traditionally solving a single,
long-horizon MICP problem. Another noteworthy feature of
our planning framework is its two-stage hierarchy. In the
offline synthesis phase, we leverage relatively expensive gait-
free MICPs that optimize both contact state and foothold
selection to generate the necessary locomotion gaits for
symbolic transitions. In the online execution phase, we use
efficient gait-fixed MICPs with predefined gaits to produce
dynamically feasible motions and footholds on the fly.

Our offline synthesis module tackles two key scalability
challenges. First, our task specification has a prohibitively
large state space since it needs to encode the surrounding
terrain states. Since our synthesis algorithm has exponential
time complexity in the number of variables [22], it is inef-
ficient and impractical to directly synthesize a controller for
the full specification. To tackle this challenge, we leverage an
observation that the robot can continuously reason about its
local environment where the terrains and an intermediate goal
remain unchanged. Thus, we propose a high-level manager
that fixes the terrain and goal information, only keeps the
skills needed for the current terrains, and updates them as
the robot moves in the environment. In our experiment, the
manager reduces the number of variables by 80.9 − 90.1%
depending on the number of cells and terrain types, relieving
the computation burden of synthesis.

Our second scalability challenge is that, while the size
of the MICP for our physical feasibility certificate is much
smaller than the pure MIP approach, solving gait-free MICP
is still computationally expensive. To mitigate this problem,
we leverage a symbolic repair approach [23] to automatically
suggest only the missing, yet necessary, symbolic transitions,
and only solve MICP for them. In this way, we avoid
enumerating and solving the costly MICP for all possi-
ble symbolic transitions. In our experiments, the symbolic
repair reduces the number of expensive MICP solves by
71.7 − 97.6% depending on the terrains, compared with
exhaustively iterating over all possible symbolic transitions,
ensuring that we only perform the costly gait-free MICP to
generate new locomotion gaits when necessary.

Our online execution module also tackles two key chal-
lenges. First, discrepancies in size and shape between offline-
checked terrains and real-world ones can lead to mismatches
between the desired symbolic transitions and the robot’s
actual physical capabilities. Second, encountering new ter-
rains or intermediate goals not considered in the offline
phase may also make symbolic specifications unrealizable,
as the unforeseen scenarios are not handled during the offline
phase. As such, our online execution module executes each
symbolic transition by solving an online MICP with real-

world terrain data and prior locomotion gaits to generate a
new nominal trajectory. If a symbolic transition is no longer
possible or the current terrains and goal were not considered
offline, we perform runtime repair, as done in [24], to gener-
ate new robot skills and synthesize an updated robot strategy,
allowing continuous traversal on unexpected terrains.

The primary contributions of this paper are as follows:
• We propose an integrated planning framework that com-

bines reactive synthesis with MICP for terrain-adaptive
locomotion. Compared to pure MIP approaches, our
method reduces computational burden via symbolic
guidance and a two-stage hierarchy.

• During offline synthesis, we overcome scalability chal-
lenges by leveraging a high-level manager to reduce the
size of the specifications based on local environment in-
formation, and symbolic repair to minimize the number
of calls to the costly gait-free MICP, enabling efficient
synthesis of terrain-adaptive locomotion strategies.

• During online execution, we address the disparity be-
tween offline synthesis and real-world terrain conditions
at both the physical and symbolic levels. Our approach
leverages an online MICP solver along with an online
symbolic repair process to account for real-world ter-
rain discrepancies and newly encountered conditions,
enhancing robustness and motion feasibility at runtime.

II. PRELIMINARIES

Consider a robot equipped with sensors navigating an
environment toward a designated global goal gglobal ∈ R2.
This task can be decomposed into a series of local navigation
tasks, where the robot moves toward intermediate, local
request goals Glocal as guided by a global planner, given
surrounding segmented terrain polygons P . We illustrate an
example of this local task.
Example 1. Consider a 2D grid world with nine cells
(in yellow) in Fig. 1. The robot is required to move from
an initial cell (e.g. the center cell) to a desired goal cell
indicated by the star. Each cell is assigned a terrain type,
such as Dense or Sparse stepping stones.

A. Abstractions

Given a set of terrain polygons P , e.g., in Fig. 1(a),
we abstract them into a 2D grid of size n × m. For each
dimension, we denote each location in that dimension with
a symbol, resulting in two sets X := {x0, . . . , xn−1} and
Y := {y0, . . . , ym−1}. We define a set of atomic propositions
AP , partitioned into sets of inputs I and outputs O, to
describe the symbolic world states and robot actions. The
inputs I consist of the robot inputs Irobot, the request inputs
Ireq, and the terrain inputs Iterrain (I = Irobot ∪Ireq ∪Iterrain).
The robot inputs Irobot := {πx | x ∈ X} ∪ {πy | y ∈ Y}
are used to abstract the robot position, the request inputs
Ireq := {πreq

x | x ∈ X} ∪ {πreq
y | y ∈ Y} are used

to abstract the requested goal cells, and the terrain inputs
Iterrain := {ny

x | x ∈ X , y ∈ Y} describe the terrain type of
the grid cells. We consider a finite set of size nt of terrain
types, defined based on their physical characteristics. For
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Fig. 2. System overview. During offline synthesis (pink arrows), an initial set of locomotion gaits is provided, and symbolic skills are iteratively generated
by solving the MICP. During the online execution (black arrows), MICP is solved again taking online terrain segments and the symbolic state only advances
when a solution is found. A runtime repair (blue arrows) is initiated if a solving failure occurs, or an unseen terrain or request goal is encountered.

z ∈ N, we denote [z] := {0, . . . , z− 1}. We note that terrain
inputs ny

x ∈ Iterrain are integer variables belonging to [nt],
and we translate them into a set of Boolean propositions,
as done in [25]. An input state σI is a value assignment
function σI : I → {True, False}∪ [nt]. Since the robot can
only be in one cell at a time, and the goal is a single cell, we
require that exactly one πx, one πy , one πreq

x , and one πreq
y be

True, for each input state. The robot states σrobot : Irobot →
{True, False}, request states σreq : Ireq → {True, False},
and terrain states σterrain : Iterrain → [nt] are the projections
of σI on Irobot, Ireq, and Iterrain, respectively. We denote the
sets of input states as ΣI , robot states as Σrobot, request states
as Σreq, and terrain states as Σterrain.

We use a grounding function to describe the physical
meaning of input states. Consider a physical state space Z ⊆
Rn that represents the physical world, including the robot’s
position, orientation, and terrain properties. The grounding
function G : ΣI → 2Z maps each input state σI to a set
of physical states in Z . For robot states σrobot ∈ Σrobot, we
define G(σrobot) := {z ∈ Z | ∃πx, πy ∈ Irobot.σrobot(πx) ∧
σrobot(πy) ∧ robot pose(z) ∈ cell(x, y)}. Similarly, for re-
quest states σreq ∈ Σreq, we define G(σreq) := {z ∈ Z |
∃πreq

x , πreq
y ∈ Ireq.σreq(π

req
x ) ∧ σreq(π

req
y ) ∧ request goal(z) ∈

cell(x, y)}. For terrain states σterrain ∈ Σterrain, we define
G(σterrain) to be the set of physical states whose abstracted
terrain types are indicated by σterrain. For an input state
σI ∈ ΣI whose projections are σrobot, σreq, and σterrain,
G(σI) := G(σrobot) ∩ G(σreq) ∩ G(σterrain). Lastly, we use
an inverse grounding function G−1 : Z → ΣI to map a
physical state z ∈ Z to its corresponding input state.

In Example 1, the inputs are Irobot :=
{πx0

, πx1
, πx2

, πy0
, πy1

, πy2
}, Ireq := {πreq | π ∈ Irobot},

and Iterrain := {nyj
xi | i, j ∈ {0, 1, 2}} where n

yj
xi = 1 if the

terrain type of the grid cell (xi, yj) is Dense, and n
yj
xi = 0

if it is Sparse. The input state in Fig. 1(b) is σI : πx1 7→
True, πy1

7→ True, πreq
x0 7→ True, πreq

y2 7→ True, n
yj
x1 7→ 1

for j ∈ {0, 1, 2}. In this paper, we omit the Boolean
propositions that are False and integer propositions whose
values are 0 in the input states for space.

The outputs O represent the skills that allow the robot to
transit among grid cells, given their corresponding terrain
states. A skill o ∈ O consists of sets of preconditions
Σpre

o ⊆ Σrobot × Σterrain, from which the skill is allowed
to execute, and postconditions Σpost

o ⊆ Σrobot, the resulting
grid cell after executing the skill. In Example 1, the skill o0
moves the robot from the middle to the upper terrain grid cell
(Fig. 1b). The precondition of o0 is Σpre

o0 = {(σrobot, σterrain) :
πx1

7→ True, πy1
7→ True, ny0

x1
7→ 1, ny1

x1
7→ 1, ny2

x1
7→ 1},

The postcondition is Σpost
o0 = {σrobot : πx0 7→ True, πy1 7→

True}. In addition, each skill consists of a continuous-
level locomotion gait, e.g. a one-second trotting gait L, that
physically implements the symbolic transition (Sec. V-A).

B. Specifications

We use the Generalized Reactivity(1) (GR(1)) fragment
of linear temporal logic (LTL) [22] to encode task speci-
fications. LTL specifications φ follow the grammar φ :=
π | ¬ φ | φ ∧ φ | ⃝ φ | □φ | ♢φ, where π ∈ AP is
an atomic proposition, ¬ “not” and ∧ “and” are Boolean
operators, and ⃝ “next”, □ “always”, and ♢ “eventually”
are temporal operators. We refer the readers to [26] for a
detailed description of LTL.

GR(1) specifications are expressed in the form of φ =
φe → φs, where φe = φi

e∧φt
e∧φg

e is the assumptions on the
behaviors of the possibly adversarial environment, and φs =
φi

s ∧ φt
s ∧ φg

s represents the guarantee of the desired robot’s
behaviors. For α ∈ {e, s}, φi

α, φ
t
α, φ

g
α characterize the

initial conditions, safety constraints, and liveness conditions,
respectively. For symbolic repair (see Sec. V-C), we divide
safety constraints (φt

e, φ
t
s) into skill constraints (φt,skill

e , φt,skill
s )

and hard constraints (φt,hard
e , φt,hard

s ), i.e., for α ∈ {e, s},
φt
α = φt,skill

α ∧φt,hard
α . The skill constraints encode the pre and



postcondition of skills (see Sec. V-B) and can be modified
by repair, while repair cannot modify the hard constraints.

In practice, the GR(1) specifications are large in size due
to the necessity of encoding terrain and task information.
Since the exact current terrain and request state information
is available at runtime, we can generate a shorter and more
efficient version of the specification via partial evaluation,
which substitutes a subset of the Boolean propositions with
their truth values to reduce the state space.
Definition 1. Given an LTL formula φ and two subsets
STrue, SFalse ⊆ AP , STrue ∩ SFalse = ∅, we define the par-
tial evaluation of φ over STrue, SFalse, as φ[STrue, SFalse],
where we substitute propositions π ∈ AP in φ with True if
π ∈ STrue and with False if π ∈ SFalse.

III. PROBLEM STATEMENT

Problem 1. Given (i) a global goal gglobal, (ii) a set of
possible local request goals Glocal (iii) a set of predefined
terrain polygons Ppre from user’s prior knowledge, and (iv) a
set of online terrain polygons Pon perceived during execution
that may differ from the predefined ones, (v) a set of
predefined locomotion gaits L; generate controls that enable
the robot to navigate the environment and reach the goal.

IV. APPROACH SUMMARY

To efficiently solve Problem 1, we manage complexity at
both symbolic and physical levels. At the symbolic level, we
leverage reactive synthesis to decompose the local naviga-
tion problem into manageable subproblems whose solutions
can be reused by synthesis for different scenarios. Each
subproblem corresponds to finding controls for a short-
horizon symbolic transition and is solved via a MICP to
provide physical feasibility certificates of the transition. Our
framework consists of offline synthesis (Sec.V) and online
execution (Sec.VI). During the offline phase, we generate a
set of potentially useful skills and corresponding locomotion
gaits based on predefined terrain states and goals, while
leveraging symbolic repair to find missing yet necessary
symbolic transitions. At runtime, we leverage runtime repair
to identify new symbolic transitions necessary for unforeseen
terrain configurations or intermediate request goals.

V. OFFLINE SYNTHESIS

The offline synthesis module generates a strategy that
enables the robot to reach local request goals over predefined
terrain states. As shown in Fig. 2(a), this module takes in a
set of local request goals Glocal and a set of possible terrain
polygons Ppre from prior knowledge of the workspace. In
addition, the user provides a set of locomotion gaits L.
We first leverage the inverse grounding function G−1 to
discretize the local environment, obtain a set of possible
request states Σposs

req ⊆ Σreq from the local request goals, and
characterize the predefined set of terrain polygons into a set
of possible terrain states Σposs

terrain ⊆ Σterrain. Next, we solve a
gait-fixed MICP problem to determine the feasibility of each
potential skill given the locomotion gaits (Sec. V-A), and
then encode all feasible transitions as skills in a specification

min
ϕ,Hr,k,j

N−1∑
i=0

δϕ[i]TQ δϕ[i] + ϕ[i]TRϕ[i]

(Dynamics)


r[i+ 1]
ṙ[i+ 1]
mr̈[i]

θ[i+ 1]

θ̇[i+ 1]

 =


r[i] + ∆t · ṙ[i+ 1]
ṙ[i] + ∆t · r̈[i+ 1]∑

j fj [i] +mg

θ[i] + ∆t · θ̇[i+ 1]

θ̇[i] + ∆t · θ̈[i+ 1]

 (1a)

(Foothold) ∀i ∈ Ck,j [0], r ∈ [R], k ∈ [ns], j ∈ [nf ]

Hr,k,j ⇒ Arpj [i] ≤ br (1b)
Aeq,rpj [i] = beq,r

R−1∑
r=0

Hr,k,j = 1

Hr,k,j ∈ {0, 1}
(Frictional) fj [i] · n(pxy

j [i]) ≥ 0, ∀i ∈ Cj (1c)

fj [i] ∈ F(µ,n,pxy
j [i]), ∀i ∈ Cj (1d)

(Contact) ṗj [i] = 0, ∀i ∈ Cj (1e)
fj [i] = 0, ∀i /∈ Cj (1f)

(Actuation) J⊤
j fj [i] ≤ τmax, ∀i ∈ [N ] (1g)

Iθ̈[i] ≤ τ ′
max, ∀i ∈ [N ] (1h)

(Kinematics)∀i ∈ [N ], j ∈ [nj ] (1i)

pj [i] ∈ Rj(
Bpref

j , r[i],θref,p
max
j ) (1j)

Fig. 3. MICP formulation for physical feasibility checking.

(Sec. V-B). Next, we use a high-level manager to generate
partial evaluations of the encoded specifications for efficient
synthesis. If any partial evaluation is unrealizable, we use
a repair process to suggest new robot skills and a gait-
free MICP to check the feasibility of the suggested skills,
eventually making the specification realizable (Sec. V-C).

A. Locomotion Gait and Feasibility Checking via MICP

We assume each locomotion gait L comes with a contact
sequence G and corresponding time durations T . Therefore,
we define the locomotion gait as L = M(G, T ). Each skill
is assumed to have a unique locomotion gait to determine
how the robot moves at the continuous level. As shown
in Fig. 2(a), since all the possible request states Σposs

req and
terrain states Σposs

terrain are given during the offline phase, it is
straightforward to first identify all the potential skills at the
symbolic level that allow the robots to move freely in all
possible local environments. Each of them is evaluated by a
gait-fixed MICP using the provided locomotion gaits.

For the MICP formulation shown in Fig. 3, the decision
variables ϕ include base position r, velocity ṙ, acceleration r̈,
orientation θ parameterized by Euler angle and its first and
second-order derivatives θ̇, θ̈, individual end-effector (EE)
position pj , velocity ṗj , and acceleration p̈j , and individual
contact force fj for the foot j. We define binary variables
Hr,k,j , with r, k, and j expressing the rth convex region, kth

footstep, and jth foot. We use N , nf , ns, and R to represent
the number of timesteps, the number of feet, the number of
footsteps specified by the gait configuration for each foot,
and the number of convex terrain polygons to be considered,
respectively. For example, Fig. 2(b) shows a case with four
polygons. The cost function consists of tracking costs and



regularization terms governed by diagonal matrices Q and
R. The tracking costs include the deviation from a desired
base trajectory interpolating a path between the terrain grid
locations defined in each skill.

We encode the system dynamics as a simplified single
rigid body in Eq. 1a to keep the dynamics constraint con-
vex. To incorporate safe region constraints to select proper
footholds, Eq. 1b restricts the robot’s EE to stay within one
of the convex polygons. We use Ck,j to denote the set of time
steps indicating stance after the kth footstep for the jth foot
and the safe region constraint only applies to the first stance
time step represented as Ck,j [0]. Similarly, the collision
avoidance constraint keeps each EE within a collision-free
box using additional binary variables, omitting details for
brevity. Frictional constraints are defined in Eqs. 1c - 1d, with
n as the normal vector of the terrain corresponding to the
position pxy

j and Cj as the set of timesteps indicating stance
for the jth foot. Contact constraints in Eqs. 1e - 1f check the
given contact states and activate at different timesteps. Since
the joint angles are omitted in the single rigid body model,
we use a fixed Jacobian Jj(q

ref
j ) at a nominal joint pose

qref
j for each leg to approximately consider the torque limit

constraint in Eq. 1g. In addition, since the translational and
angular motions are decoupled, another actuation constraint
on the angular acceleration is also added in Eq. 1h, where
τmax is the joint torque limit, τ ′

max is the torque limit
applied on the base, and I is the moment of inertia for
the approximated single rigid body. Lastly, the kinematics
constraint in Eq. 1j strictly limits the possible EE movements
to assure safety, where Rj is defined as a 3D box constraint
around a nominal foot EE position Bpref

j based on the base
position and reference orientation θref, and constrained by
a maximum deviation pmax

j . Due to the convex nature of
this MICP, we can determine the feasibility of a possible
symbolic transition by checking if the optimal solution exists.

B. Task Specification Encoding

After acquiring a set of feasible robot skills, we encode
the skills into the specification φ as part of the environment
safety assumptions φt

e and system safety guarantees φt
s.

The skill assumptions φt,skill
e encode the postconditions

of the skills. The assumptions ensure that after the skill
execution, at least one postcondition of the skill must hold:
φt,skill

e :=
∧

o∈O □(o →
∨

σ∈Σpost
o

∧
π∈Irobot

⃝(π = σ(π))).
In Example 1, the postcondition of skill o0 is defined as
□(o0 → ⃝πx0 ∧⃝πy1 ∧ ¬ . . . ).

The skill guarantees φt,skill
s encodes the preconditions of

the skills. The guarantees impose restrictions on when a skill
can be executed. The guarantees only allow the robot to exe-
cute a skill if one of the skill’s preconditions holds: φt,skill

s :=∧
o∈O □(¬(

∨
σ∈Σpre

o

∧
π∈Irobot∪Iterrain

⃝(π = σ(π))) → ¬ ⃝
o). In Example 1, the precondition of skill o0 is defined
as □

(
¬(⃝x1 ∧⃝y1 ∧⃝ny0

x1
= 1 ∧⃝ny1

x1
= 1 ∧⃝ny2

x1
=

1 ∧ . . . ) → ¬⃝ o0
)
.

The hard constraints φt,hard
e and φt,hard

s are constraints that
a repair cannot modify (see Sec. V-C). Our system’s hard
constraints φt,hard

s only allow the robot to execute one skill at

a time: □
(
¬(⃝o∧⃝o′)

)
, for any two different skills o, o′ ∈

O. Given that, we encode the following hard assumptions
φt,hard

e : (i) the uncontrollable terrain and request inputs cannot
change during execution: □(π ↔ ⃝π), ∀π ∈ Iterrain ∪ Ireq,
and (ii) the robot inputs Irobot remain unchanged if no skill
is executed: □

(∧
o∈O ¬o →

∧
π∈Irobot

(π ↔ ⃝π)
)
.

C. High-level Manager and Symbolic Repair

We design a high-level manager to efficiently synthesize
controllers for the encoded specification under given sets of
terrain and request states. The manager takes in the specifi-
cation φ, a predefined set of terrain states Σposs

terrain ⊆ Σterrain,
and a predefined set of request states Σposs

req ⊆ Σreq. For
every pair of integer terrain and request state (σterrain, σreq) ∈
Σposs

terrain ×Σposs
req , the manager first translates the integer terrain

state σterrain : Iterrain → [nt] to its corresponding Boolean
terrain state σB

terrain : IB
terrain → {True, False}, using a

set of Boolean propositions IB
terrain to represent the integer

terrain inputs Iterrain, as done in [25]. We overload σB
terrain

and σreq to represent the inputs that are True in σB
terrain and

σreq. The manager then generates a partial evaluation φ′ :=
φ[σB

terrain∪σreq, IB
terrain∪Ireq \σB

terrain∪σreq] (see Definition 1).
Next, we remove skills that cannot be executed in the local
environment, i.e., their preconditions are evaluated to False

under the partial evaluation. Since the inputs of φ′ only
include the robot inputs Irobot and the outputs of φ′ consist
of fewer skills, we avoid the exponential blow-up of the
synthesis algorithm in the size of the variables. Lastly, the
manager synthesizes a strategy Aφ′ for each φ′.

The partial evaluation φ′ can be unrealizable if the gait-
fixed MICP-based physical feasibility checking in Sec. V-A
does not generate enough skills for the robot to reach the
requested goal under the terrain state. To add more robot
skills, we will leverage a gait-free MICP which retains all
continuous decision variables and constraints from the gait-
fixed MICP (formulated in Fig. 3) but modifies the contact
state-dependent constraints so that the contact sequence and
timing are no longer fixed. Since such a gait-free MICP is
computationally expensive, we leverage a symbolic repair
tool [23] to generate symbolic suggestions that guide us to
perform necessary gait-free MICP only. Given an unrealiz-
able φ′, symbolic repair systematically modifies the pre- and
postconditions of existing skills to suggest new skills that
make φ′ realizable, if such skills exist and are physically
feasible. Fig. 1(c) illustrates the use of repair in Example 1.
To create a skill that reaches the requested grid (x0, y0),
repair selects the skill transition that moves the robot from
the grid (x1, y0) to (x2, y0), and modifies the postcondition
to be (x0, y0).

VI. ONLINE EXECUTION

The online execution module takes as input a set of online
polygons Pon and corresponding integer terrain state σterrain ∈
Σterrain, an online local goal and its corresponding request
state σreq ∈ Σreq, and a set of strategies A = {Aφ′} from
the offline synthesis module (Sec. V). As shown in Fig. 2(c),
if the robot encounters an unseen terrain or request state, i.e.



(σterrain, σreq) ̸∈ Σposs
terrain ×Σposs

req , or fails to execute a symbolic
transition, we leverage runtime repair to create new robot
skills and synthesize a new strategy Aφ′ (Sec. VI-A). Next,
we execute the strategy Aφ′ corresponding to (σterrain, σreq).
We execute each transition in Aφ′ by solving a MICP with
more detailed and accurate terrain information to generate a
nominal trajectory (Sec. VI-B). We use a tracking controller
to follow the nominal trajectory in real time. (Sec. VI-C).
After reaching the request state, the robot resets the strategy
with new terrain and request states, and repeats the execution
until reaching the final goal state.

A. Runtime Repair

The runtime repair takes in a terrain state σterrain ∈ Σterrain,
a request state σreq ∈ Σreq, and a Boolean formula φdisallow
representing disallowed transitions discovered at runtime. We
first update the system hard constraint φt

s in the specification
φ from Sec. V-B to be φt

s ∧ □φdisallow, so that the updated
specification respects the newly discovered disallowed tran-
sitions, if any. We then leverage the high-level manager to
create a partial evaluation of φ over σterrain and σreq, and
perform symbolic repair to generate new robot skills and a
new strategy to handle σterrain and σreq, as done in Sec. V-C.

B. Strategy Execution

The red path in Fig. 2(c) represents the automaton execu-
tion process. We first solve an online MICP before transition-
ing to a new symbolic state. The automaton advances only
if the MICP successfully finds a solution. Slightly different
from the offline gait-fixed MICP formulation in Eq. 1, the
online MICP takes in online polygons Pon from a terrain
segmentation module, the chosen gait, and initial and final
robot states from the symbolic transition. If the MICP is not
successful, we set the symbolic transition as a disallowed
transition and perform runtime repair (Sec. VI-A).

C. Tracking Control

The tracking control module adopts an MPC-Whole-Body-
Control (WBC) hierarchy, ensuring precise end-effector (EE)
and centroidal momentum tracking. The MPC tracks the
reference trajectory produced by the online MICP using a
more accurate model of the robot’s centroidal dynamics and
kinematics, and is solved via the OCS2 library [27]. The
state estimator fuses IMU data, joint encoders, and motion
capture inputs to provide accurate body position information.

VII. RESULTS

We present examples of maneuvering across diverse envi-
ronments in a Gazebo simulation to demonstrate the frame-
work’s efficacy, scalability, and generalizability. Case studies
on online execution highlight our framework’s capability to
handle unforeseen terrains and failures.

A. Setup

To demonstrate the generalizability of the proposed frame-
work, we evaluate it on two scenarios with varying terrain
types, safe stepping regions, and robot platforms–Unitree
Go2 and SkyMul Chotu (a modified Unitree Go1 robot

(a) Unstructured - 4 (c) Rebar - 7

(b) Unstructured - 8 (d) Rebar - 14

Fig. 4. Unstructured and rebar terrain scenarios.

dedicated for rebar tying tasks). We model obstacles as a
distinct terrain type, with obstacle avoidance encoded as hard
constraints in φt

s, and the requested waypoint are assumed
not to be obstacles. We test both 3 × 3 and 5 × 5 grid
abstractions. The 5 × 5 grid has a longer planning horizon
and greater decision complexity. We use a 0.8 m cell size
for the unstructured terrain and 0.6 m for the rebar, which
can be adjusted for practical applications.

1) Unstructured Terrain: We abstract 8 terrain types–
flat terrain, high terrain, low terrain, dense stone, sparse
stone, gap, high gap, and low gap–with classification criteria
based on polygon heights, counts, and areas relative to the
abstracted cells. Note that a terrain is classified as a gap when
the ratio of its overlapping area with the abstracted cell falls
below a threshold. We define two terrain configurations, one
with four selected terrain types and another with all eight
terrain types, as shown in Figs. 4(a) and 4(b).

2) Rebar Terrain: Inspired by automating labor-intensive
rebar tying tasks on construction sites [28], we explore a
second case study where the quadrupedal robot navigates a
rebar mat. We model each rebar as a rectangular polygon
with a 3 cm width. Unlike the stepping stone scenario, this
setup offers a larger number of potential stepping poly-
gons due to the higher rebar density. Observing that the
robot’s traversability depends on rebar sparsity in different
directions—whether aligned with the robot’s facing direction
or not, within a given tolerance—we abstract and classify
rebar types based on a combination of horizontal sparsity
(perpendicular to the robot’s facing direction) and vertical
sparsity (parallel to it). By calculating the number and
relative spacing of the rebars inside each abstracted cell,
we categorize each direction’s sparsity as dense (0.05 - 0.15
m), sparse (0.15 - 0.35 m), or extreme sparse (above 0.35
m), single, none. To reduce the complexity of the problem,
we remove some challenging combinations such as none or
single in both directions. As a result, we define two example
configurations with 7 and 14 rebar terrain types. The 7-
type scenario in Fig. 4(c) generates random rebar sparsity
between 0.15 and 0.35 m, excluding the extreme sparse
type. In contrast, the 14-type scenario in Fig. 4(d) includes
rebar sparsity from 0.15 to 0.6 m, potentially covering more
challenging combinations including the extreme sparse ones.

B. Offline Synthesis Results

We evaluate the offline synthesis module for both Unstruc-
tured and Rebar Terrain by initializing the skills with two



TABLE I
OFFLINE SYNTHESIS AND REPAIR TIME

Scenario Grid Size Terrain and Request State Pairs
(Success/Total)

Number of Skills
(Original/New/Total) Symbolic Repair Time (s) Feasibility Check Time (s)

(Gait-Fixed/Gait-Free)
Unstructured - 4 3 × 3 169/169 18/13/64 8.07 18.97/449.94

5 × 5 129/158 19/9/64 77.16 20.26/241.42
Unstructured - 8 3 × 3 250/264 19/20/256 14.90 22.92/382.63

5 × 5 179/246 20/16/256 93.21 18.59/196.88
Rebar - 7 3 × 3 196/196 18/11/196 7.44 15.63/417.55

5 × 5 196/196 18/10/196 21.63 14.83/374.89
Rebar - 14 3 × 3 237/237 20/29/784 10.34 21.92/701.38

5 × 5 196/196 20/18/784 24.31 23.06/453.94
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Fig. 5. Symbolic repair time in the size of terrain and request state pairs.

trotting gaits (2 s and 3 s). Before synthesis, we generate the
set of possible terrain states Σposs

terrain (supposedly provided by
the user) by systematically sweeping a local grid across the
entire terrain map based on the best available knowledge.
The request states Σposs

req are defined as the top row of the
local grid map in the robot’s facing direction, along with the
two corner cells to allow additional movement directions.

Table I reports (i) the number of terrain and request
states pairs (σterrain, σreq) ∈ Σposs

terrain × Σposs
req , including both

successful and total ones, (ii) the number of skills, including
the original, the newly discovered, and the total possible
ones, and (iii) offline repair and feasibility checking times,
including both from gait-fixed and gait-free MICP. We first
note that repair solves 93.4% of the terrain and request state
pairs. The rest are unrepairable because the request states
are unreachable due to obstacles or physical infeasibility. As
highlighted in red, the number of newly discovered skills
is 71.6 − 97.6% smaller than checking all possible skills,
each of which corresponds to solving an expensive gait-free
MICP that takes 27.23 s on average (max 145.66 s) for a
new locomotion gait. This demonstrates that offline repair
effectively minimizes the number of gait-free MICP solves.

To investigate the scalability of offline repair, we perform
repair across various sizes of the terrain and request states.
As shown in Fig. 5, the repair runtime grows linearly in
the size of the terrain and request states for both 3× 3 and
5 × 5 grids. While fewer terrain and request states handled
offline reduce checked time, they may lead to more frequent
unforeseen states during online execution. Moreover, we note
that the slope of 5× 5 cases in Fig. 5 are steeper than those
of 3× 3 as a result of the increased state space. On average,
repair takes 478.1% more time for 5×5 grids than 3×3 for
one terrain and request states pair. In practice, the perception
range and the robot size limit the grid size, so we do not test
beyond 5×5 grids, though the user can adjust the resolution.

(a) Before a gap (b) Encountering a gap (c) After online repair

Gap terrain detected New skill generated

Fig. 6. Runtime repair scenario when encountering a gap.

C. Online Execution Results

Fig. 4 visualizes the snapshots of Go2 and Chotu travers-
ing the terrains during online execution. The robot is tasked
with reaching a global waypoint using a naive global shortest
path planner. Specifically, the local waypoint in the local grid
map is selected by choosing the closest, non-obstacle grid
cell toward the global waypoint. Fig. 4(a) shows a maneuver
traversing through flat terrain, dense stepping stone, sparse
stepping stone, and a gap. Fig. 4(b) shows the robot navigate
through all eight terrain types, including elevation varia-
tions by adaptively choosing the locomotion gaits. Similarly,
Fig. 4(c) and (d) present rebar traversing in separate scenarios
with potentially 7 and 14 rebar terrain types. Notably, the
robot leverages a set of newly discovered leaping gaits
with short aerial phases for transitions from lower to higher
terrain or across gaps and extreme sparse rebars as shown
in Fig. 4(b) and (d). On average, the online gait-fixed MICP
takes 430 ms to solve the unstructured terrain cases and 1.1
s for rebar cases when the collision avoidance is disabled.
The rebar scenarios exhibit 155.8% longer solve times due
to their overlapping, skewed rebar arrangement, and a larger
number of terrain polygons. Additionally, enabling collision
avoidance (necessary for Unstructured - 8 case to handle the
elevation change) increases the number of binary variables
by 271.0%, increasing the solve time to 2.65 s.

As a case study to demonstrate the capability of handling
unforeseen terrains and failures during execution, we high-
light the following run-time scenarios:

1) Unforeseen Terrain States: With limited knowledge of
the global terrain polygons, the terrain states provided during
offline synthesis may be insufficient when encountering new
terrain configurations. Fig. 6 illustrates this in an Unstruc-
tured - 4 types scenario with a 3× 3 grid size, where terrain
states involving gap terrain are excluded, treating gap as an
unseen terrain type during offline synthesis. When the robot
reaches a new terrain state that includes a gap, we trigger
runtime repair for the current terrain and request states. A
new skill with a leaping gait is generated to successfully



cross the gap. The runtime repair takes 12.36 s, where
symbolic repair takes 0.18 s, and the gait-free MICP takes
12.18 s to generate the new leaping gait.

2) Solving Failure: Another common runtime failure
arises from MICP solving failures. Due to discrepancies
between the predefined polygons used in offline synthesis
and the actual online terrains—such as variations in shape
and size—a skill deemed feasible offline may become in-
feasible when executed online, even if classified under the
same symbolic transition. Originally moving straight ahead,
the detours shown as green lines in Fig. 4(c) and (d) illustrate
the re-synthesis process triggered by solving failures in both
the 7-type and 14-type cases. Solving failure occurs more
frequently in the rebar scenario than in the unstructured
terrain scenario due to uncertainties in the shapes and sizes
of online rebar polygons. The runtime resynthesis takes 0.11
s and 0.07 s for the two cases respectively. Both cases do not
trigger runtime repair because other existing skills suffice to
navigate the robot to the goals under the solving failures.

VIII. CONCLUSION

In this work, we presented an integrated planning frame-
work for terrain-adaptive locomotion that combines reactive
synthesis with MICP, enabling safe and reactive responses in
dynamically changing environments. Our approach not only
enhances motion feasibility and safety but also provides a
scalable solution for legged robots maneuvering in complex
and safety-critical environments. Future work will involve
extensive hardware testing to validate the proposed frame-
work and generalization to heterogeneous robot teaming [29].
Additionally, we plan to refine our symbolic repair approach
to relieve the computational burden further via learning-
based methods such as large language models.
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