
Probabilistically-Safe Bipedal Navigation over Uncertain Terrain via
Conformal Prediction and Contraction Analysis

Abstract— We address the challenge of enabling bipedal
robots to traverse rough terrain by developing probabilistically
safe planning and control strategies that ensure dynamic
feasibility and centroidal robustness under terrain uncertainty.
Specifically, we propose a high-level Model Predictive Control
(MPC) navigation framework for a bipedal robot with a
specified confidence level of safety that (i) enables safe traversal
toward a desired goal location across a terrain map with
uncertain elevations, and (ii) formally incorporates uncertainty
bounds into the centroidal dynamics of locomotion control. To
model the rough terrain, we employ Gaussian Process (GP)
regression to estimate elevation maps and leverage Conformal
Prediction (CP) to construct calibrated confidence intervals
that capture the true terrain elevation. Building on this, we
formulate contraction-based reachable tubes that explicitly
account for terrain uncertainty, ensuring state convergence
and tube invariance. In addition, we introduce a contraction-
based flywheel torque control law for the reduced-order Linear
Inverted Pendulum Model (LIPM), which stabilizes the angular
momentum about the center-of-mass (CoM). This formula-
tion provides both probabilistic safety and goal reachability
guarantees. For a given confidence level, we establish the
forward invariance of the proposed torque control law by
demonstrating exponential stabilization of the actual CoM
phase-space trajectory and the desired trajectory prescribed
by the high-level planner. Finally, we evaluate the effectiveness
of our planning framework through physics-based simulations
of the Digit bipedal robot in MuJoCo.

I. INTRODUCTION

Bipedal locomotion holds great promise for navigating
unstructured and challenging environments, as they can adapt
to irregular terrain through discrete and precisely controlled
footstep placement [1], [2]. However, locomotion over un-
certain terrain remains susceptible to instability, particularly
when consecutive footsteps must be placed on surfaces with
significant geometric variability and centroidal momentum
needs to be regulated accurately. Many biped navigation
frameworks [3]–[5] address terrain uncertainty at the high-
level planning but omit corrective motion strategies in low-
level control with confidence-guaranteed on the uncertainty.
To address this challenge, we develop a terrain-uncertainty-
aware planning and control framework that formally quanti-
fies terrain elevation uncertainty and leverages it to achieve
provably-safe footstep planning with a specified probability
threshold, while guaranteeing forward invariance of the cen-
troidal states in a robust tube around the desired motion plan.
Such a framework ensures locomotion balance and supports
the generation of probabilistically-safe and dynamically-
feasible locomotion plans over long horizons (see Fig. 1).

In our bipedal robot navigation framework, we leverage
a reduced-order robot model, i.e., the Linear Inverted Pen-
dulum Model (LIPM), to design a high-level planner for
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Fig. 1. (A) A bird’s-eye view of the robot navigation path over the
true rough terrain map. (B) A visualization of terrain map estimated by
Gaussian Process (GP) and conformal prediction (CP). (C) The bipedal
robot Digit navigates through an environment with rough terrain in our
MuJoCo simulation. (D) Digit’s flywheel torque control law maintains the
CoM trajectory within the contraction-based robust control invariant tube
on the robot with full-order dynamics.

the center-of-mass (CoM) and footstep plans under a user-
specified probability of safety. In particular, we derive un-
certainty bounds on the LIPM-based robot dynamics caused
by the terrain using conformal prediction (CP). Then, we
use the derived uncertainty bounds to construct contraction-
based reachable tubes around the nominal plans given by
the high-level planner, while, at the low-level, a flywheel
torque controller is designed to stabilize centroidal angular
momentum induced by terrain variations. The integration
of both uncertainty-aware CoM planning and the corrective
torque controller guarantees dynamic safety under a user-
defined probability, and the motion plans executed online
are guaranteed to remain in a compact forward invariant set
around the desired CoM motion plan. The key contributions
and organization of this work are as follows:

• We adopt a Gaussian process (GP) regression model
with an Attentive Kernel (AK) for mapping nonstation-
ary terrain. We then couple the GP model with CP to
construct data-calibrated confidence intervals, ensuring
high-confidence coverage of the true terrain elevations.

• We propose an uncertainty-informed model-predictive-
control (MPC) framework for bipedal navigation over
rough terrain. Given a predefined high probability of
safety, the MPC guarantees provably-safe CoM planning
toward a desired goal, up to a specified probability,
via CP-informed footstep sequence selections and min-
imization of traversal terrain slopes.

• To reliably track MPC plans, we derive a contraction-
based flywheel torque control law for correcting off-
nominal centroidal angular momentum caused by ter-
rain perturbations. We use contraction theory and the



CP bounds to compute time-varying reachable tubes,
guaranteeing forward invariance and exponentially-
stabilizing behavior toward the desired trajectory.

• Finally, we discuss the gap of our contraction analysis
relative to the full-order robot dynamics and demon-
strate the validity of our planning and control strategy
on a Mujoco simulation of the Digit robot.

II. RELATED WORK

A. Bipedal Locomotion over Rough and Uncertain Terrain

Long-horizon bipedal planning over irregular, uncertain
terrain has been widely studied [2]–[5]. [2] uses piecewise-
linear terrain approximation and friction cone constraints for
foot placement but requires prior terrain knowledge and ig-
nores uncertainty. [5] proposes a terrain-aware MPC penaliz-
ing slope for stable locomotion but uses uncertainty only in a
traversability score for high-level navigation. [3] combines a
Control-Lyapunov-Function controller with a sampling-based
planner and traversability metrics to avoid high-cost regions,
while [4] learns terrain online via a GP but conservatively
bypasses uncertain areas. Both methods limit robots to a lim-
ited set of paths, whereas our work enables traversing broader
uncertain regions with probabilistic safety guarantees.

B. Reduced-order Locomotion Planning and Control

In online optimal control for humanoid centroidal balanc-
ing, reduced-order models (ROMs) such as the LIPM [6],
[7] are widely used to maintain tractability and predict cen-
troidal motion. These models integrate with step-adaptation
and momentum regulation to stabilize dynamic locomotion
under mismatch between ROM-based planning and full-
body control [8]. [9] enables non-periodic CoM trajectories
and 3D footstep planning on uneven terrain with dynamic
programming for flywheel torque. The angular momentum
LIP (ALIP) model [2] applies MPC-based footstep planning
over uneven terrain. However, most of these works lack
uncertainty quantification and formal safety guarantees. We
instead leverage ALIP with flywheel torque control and con-
traction analysis to design a robust controller guaranteeing
high-probability tracking of full-order dynamics.

C. Contraction Theory

Control contraction theory [10] provides a unified
framework for nonlinear control with formal robustness and
convergence guarantees. Contraction-based controllers for
control-affine systems [11] enable incremental stabilizability
and have been applied to compute tracking tubes under
disturbances in robotics [12]. [12] designs uniform upper-
bound ellipsoids around trajectories given disturbance
bounds, while [13] proposes spatially varying bounds
reflecting learned dynamics. Most work applies contraction-
based tubes to high-level planning, with limited focus on
phase-portrait analysis for low-level motion feasibility.
We introduce the first contraction-based controller for
locomotion phase portraits, reducing discrepancies between
ROM references and full-order dynamics to enable robust
tracking under model and environmental uncertainties.

D. Conformal Prediction
Conformal prediction (CP) provides statistically rigorous

prediction intervals with guaranteed coverage independent of
model or data [14], [15]. For robotic planning, [16] applies
CP to neural-network path predictions, ensuring collision-
free paths at a set probability. [17] derives disturbance
bounds from the GP posterior for contraction analysis, but
limited data can yield overly conservative bounds, and kernel
assumptions may underestimate model error. [18] instead
advocates CP-refined GP intervals. Building on this, we use
CP to tighten GP bounds and calibrate them directly to data
while maintaining high-confidence safety for locomotion.

III. PRELIMINARIES

A. Gaussian Processes

To map terrain elevation with uncertainty for bipedal
navigation, we employ GP regression:

Definition 1 (Gaussian Process Regression): A GP mod-
els a function g(ξ) ∼ N (µ(ξ), κ(ξ, ξ)) with mean µ :
Rn → Rn and covariance κ : Rn × Rn → Sn+. Given
m samples D = {(ξ(i), z(i))}mi=1, where ξ(i) ∈ Rn is the
input (a terrain location ξ(i) = [x(i), y(i)] in the global
frame) and z(i) the elevation observed with Gaussian noise
variance σ2

ν , let K ∈ Rm×m be the covariance matrix with
Kij = κ(ξ(i), ξ(j)). For a test point ξ′, define k(ξ′) =
[κ(ξ′, ξ1) κ(ξ′, ξ2) . . . κ(ξ′, ξm)]T ∈ Rm. The predictive
distribution of g at ξ′ is Gaussian with mean and variance

µg|D(ξ′) = k(ξ′)T (K + σ2
νIm)−1Z, (1a)

σ2
g|D(ξ′) = κ(ξ′, ξ′)− k(ξ′)T (K + σ2

νIm)−1k(ξ′), (1b)

where Im is the identity and Z = [z1, . . . , zm]T .
1) Attentive Kernel: We use the Attentive Kernel

(AK) [19] for terrain elevation estimation. The AK
adapts to spatial variability through a neural network
combining multiple radial basis function (RBF) kernels,
with a secondary network assigning membership vectors
to decouple nearby correlations. In contrast, the stationary
RBF kernel yields uniformly smooth predictions
κRBF(ξ(i), ξ(j)) = σ2

f exp(−∥ξ(i) − ξ(j)∥2/2ℓ2), with
variance σ2

f and length-scale ℓ. The AK is defined as

κAK(ξ(i), ξ(j)) = αz̄T z̄′ +
∑M

m=1 w̄mκRBF
m (ξ(i), ξ(j))w̄′

m,

where α is a coefficient, w̄ and z̄ are learned weight and
membership vectors, and {κRBF

m (ξ(i), ξ(j))}Mm=1 are RBF
kernels with length-scales {ℓm}Mm=1.

B. Robot Model

1) Reduced-order robot dynamics: We first introduce the
continuous LIP dynamics in the sagittal direction and in the
local frame of the robot’s stance foot, which is governed by
ẍloc = ω2xloc, where xloc ∈ R is the CoM sagittal position
in the local frame of current stance foot, ω =

√
g/zH is the

asymptotic slope, with the gravitational acceleration g and
the CoM height at the apex state zH

1, as seen in Fig. 2(a),

1Apex state is the state when the CoM is directly on top of the foot.



(a) High-level LIPM plan (discrete) (b) Augmented LIPM (continuous)

Fig. 2. (a) The high-level planner’s global dynamics is based on the Linear
Inverted Pendulum Model (LIPM). For contraction analysis at the low-level,
we use the Augmented LIP Model (Aug-LIPM) with flywheel torque τy
about the CoM. (b) Sagittal phase portrait for one walking step from qth

to (q + 1)th in the local frame of the qth footstep. The desired MPC-
guided trajectory x⋆(t) (dark blue) is designed by (2) given the MPC output
(xloc

q , vlocq , uf
q ). The true CoM trajectory from full-order dynamics x(t)

(pink) is regulated to track the desired plan via CCM control law τCCM
y . The

RCI tube Ω(x⋆, t) (light blue) is constructed around the desired trajectory;
orbital energy E is represented by the asymptotic slope line (orange), and
tube-bound propagation is shown via the saltation matrix Ξ.

which is constant for all walking steps (i.e., the CoM surface
plane is compliant with the terrain shape [9]). Given the local
frame of the stance foot, where the distance to the CoM po-
sition is denoted by −uf in the sagittal direction, the closed-
form evolution of the sagittal dynamics can be expressed as

xloc(t) = xloc(0) +
sinh(ωt)

ω
vloc(0) +

(
1− cosh(ωt)

)
uf ,

(2a)

vloc(t) = cosh(ωt) vloc(0)− ω sinh(ωt)uf . (2b)

For high-level locomotion planning, we time-discretize
the LIP model with each discrete state defined at the foot-
switching instant. By fixing constant the step duration Tstep

in (2), the state at the (q + 1)th step is xloc
q+1

.
= xloc

q (Tstep),
where xloc

q (Tstep) is the state of the continuous dynamics
(2a) evaluated at time instant Tstep. leading to the discrete
sagittal LIP local dynamics:

xloc
q+1 = xloc

q +
sinh(ωTstep)

ω
vlocq +

(
1− cosh(ωTstep)

)
uf
q ,

(3a)

vlocq+1 = cosh(ωTstep) v
loc
q − ω sinh(ωTstep)u

f
q . (3b)

Following the formulation in [20], the bipedal global state
at timestep q is defined as xq = (pq, v

loc
q , θq) ∈ R5, where

pq = (xq, yq, zq) is the CoM position in the global frame,
vlocq is the local sagittal velocity, and θq is the global heading
angle. The control variables are uq = (uf

q , u
∆θ
q ) ∈ R2, where

uf
q is the sagittal foot position relative to the CoM, and u∆θ

q

is the global heading change between two consecutive steps,
as shown in Fig. 2(a). Applying a coordinate transformation
with respect to θq to (3a), (3a) yields the 3-D LIP dynamics
in the global coordinates (derivations in [20]):

xq+1 = xq +∆xloc cos(θq), (4a)

yq+1 = yq +∆xloc sin(θq), (4b)

zq+1 = zq +∇x,yµg|D(xq, yq)∆xloc, (4c)

vlocq+1 = cosh(ωT )vlocq − ω sinh(ωT )uf
q , (4d)

θq+1 = θq + u∆θ
q , (4e)

where ∆xloc = xloc
q+1−xloc

q is derived from (3a). The heading
update is given by u∆θ

q = θq+1 − θq and ∇x,y µg|D(xq, yq)
is the estimated slope of the GP terrain map [5]. For
compactness, system (4) is denoted as xq+1 = Φ(xq, uq).

2) Augmented LIP dynamics: For contraction analysis,
we employ an Augmented LIP Model (Aug-LIPM) with the
addition of flywheel torque control about the local pitch angle
τy and bounded disturbance input w, which is governed by

ẍloc = ω2xloc − ω2

mg τy + w, (5)

for a bipedal robot with mass m. We assume w ∈ W ⊆
R, where W is a compact set. We provide the state-space
form of the Aug-LIP for the ease of notation interchange in
contraction analysis (Sec. III-D) as:[

ẋloc

v̇loc

]
︸ ︷︷ ︸

ẋloc

=

[
0 1
ω2 0

]
︸ ︷︷ ︸

A

[
xloc

vloc

]
︸ ︷︷ ︸

xloc

+

[
0

− ω2

mg

]
︸ ︷︷ ︸

B

τy︸︷︷︸
uloc

+

[
0
1

]
︸︷︷︸
Bw

w. (6)

C. Conformal Prediction

Consider a collection of k + 1 random variables
R(0), . . . , R(k) that are exchangeable2. These variables, re-
ferred to as nonconformity scores, quantify the deviation
between predictions and observations. In supervised learning,
a common score is R(i) = R(ξ(i), z(i)|D) =

∣∣z(i) −
µD(ξ(i))

∣∣, where µD(·) is a predictive model trained on
dataset D to estimate the observation z(i) from input ξ(i).
Larger scores correspond to poorer predictive accuracy. The
aim of CP is to bound the nonconformity score of a query
point R(0) = |z′

true − µD(ξ′)| with high probability. For
failure rate δ ∈ (0, 1), we seek a threshold C such that
P (R(0) ≤ C) ≥ 1− δ.

A quantile-based approach [21, Lemma 1] constructs C
as the (1 − δ)-quantile of the empirical distribution of
{R(1), . . . , R(k)}∪{∞} sorted in non-decreasing order. With
this approach, we can define the threshold C = R(p) where
p = ⌈(k + 1)(1− δ)⌉, where ⌈·⌉ is the ceiling function.

Definition 2 (Split Conformal Prediction): Split CP pro-
vides computational efficiency by partitioning the dataset
D = Dtrain∪Dcal into disjoint training and calibration sets.
The predictor µ(·) is fitted on Dtrain, and nonconformity
scores R(i) are computed on (ξ(i), z(i)) ∈ Dcal for i =
1, . . . , k with k = |Dcal|. For a query point ξ′ with unknown
truth value ztrue, the prediction interval Iδ is given by:

Iδ(ξ
′) =

{
z ∈ R : R(ξ′,z |Dtrain) ≤ C

}
, (7)

where C = R(p) and failure rate δ is user-defined. Under
exchangeability of the data, the coverage interval (7) ensures
P
(
ztrue ∈ Iδ(ξ

′)
)
≥ 1− δ, or equivalently,

P
(
ztrue ∈ [µDtrain(ξ′)− C, µDtrain(ξ′) + C]) ≥ 1− δ. (8)

2Exchangeability means that the joint distribution of R(0), . . . , R(k) is
invariant under any permutation σ of the indices {0, . . . , k}. It is a weaker
assumption than independence and identical distribution (i.i.d.).



D. Control Contraction Metrics

Contraction theory studies incremental stability by exam-
ining differential dynamics between neighboring trajectories.
In this work, we use control contraction metrics (CCMs) to
stabilize our reduced-order model [22]. For simplicity, all
discussion in this section is presented in the local frame of
the current foot stance, and the superscript loc is omitted.
Given a linear time-invariant system of form (6) with state
and control x ∈ Rnx , u ∈ Rnu under disturbance w ∈ Rnw ,
a CCM defines a state-feedback tracking control law that
ensures that any disturbance-free system trajectory x(t) con-
verges toward a desired disturbance-free reference trajectory
{x⋆(t), u⋆(t)}t≥0 exponentially quickly, i.e., for any x(0),
limt→∞ ∥x(t)−x⋆(t)∥2 = 0, there exists constants Λ, λ > 0
such that ∥x(t)−x⋆(t)∥2 ≤ Λe−λt∥x(0)−x⋆(0)∥2. The decay
rate λ is called the contraction rate. Specifically, for LTI
systems, a CCM M ∈ Snx

+ satisfies the following condition

A⊤M +MA−MBB⊤M ⪯ −2λM. (9)

The resulting feedback law u(t) = − 1
2ρB

⊤M(x(t)− x∗(t))
renders the noise-free, closed-loop system incrementally ex-
ponentially stable, converging to x∗(t) with contraction rate
λ > 0. While (9) is non-convex, it can be reformulated via
variable transformation into a convex semidefinite program
(SDP), which can be efficiently solved [11].

1) CCMs, Riemannian Energy, and Invariant Tubes: In
the presence of bounded disturbance W = {w | ∥w∥2 ≤ w̄},
instead of ensuring exponential convergence to the reference,
the CCM-based controller can ensure that the closed-loop
system remains within a robust control invariant tube. To
set the stage, we define the Riemannian energy E(x, x⋆) =
(x(t)− x⋆(t))⊤M(x(t)− x⋆(t)). From [12], we have

E(x⋆(t), x(t)) ≤
[√

E(x∗(0), x(0)) e−λt + d̄(1− e−λt)
]2

. (10)

where d̄ = σ(M
1
2Bw)w̄/λ, where σ is the singular value.

Definition 3 (Robust Control Invariant Tube): A robust
control invariant (RCI) tube [12], [13], [23]

Ω(x⋆, t) := {x ∈ X : ∥x(t)− x⋆(t)∥2 ≤ ϵ̄(t),∀t ∈ [0, Tstep]}
(11)

is defined such that any state starting inside Ω(x⋆, t) is
guaranteed to remain inside it throughout one walking step
of duration Tstep. Assuming the system (6) with ∥w∥2 ≤ w̄,
we construct a time-varying ellipsoid centered around the
reference state x⋆(t). The maximum radial distance ϵ̄(t)
under w̄ which preserves contracting behavior is given by:

ϵ̄(t) =

√(∫ t

0
Ē(t) dt

)
1√

λ(M)
,

where Ē(t) is the right-hand side of (10), and λ(M) is the
minimum eigenvalue of M .

2) Saltation Matrix: The saltation matrix Ξ is a first-order
approximation of a system’s sensitivity to discrete events
[24], used to correctly propagate the variation about the
nominal trajectory δx(t) when a hybrid jump occurs such
that δx(t+) = Ξδx(t−), where δx(t−), δx(t+) denotes the
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Fig. 3. Overall block diagram of the proposed probabilistically-safe
planning and control strategy for bipedal navigation over uncertain terrain.

pre-transition and post-transition, respectively. The dynamics
model of a bipedal robot is hybrid, consisting of continuous
single-contact dynamics described by (6) (i.e., walking on
one stance leg) and discrete double-contact transition (i.e, at
the leg switching instance) with assumed duration Tswitch,
for which we define the guard condition g and reset map
∆ : x− → x+ as:

g : xloc(0+) = x̃loc(T−
step),

∆ :

{
xloc(0+) = xloc(T−

step) + vloc(T−
step) · Tswitch − uf ,

vloc(0+) = vloc(T−
step),

where x̃loc(T−
step) is predicted using (2a) given

(xloc(0−), vloc(0−), uf ). Since the RCI tube in Def. 3
relies on continuous propagation of (10), we adopt the
saltation matrix Ξ to formally define how the tube bound
changes over the discrete transition, which is defined as

Ξ = J∆ +
(F+ − J∆F−)J⊤

g

J⊤
g F− ,

where J∆ and Jg are the Jacobian matrix of ∆ and g
evaluated at x−, respectively, and F± = [vloc(t), ω2xloc(t)]⊤

represents the vector field evaluated at state x±.

IV. METHODS

A. Framework Overview

We propose a framework for bipedal navigation over rough
terrain with elevation uncertainty. From sparse elevation data,
the terrain is estimated using a GP model µg|D(ξ) and
combined with CP to obtain coverage intervals Iδ of the
true height map (Sec. IV-B). A high-level MPC planner
then generates CoM trajectories and footstep sequences with
probabilistic safety guarantees (Sec. IV-D). CP-based un-
certainty quantification defines contraction-based reachable
tubes Ω(xloc,⋆, t) around the MPC plans (Sec. IV-C.2), while
a contraction-based flywheel torque controller stabilizes off-
nominal centroidal angular momentum from terrain uncer-
tainty (Sec. IV-C.4). The overall method is shown in Fig. 3.

B. Uncertainty Quantification for Bipedal Footstep Planning

1) Split CP with GP model: We apply Split CP to the
GP mean terrain estimate to construct coverage intervals



with predefined probability. Unlike GP confidence intervals,
which become overly conservative in sparse data due to large
variance, Split CP uses the empirical error distribution R(i) to
determine a threshold C, yielding tighter intervals of the form
Iδ = [µg|Dtrain(x, y)−C, µg|Dtrain(x, y)+C], as validated in
Sec. V. For brevity, we denote µ(·) as the GP terrain model
trained on the split dataset for the remainder of this paper.

2) CP safe footstep constraint: We derive the safety
constraint for terrain elevation change between two adjacent
footsteps defined by (xq, yq, zq) and (xq+1, yq+1, zq+1). We
define an inequality c(zq, zq+1) ≥ 0 to bound the height
change by the maximum feasible limit ∆hmax, where

c(zq, zq+1) = ∆hmax − |zq+1 − zq|. (12)

At each iteration of high-level planning, we assume zq =
ztrueq to be known (i.e., the current foot height can be mea-
sured) and assume mean height, z′q+i = µ(xq+1, yq+1), for
all future footsteps for i ∈ {1, . . . ,H − 1} over the horizon
H . We now prove that enforcing (12) ensures a feasible step
with probability at least 1− δ despite terrain uncertainty.

Lemma 1 (CP Safe Footstep Constraint): Let c : Rn ×
Rn → R be a Lipschitz continuous function in its second
argument with Lipschitz constant L > 0, i.e., |c(·, a) −
c(·, b)| ≤ L∥a − b∥ for all a, b. Let C denote the (1 − δ)-
quantile of the empirical distribution of random variables
R(1), . . . , R(k). If the constraint

c(zq, z
′
q+1) ≥ LC (13)

is enforced at step q, then the true terrain height change
between ztrueq and ztrueq+1 remains below the feasible limit
∆hmax with probability at least 1− δ.

Proof: At the qth step we have c(ztrueq , z′q+1) ≥ LC,
since at the first timestep, zq = ztrue

q . Since c(·, ·) is L-
Lipschitz in its second argument, we have

c(ztrueq , ztrueq+1 ) ≥ c(ztrueq , z′q+1)− L
∥∥ztrueq+1 − z′q+1

∥∥. (14)

Substituting the constraint into (14) yields

c(ztrueq , ztrueq+1 ) ≥ L(C −
∥∥ztrueq+1 − z′q+1

∥∥). (15)

Define the random variable R =
∥∥ztrueq+1 − z′q+1

∥∥. By the
definition of C, P(C −R ≥ 0) ≥ 1 − δ. Thus, the right-
hand side of (15) is nonnegative with probability at least
1−δ. Consequently, P

(
c(ztrueq , ztrueq+1) ≥ 0

)
≥ 1−δ, which

guarantees that the true terrain elevation change at step q
satisfies the feasible limit with confidence level 1− δ.

C. RCI Tube for Phase Space Planning

1) Disturbance bounds for Augmented LIP Model: Given
an estimated height µ(xq, yq) at the current stance foot of
the qth step and a threshold C, the true terrain height at the
qth step, denoted as ztrue

q , lies in the interval ztrue
q ∈ Iqδ with

a confidence level of (1− δ). The Aug-LIPM dynamics (6)
are propagated under the assumption that ω2 = g

zH
, which

remains constant due to the assumption of a fixed apex height
zH . This corresponds to constraining the CoM motion to a
surface plane parallel to the terrain profile [9]. We account for
uncertainty in ztrue

q by propagating it to the asymptotic slope,

which arises when the true terrain height deviates from the
estimated height used in the Aug-LIPM. Specifically, instead
of assuming a fixed zH , we have ω2

true ∈ [ g
(zH+C) ,

g
(zH−C) ]

.
=

ω2+C∆, where C∆ ∈ [ −gC
zH(zH+C) ,

gC
zH(zH−C) ]. Thus, the Aug-

LIPM in (5) becomes

ẍloc = ω2xloc − ω2

mg
τy + wterrain, (16)

where wterrain = C∆(x
loc − τy

mg ), and xloc ∈ X loc .
=

[xloc
min, x

loc
max] and τy ∈ U loc .

= [τy,min, τy,max] are bounded
by feasible state and control constraints. We then define a
terrain-uncertainty related bounded set of disturbances w in
(6) as Wterrain

.
= {w : ∥w∥ ≤ w̄terrain}, where we use the

upper bound w̄terrain = max{x∈X loc,τ∈U loc} |C∆||x− τ
mg |.

2) RCI tube for sagittal phase-space dynamics:
We define the reference trajectory for the Aug-LIPM
{xloc,⋆(t) uloc,⋆(t)} as sagittal trajectory guided by (2) given
high-level planner’s output (xloc

q , vlocq , uf
q ) (i.e., uloc,⋆ =

τ⋆y = 0. Given the sytem (6) is a linear time-invariant
with control matrix B, the CCM M in (9) provides the
flywheel torque control law that exponentially stabilizes the
true trajectory toward xloc,⋆(t)

τCCM
y (t) = −1

2
ρB⊤M(xloc(t)− xloc,⋆(t)). (17)

Remark 1: CoM sagittal states xloc governed by (6) that
are initialized in the RCI tube (11) are guaranteed to stay
within the tube for all t ∈ [0, Tstep] under the CCM control
law τCCM

y , which ensure forward invariance around the
desired motion plans {xloc,⋆, uloc,⋆}. We also emphasize that
exiting the RCI tube does not imply a fall; it only implies
that forward invariance in (11) is not guaranteed; in practice,
(17) can still effectively compensate for terrain-uncertainty-
induced perturbations wterrain.

3) Saltation matrix tube propagation: During the discrete
transition, corresponding to the foot-switching instant be-
tween walking steps, we propose a formal propagation rule
for the upper bound of the Riemannian energy across the
transition using the saltation matrix. The propagation is given
by: Ē+(0) = ϵ⊤Ξ⊤MΞϵ, where ϵ ∈ R2 is any vector of
norm ∥ϵ∥2 = ϵ̄−(Tstep), which is the RCI tube bound at the
end of the step. By the construction of our guard condition
and reset map in Def. III-D.2, the determinant ∥Ξ∥ > 1 im-
plies that Ξ is expansive. Given this result, we prove that the
sagittal state of the robot is guaranteed to remain forward in-
variant over a single step with probability at least 1−δ (Lem.
2) and over i steps with probability at least (1−δ)i (Lem. 3).

Lemma 2: Given terrain coverage interval with confidence
level 1−δ, the sagittal state governed by (6) initialized inside
the RCI tube Ω(xloc,⋆, t) is guaranteed to stay within the
tube under the CCM control law τCCM

y (t) (17) for all t ∈
[0, Tstep] during one walking step under any disturbance in
terrain height with probability 1− δ.

Proof: Following (3), the RCI tube Ω(xloc,⋆, t) satis-
fies an upper-bound ϵ̄(t) determined by w̄terrain such that
∥xloc(t) − xloc,⋆(t)∥ ≤ ϵ̄(t),∀t ∈ [0, Tstep]. From the CP
coverage guarantees, we have that w ∈ Wterrain, i.e., the



disturbance bound is valid, with probability at least 1 − δ.
Thus, xloc(t) ∈ Ω(xloc,⋆, t) with probability at least 1− δ.

Lemma 3: Over i walking steps, the probability of the
terrain-perturbed dynamics (16) staying in the RCI tube for
i ∈ {1, . . . , H−1} is at least (1+δ)i, where H is the horizon.

Proof: Lem. 2 guarantees RCI tube invariance with
probability (1 − δ) for the sagittal CoM states such that
xloc(t) ∈ Ω(x⋆, t) ⇐⇒ ∥xloc(t) − xloc,⋆(t)∥2 ≤ ϵ̄(t) for
all t ∈ [0, Tstep]. During the discrete transition, the state
variation at the end of the step, δx(T−

step)
.
= xloc(T−

step) −
xloc,⋆(T−

step), and the RCI tube bound ϵ̄(T−
step) are both

propagated by the saltation matrix as follows:

δx(0+) = Ξ δx(T−
step), ϵ̄(0+) = Ξ ϵ̄(T−

step).

If xloc(T−
step) ∈ Ω(xloc,⋆, T−

step) during the current walking
step, then ∥δx(T−

step)∥ ≤ ϵ̄(T−
step). Since the saltation matrix

is expansive with ∥Ξ∥ ≥ 1, we guarantee that the bound in
the next walking step satisfies

Ξ∥δx(T−
step)∥ ≤ Ξϵ̄(T−

step) → ∥δx(0+)∥ ≤ ϵ̄(0+). (18)

Therefore, xloc(0+) ∈ Ω(xloc,⋆, 0+) holds for the next
walking step. Since xloc(0+) is initialized inside the RCI
tube, Lem. 2 ensures that it will remain invariant within the
tube for the remainder of the step under bounded disturbance
set Wterrain with probability of (1 − δ). For i number of
walking steps, where each step is an independent event since
the true foot height is re-measured after the step, the tube
invariance probability compounds according to the product
rule, P

(⋃
i ( xloc

i (t) ∈ Ω(xloc,⋆i , t);∀t ∈ [0, Tstep])
)
= (1 −

δ)i for i ∈ [1, ..., H − 1].
4) Contraction-based controller for full-order dynamics:

Throughout the paper, the RCI tube Ω(xloc,⋆, t) and the
CCM control law τCCM

y (t) are derived by the Augmented
LIP dynamics. Here, we provide a formal proof that the
contraction analysis of IV-C can be extended to stabilize the
full-order robot dynamics.

To realize full-order dynamics, we employ the ALIP
planner3 [2] to generate desired foot placements, together
with a passivity-based controller [25] for the low-level
control, which achieves asymptotic tracking at the
joint level. Ankle actuation is incorporated within the
passivity-based controller to enhance the ROM tracking
performance [26]. To this end, we implement CCM control
law as an flywheel torque applied directly at the robot’s
CoM within the MuJoCo simulation environment [27].
Nonetheless, model mismatch between the ROM-based
trajectory and the full-order dynamics persists due to
imperfections in low-level control. We therefore state the
following assumption regarding the model error.

Assumption 1: Under a low-level controller with
sufficiently stable tracking performance, the sagittal
dynamics discrepancy wmodel between the ROM and the

3Since our ROM-based planner and controller are designed based on
the sagittal dynamics. The lateral dynamics are considered at the lower
level using the Angular Momentum LIP model [2], since these motions are
periodic given a fixed desired lateral foot placement.

full-order model of the bipedal robot is bounded and belongs
to Wmodel

.
= {wmodel | ∥wmodel∥ ≤ w̄model}, as shown

in [28]. wmodel can also be treated as a disturbance in the
linear system (6).

Similar to the approximation approach in [28], we estimate
the full-order sagittal dynamics using the Aug-LIPM (6):

ẋfull = Axfull +Bτ full
y + wterrain + wmodel, (19)

where xfull = [xloc,full, vloc,full]⊤ ∈ R2 is the true sagittal
CoM states of the robot, wterrain ∈ Wterrain and wmodel ∈
Wmodel is treated as the bounded model discrepencies be-
tween ROM and full-order dynamics under Assumption 1.

Without loss of generality, we can set xloc,⋆ (the Aug-
LIPM reference to be tracked) as xLIPM, since uloc,⋆ =
τ⋆y = 0. We can leverage the CCM torque (17) as the full-
order sagittal control input, denoted in a gain matrix form as
τ fully = τCCM

y = K(xfull− xLIPM) , where K = − 1
2ρB

⊤M .
Then, the error between the full-order and ROM-based
sagittal trajectory e

.
= xfull−xLIPM evolves under the closed-

loop error dynamics: ė = (A+BK)e+ wterrain + wmodel.
Since A + BK is exponentially stable via the CCM, the

error converges to a disturbance-invariant set Θ: if e0 ∈ Θ,
then e(t) ∈ Θ , ∀t ≥ 0. By Lem. 2–3, the RCI tube
ensures that the error between the full-order and ROM-based
trajectories caused by wterrain remains in Ω(xloc,⋆, t) for
all t ≥ 0 and across all steps. Since disturbances in (19)
are additive, Assumption 1 guarantees that the error due to
wmodel also remains invariant within Ω(xloc,⋆, t) by adjusting
the bound ϵ̄(t) with respect to the combined disturbance
w̄ = w̄terrain + w̄model.

In this work, we do not account for w̄model in constructing
the RCI tube. While this may slightly degrade tracking
performance of the control law (17), we avoid overly
conservative bounds so the entire RCI tube lies within the
stable region of the phase portrait (Fig. 2(b)). We later
enforce a constraint in Sec. IV-D restricting the RCI tube to
the stable domain of positive orbital energy. For the bipedal
robot, maintaining positive orbital energy ensures the CoM
trajectory remains bounded around foot placement rather
than diverging, thereby preventing falls.

D. Uncertainty-Informed Model Predictive Control

Given a terrain map estimated by GP mean µ(x, y) and
C, we formulate a high-level planner via MPC with horizon
H using global dynamics (4) with state x = (x, y, z, vloc, θ)
and control u = (uf , u∆θ) as follows:

min
x0:H ,u0:H−1

∥pN − pG∥2W1
+ ∥θN − θG∥2W2

(20a)
+
∑H−1

q=0 ∥∇x,y µ(xq, yq)∥2W3

s.t. xq+1 = Φ(xq,uq), ∀q ∈ [1, H − 1] (20b)
x0 = xinit, (xq,uq) ∈ XUq, ∀q (20c)
c(zq, zq+1) ≥ LC (20d)
z0 = ztrue, zq = µ(xq, yq), ∀q (20e)

E(xloc,⋆
q (s), vloc,⋆q (s), ϵ̄q(s)) > 0,

∀s ∈ [0, Tstep], ∀q, (20f)



TABLE I
SIMULATION RESULTS (85% CONFIDENCE LEVEL)

Framework / Terrain T1 T2 T3
Average Norm Error (across all steps)

∥xloc(t)− xloc,⋆(t)∥AVG

Ours 0.040 0.045 0.039
Ours w/o τ⋆y Fail Fail 0.051
Baseline MPC [5] Fail Fail 0.052

Prob. of staying within the RCI Tube
P(∥xloc(t)− xloc,⋆(t)∥ ≤ ϵ̄(t) ;∀t ∈ [0, Tstep])

Ours 84.94% 77.09% 77.53%
Ours w/o τ⋆y Fails Fails 58.03 %
Baseline MPC [5] Fails Fails 54.75%

’Fail’ denotes Digit falls, reaching the goal in fewer than 5 of 15 trajectories.

TABLE II
PERFORMANCE ON TERRAIN T3

Method Sim Time # of Steps CP Coverage
Ours 62.30 142.33 85.85%

Ours w/o τ⋆y 66.32 149.13 80.69%
Baseline MPC [5] 69.75 154.60 81.62%

where XUq = {(xq,uq) | xlb ≤ xq ≤ xub, ulb ≤ uq ≤
uub}. The MPC cost is adopted from [5], which penalizes
the Euclidean distance between the terminal state (i.e., the
final position pN and the heading θN ) and the goal (i.e., the
goal location pG and the angle between the current position
and the goal θG) and accumulates penalties over the norm
of the terrain traversal slope ∇x,y µ(xq, yq) to avoid regions
with steeper terrain. (20d) represents the CP safe footstep
constraint, where z0 = ztrue and zq = µ(xq, yq), ∀q ∈
{1, . . . ,H − 1}, implying that the true terrain height is
known only at the stance foot of the current walking step for
every iterations. W1, W2, and W3 are weighting matrices.

Remark 2: From Lem. 1, (20d) ensures safe footstep
selection with probability at least 1−δ at the first step, consis-
tent with the receding-horizon MPC. For the next (q+i) steps
where i ∈ {1, . . . ,H−1}, Lem. 3 ensures a safety probability
P(c(zq, zq+1) > 0 ∪ · · · ∪ c(zq+i, zq+i+1) > 0) = (1 −
δ)i, since foot height is re-measured at each step, making
safety events independent. The choice of δ for different
scenarios is discussed in Sec. V.

The constraint (20f) enforces that the orbital energy E
of the continuous sagittal phase-space trajectory during the
qth step, xloc,⋆

q (s), vloc,⋆q (s) governed by (2) given input uf
q

and initial condition xloc
q , vlocq given by MPC, together with

the RCI tube bounds ϵ̄q(s) parameterized by s ∈ [0, Tstep],
remains positive. Note that xloc,⋆

q (s), vloc,⋆q (s) is also the
desired reference trajectory in our contraction analysis. As
seen in Fig. 2(b), positive orbital energy E > 0 ensures the
robot’s CoM has sufficient forward momentum to escape the
gravitational pull of its current stance foot and move onto
the next step [7]. Graphically, this ensures that the RCI tube
never crosses the asymptotic slope line defined in the phase-
space plot. Finally, to enforce (20f) over multiple walking
steps within the horizon H , we apply the saltation matrix Ξ
to propagate the tube bounds from ϵ̄q(T

−
step) to ϵ̄q+1(0

+).
V. RESULTS

We evaluate the framework in MuJoCo simulations of
the Digit bipedal robot across three distinct 20m × 20m
terrains with height from 0 to 0.7 m, which are T1, T2 and

TABLE III
SIMULATION RESULTS (99.5% CONFIDENCE LEVEL)

Framework / Terrain T4 T5
∥xloc(t)− xloc,⋆(t)∥AVG

Ours 0.031 0.034
Baseline MPC [5] 0.051 0.058
P(∥xloc(t)− xloc,⋆(t)∥ ≤ ϵ̄(t) ;∀t ∈ [0, Tstep])
Ours 93.60% 92.41%
Baseline MPC [5] 65.03% 61.42%

T3 (Fig. 4). Results at the 85% safety level are summarized
in Table I, with further analysis of T3 in Table II. We also
test smaller 6m × 6m terrains T4 and T5 (height from 0 to
0.2 m), where improved GP accuracy, due to smaller input
domain, enables 99.5% confidence guarantees over multiple
steps (Table III). Our MPC framework, with and without
CCM torque control, is compared against the baseline in [5]
with only traversal slope minimalization. For each terrain
and framework, 15 trajectories with an average of 140 steps
are simulated between pre-defined start and goal positions,
using full-order dynamics in MuJoCo.

From 2500 discretized map points, 700 are randomly
sampled with a 70-30 split (490 training, 210 calibration).
At 85% confidence, the average CP threshold across three
terrains is CAVG = 0.078 while the GP bound is 0.360
(i.e., ±1.44σ(ξ)AVG), and for 99.5% confidence, CAVG =
0.060 while GP bound is 0.708 (i.e., ±2.81σ(ξ)AVG).
Thus, GP model coupled with CP method yields less con-
servative bounds, while preserving high confidence level.
Table I reports the average norm error (ANE) between
xloc(t) and xloc,⋆(t), measured at 200 Hz across trials, along
with the probability of RCI tube invariance, computed as
(
∑N

q=0 1
q
Ω−invariance)/N , where 1q

Ω-invariance = 1 if ∥xloc(t)−
xloc,⋆(t)∥ ≤ ϵ̄(t) for all t ∈ [0, Tstep], and 0 otherwise.
Table II further details terrain T3 performance, including av-
erage simulation time, total steps, and CP coverage, defined
as (

∑N
q=0 1

q
true coverage)/N , with 1

q
true coverage = 1 if ztrue

q ∈
[µ(ξq)−C, µ(ξq)+C] during the qth step, and 0 otherwise.

On terrains T1 and T2, the robot fails to reach the goal
in fewer than 5 of 15 trials when using baseline MPC or
omitting the CCM control law τCCM

y . On rough terrains
with small, frequent height changes (T1) and steeper slopes
(T2), τCCM

y improves stability by correcting off-nominal
centroidal angular momentum, whereas the baselines lack
recovery from sudden terrain variations and thus fail. On
terrain T3, τCCM

y reduces ANE relative to the baseline,
yielding trajectories that track the MPC plan more closely,
enabling more reliable goal reaching in fewer steps.

To validate Lem. 2, we evaluate the probability of re-
maining within the RCI tube, expected at 85% (i.e., xloc(t)
would exit the tube only if the true terrain lies outside the CP
interval). As noted in Sec. IV-C.4, the torque control τCCM

y

may suffer slight performance loss from model mismatch.
On terrain T1, with bumpy ground and minimal sagittal
mismatch, τCCM

y maintains the CoM within the tube at
the target probability. On terrains T2 and T3, where sloped
paths amplify sagittal and vertical perturbations, τCCM

y still
preserves tube invariance under terrain disturbances and
mismatch with only an 8% reduction from the desired 85%,
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Fig. 4. Visualization of three large terrain profiles, T1: bumpy and rough, T2: wavy and coarse, and T3: hilly with a smoother surface (for the case study
with the 85% confidence level), and two smaller terrain profiles, T4 and T4: level but rough (for the case study with the 99.5% confidence level) with
sample trajectories from different runs (white indicates the start of each trajectory). For the red trajectory, we show the GP mean estimate map along with
the CP confidence interval, which ensures coverage of the true terrain height at each confidence level.

markedly outperforming the baseline or without τCCM
y .

On terrain T3, both simulation time and step count are
reduced compared to the baseline, regardless of whether
τCCM
y is applied. This improvement arises from the CP

constraint in (20d), which enables risk-seeking footstep
planning by allowing exploration of regions with poor
GP elevation estimates, provided true terrain variations lie
within CP coverage intervals. Coupled with τCCM

y , our
framework thus yields footstep plans that ensure safe terrain
transitions with a level of confidence 85% at every step.
Finally, we evaluate our framework on smaller terrains (T4
and T5) at a higher confidence level of 99.5%. By Lem. 3,
this guarantees RCI tube invariance for about 20 steps
with compounded safety probability (99.5%)20 ≈ 90.5%,
strongly guaranteeing that the robot will track the full, safe
MPC plan. As shown in Table III, our framework achieves
over 92% per-step tube invariance and significantly lower
ANE than the baseline. Thus, for short-horizon locomotion
on immediate terrain with sparse data, GP with CP provides
practical probabilistic guarantees for the full trajectory, and
when combined with CCM torque control, enables reliable
tracking of desired motion plans with high confidence.

VI. CONCLUSION

We present a planning and control framework for bipedal
navigation over uncertain terrain with probabilistic safety
guarantees. Two core components of this framework include
constructing a contraction-based reachable tube around the
CoM trajectory to ensure safe tracking under terrain uncer-
tainty and designing a flywheel torque control law to stabilize
CoM angular momentum.
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