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Abstract— This study presents a whole body operational
space (WBOS) framework for controlling three dimensional
passive-foot biped robot. Stability of WBOS controller is an-
alyzed, and a foot placement planner is proposed. In many
cases, the WBOS controller generates torque commands to
execute the trajectories planned by high-level planners at every
control loop. The planners design trajectories by sensing the
locomotion behaviors over a long horizon. Instead, our planner
updates a step location every control loop by estimating the
center-of-mass (CoM) state to achieve robust balancing. The
robustness is enhanced because contact events vary the stance
leg switching time from a given nominal step frequency. Via
this new foot placement planner, the locomotion robustness to
unknown terrains is improved. Dynamically stable walking are
tested on flat and unknown terrains, and under push recovery
by using a real-time dynamic simulation.

I. INTRODUCTION

Balancing a biped robot is about stabilizing its CoM

dynamics of whole body and posture in a reduced dimen-

sional space [1], [2]. However, biped robots are highly

nonlinear and under-actuated system whose state in the high

dimensional joint space is difficult to be fully controlled.

Therefore, to simplify the whole body dynamics, point

mass models have been proposed and motion planners of

these simplified models are designed in the high level of

the hierarchical control framework. At the low-level, the

whole-body controller computes joint torques based on the

trajectory planned by the high-level motion planner [20].

Various point mass models have been proposed for the

high-level motion planner. A well-established one is the Lin-

ear Inverted Pendulum Model (LIPM) [3], of which the CoM

height is constant and the dynamics are linearized. Based on

the LIPM dynamics, instantaneous capture point (ICP) is de-

rived in [4]. An important property of ICP is that the velocity

on the top of ICP is zero. This was utilized to realize one-step

stop and push recovery [5]. However, LIPM ignores contact

impact and assumes the angular momentum to be zero. And

usually step timing is fixed. Divergent component of motion

(DCM) is another well-received method that extends the ICP

to three dimensional situation. Similar to ICP, swing time of
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the DCM method needs to be predefined [6]. Another well-

known model is spring-loaded inverted pendulum (SLIP)

model [7]. SLIP model inherently achieves compliance by

using an elastic element in the leg. The spring leg stores

energy during its stance phase. This locomotion compliance

is critical especially for locomotion efficiency and contact

safety. For instance, ATRIAS is a three dimensional passive-

foot biped robot which embodies a three dimensional spring-

mass model and can walk very efficiently [8]–[10]. Prismatic

inverted pendulum model (PIPM) is another practical point

mass model which was thoroughly analyzed in [11] and has

been successfully implemented in three dimensional point-

foot biped robot Hume [12], [13]. PIPM explicitly models

the CoM’s height variance and plans CoM linear and angular

motions in the three-dimensional space.

At the low level, whole-body controller (WBC) normally

computes joint torques to comply with the planned CoM

dynamics and sends desired torques or positions to joint actu-

ators. WBC models the biped robots as rigid body dynamics

with floating base and physical constraints [14]. The dynam-

ics are formulated to accomplish multiple tasks in operational

space through controlling torques in joint space. Contacts

are modeled as constraints in an optimization problem,

which can be solved through Jacobian-transpose methods

[15], [16] or projection-based techniques such as operational

space methods [17]. A main advantage of projection-based

techniques is that the time-consuming optimization is not

needed. An alternative way is the quadratic programming

[18]–[20], which allows for inequality constraints but suffers

slower computations. Operational space control is applied to

humanoid robots, which can be modeled as a rigid multi-

body system with a floating base and in contact with envi-

ronments including the ground [14]. Various related works

are influenced by this framework [21]–[23].

In this paper, a strategy which integrates the proposed

motion planner into whole-body control (WBC) is presented

for locomotion control of a three dimensional passive-foot

biped robot. The key to balancing a biped robot is controlling

the horizontal motion of the CoM [1]. To this end, this study

proposes a foot placement planner, which is analogous to the

pioneering work in [24]. It is different from the traditional

ZMP-based walking control strategies [25]. The contribu-

tions of this study lie in twofold: First, the foot placement

planner is not explicitly based on the so-called point mass

model. In the task of WBOS framework, the desired CoM

height is set to be constant whereas the acceleration is

not constrained to be zero; Second, nominal step frequency

is predefined. However, considering the unforeseen contact
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impact due to the unknown terrains, the dynamics model

switches based on contact events and thus the swing time

is adjustable. Frequent updating of the foot landing position

naturally improves the robustness of the foot placement to

terrain uncertainties. Real-time simulations demonstrate that

the robot’s CoM are capable of being maintained within a

stable bounded region.

The paper is organized as follows. Section II introduces

the simulated robot configuration. Section III presents the

WBOS framework. Section IV proposes the walking task

design and foot placement planner. Simulation results are

shown in Section V. And this line of research is concluded

in Section VI.

II. CONFIGURATION OF THE PASSIVE-FOOT BIPED

ROBOT

The three dimensional passive-foot biped robot modeled

in this study has six actuated degree-of-freedoms (DoFs) as

shown in Fig. 1. The robot model originates from the real

robot in [26]. As a modification, the actuated ankles are

removed and replaced with passive feet. The robot has a

torso, two thighs, two shanks and two passive feet. There are

roll and pitch joints on hips, pitch joints on knees and pure

passive pitch joints on ankles. The passive feet are equipped

under the ankles to provide resistant friction torque to oppose

the yaw rotational disturbance from the whole body motion.

The sagittal x-z plane is annotated in Fig. 1.

Fig. 1. Three dimensional passive-foot biped robot. The left figure shows
the coordinate definition and the right figure is an overview of the biped
robot

The base frame is selected as the free-floating torso. Six

virtual joints (three prismatic joints and three revolute joints)

are connected from the base frame to the ground. Therefore,

the total DoFs of the robot system is twelve, including six

actuated joints and six virtual joints.

III. WHOLE BODY OPERATIONAL SPACE FRAMEWORK

In this section, the whole body operational space (WBOS)

framework is briefly introduced. According to [14], the

WBOS dynamics with contact constraints are given as below.

Aq̈+NT
c (b+g)+ JT

c ΛcJ̇cq̇ = (SNc)
T τ (1)

where q∈R
(n+6) is generalized coordinates. n is the number

of actuated degrees-of-freedom (DOFs). A is mass inertia

matrix, b is centrifugal and Coriolis vector and g is gravity

vector. Jc is contact jacobian (left or right foot) and Λc is

kinetic energy matrix of contact space. For single stance

in our robot model, Jc ∈ R
3×12. Λc is the kinetic matrix

in contact space. S is the selection matrix. τ ∈ R
n is the

actuated torque. Null space projection Nc = I − JcJc. The

contact constraints are ẍc = Jcq̈+ J̇cq̇ = 0. xc is the contact

point on the foot.

Since the walking process is highly dynamic, the double

stance phase is quite short and almost ignorable. We assume

the double stance to be instantaneous. The whole dynamics

are switched between left and right single stances. In task

space, the generalized force is given in Eq. (2).

Ftask = Λ∗taskutask +μ∗task + p∗task (2)

where Ftask is the generalized force in task space. Λ∗task is

kinetic energy matrix in task space. utask, μ∗task and p∗task are

task space acceleration, centrifugal and Coriolis force, and

gravity force, respectively (see Eq. 3).⎧⎪⎨
⎪⎩

Λ∗task = (J∗taskΦJ∗Ttask)
−1,

μ∗task = Λ∗taskJ∗taskΦb−Λ∗taskJ̇∗taskq̇,
p∗task = Λ∗taskJ∗taskΦg

(3)

where Φ = (SNc)A−1(SNc)
T is the constrained projection

of A−1. J∗task = Jtask(SNc) ∈ R
ntask×6. ntask is the number of

tasks. (SNc) is the support consistent generalized inverse of

(SNc). In general, the knee is never stretched straight in

walking, thus singularity of the Jacobian does not need to

be considered. Within this task space dynamics framework,

τ is determined by τ = J∗TtaskFtask. In next section, Ftask for

multiple walking tasks is designed.

IV. STABLE WALKING STRATEGY

A. Walking tasks and dynamics control

Walking tasks include the center-of-mass (CoM) position,

the body posture and swing foot. CoM task has three

degree-of-freedoms (DoFs) (x, y and z position), posture

task includes three DoFs (pitch, roll and yaw angles of the

torso) and swing point foot has three DoFs (xfoot,yfoot and

zfoot). To control all the tasks, at least nine actuated DoFs

are required. Since the biped robot studied only has six

actuated DoFs, the yaw angle and the CoM motion in x and

y axis are not controlled. So the task acceleration is designed

as uwalking = [z̈CoM, θ̈pitch, θ̈roll, ẍfoot, ÿfoot, z̈foot]
T . The control

architecture is depicted in Fig. 2. The aggregate walking task

jabobian is given as below,

Jwalking =

⎡
⎣JzCoM

Jposture

Jfoot

⎤
⎦ (4)
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Fig. 2. WBOS-based Dynamics Control Architecture.

where JzCoM
∈ R

1×12 is the jacobian for CoM in z axis,

Jposture ∈ R
2×12 is for pitch and roll angles of torso, and

Jfoot ∈R
3×12 is for spatial position of swing foot (either left

or right foot). Based on the WBOS framework in Eq. (1),

the torques are computed by Eq. (5).

τ = J∗Twaking(Λ
∗
walkinguwalking +μ∗walking + p∗walking) (5)

where J∗waking = Jwaking(SNc) ∈R
6×12. In this walking task a

PD controller is plugged in Eq. (5) and the WBOS controller

for walking is designed as Eq. (6).

uwalking = k∗p(rdes− ract)+ k∗d(ṙdes− ṙact) (6)

where r = [zCoM,θpitch,θroll,xfoot,yfoot,zfoot]
T . rdes and ract are

the desired and actual position of task vector r. k∗p and k∗d are

PD gains respectively. In this study, the desired zCoM, θpitch

and θroll are set to be constants. The desired xfoot, yfoot and

zfoot are designed in foot placement planner.

B. Stability analysis

For the WBOS controller in Eq. (6), uwalking = r̈act. Define

the task tracking error as

e = rdes− ract (7)

Then ë = r̈des− r̈act. r̈des is set to be zero. As such, Eq. (6)

can be rewritten in Eq. (8),

ë+ k∗dė+ k∗pe = 0 (8)

Eq. (8) represents second-order exponentially stable error

dynamics and thus the WBOS controller is guaranteed to

be asymptotically stable.

C. Foot placement planner

Foot placement planner is designed to control the CoM

dynamics in horizontal plane. In the WBOS controller zCoM

is controlled as a task while xCoM and yCoM are not directly

controlled as tasks. Therefore, the xCoM and yCoM states

follow their natural dynamics. Foot placement planner is

to provide the desired landing point on the ground so that

xCoM and yCoM are kept from diverging excessively from the

support point. The concept of stable walking of the biped

robot could be defined as that the CoM states [xCoM, ẋCoM]T ,

[yCoM, ẏCoM]T and [zCoM, żCoM]T are controlled within a

bounded ball-shape region in the phase space, respectively.

The foot placement planner in this study is proposed as

below,

ρ = ξ +λ ξ̇ (9)

where ρ = [xfoot, yfoot]
T is the planned foot position. λ is

a coefficient. ξ = [xCoM, yCoM]T is the CoM position in

horizontal plane. Eq. (9) is the same as [24] in form. The

reachable space of ρ is limited by,

ρ ∈Ω = {[xfoot, yfoot]
T ∈ R

2| ||rfoot− rtorso||< l} (10)

where rfoot = [xfoot,yfoot,zfoot]
T . rtorso is the origin of torso’s

local frame. l is the maximum distance between torso and

foot.

Ground reaction force (GRF) can be computed using joint

torques and joint states as given in Eq. (11).

Fc = JT
c [S

T τ−b−g]+ΛcJ̇cq̇ (11)

where Jc = A−1JT
c Λc and the GRF Fc = [Fcx,Fcy,Fcz]

T ∈R
3.

Within the WBOS framework, Fc is the function of q, q̇, and

τ . The generic CoM dynamics is given in Eq. (12)[
Fcxy
Fcz

]
= m

[
ξ̈

z̈+g

]
(12)

where Fcxy = [Fcx, Fcy]
T , m is the total mass of the robot

and g is gravity. To analyze the stability of proposed foot

placement planner, we take CoM dynamics in y direction

for example. Ignoring the angular momentum, then we have,

Fcy

Fcz
=

(y− py)

z
(13)

where py is the supporting foot position. Combine Eq. (13)

with Eq. (12), Eq. (14) can be obtained as below,

ÿ =
(g+ z̈)

z
(y− py) (14)

If within a short time span z̈ can be taken as a constant,

and considering the CoM height is set to be constant in our

walking tasks, then Eq. (14) is approximately linear and thus

has an analytical solution as below,

y(t) =
1

2
(y0 +

ẏ0

ω
− py)eωt +

1

2
(y0− ẏ0

ω
− py)e−ωt + py

(15)

where ω =
√

g+z̈
z . y0 and ẏ0 are initial position and velocity

of CoM. The first term in Eq. (15) is a divergent component.

Choose py = y0 + ẏ0/ω , then as time t tends to infinity,

y(+∞) = py. In this case, the foot placement position is

instantaneous capture point (ICP), on the top of which CoM

will stop. However, within a stance phase the CoM dynamics

in horizontal plane has finite time to diverge. As long as the

CoM states are bounded within a desired region, dynamically

stable walking can be achieved. Therefore, to control the

CoM states within a bounded region, the coefficient of the

first term in Eq. (15) is not necessary to be zero within

a finite time span. Considering the variance of z̈ and z
within one stance phase, ω = ω(t), t ∈ [tinitial, tfinal]. Let
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ωmin = min[ω(t)], t ∈ [tinitial, tfinal], then a certain p always

exists such that

pymax = y0 +
ẏ0

ωmin
> y0 +

ẏ0

ω
(16)

When CoM diverges from the support point, ẏ0 > 0. Then

Eq. (17) is always satisfied.

pymax = y0 +
ẏ0

ωmin
> y0− ẏ0

ω
(17)

Then from Eq. (15), we will have,

y(t)< pymax, t ∈ [tinitial,+∞] (18)

This inequality can guarantee that even if there is divergent

component in Eq. (15) due to the variance of z̈ and z, pymax

can still strictly guarantee that CoM will never escape beyond

pymax. Frequent stepping shortens phase time, which limits

the divergence of CoM in horizontal plane and thus pymax

is finite. In Eq. (9) we can choose a proper λ = [λ1,λ2]
T =

[1/ω1,1/ω2]
T such that the planner is stable.

The desired foot landing position actually keeps updating

during the entire swing process until the foot touches the

ground. The trajectory of lifting foot zfoot is designed with a

sine function zfoot = αsin(ω f t), where α is the peak height

of the swinging foot and ω f determines the nominal step

frequency.

V. SIMULATION RESULTS

In this simulation, The angular frequency ω f of the lift

foot is set to be 30 which corresponds to the nominal step

frequency at around 2.38Hz. The swing time is adjustable

based on contact events. We do not control center-of-mass

(CoM) of the robot through regulating ground reaction forces

(GRFs). Instead, unexpected GRFs are treated as distur-

bances. The simulation results show that the proposed control

method achieves dynamically stable stepping not only under

push disturbance but also on unknown terrains.

A. Dynamically stable stepping

In real-time simulation dynamically stable stepping is

tested on flat terrains without external disturbances. The

foot placement planner adjusts the landing foot’s position to

adapt to contact disturbances from previous phase. During

a time span of 300 seconds, the robot achieved around 717

steps without falling. The CoM dynamics are demonstrated

in phase plane as shown in Fig. 3. It can be seen that the

CoM states is bounded, and the CoM height is controlled

within the range [0.9072m, 0.9084m] when desired CoM

height is set to be 0.9m. The fluctuation magnitude of the

CoM height is around 1.2mm, which means the CoM height

is almost constant. However, this is achieved through WBOS

framework instead of LIPM. Fig. 5 shows that żCoM and z̈CoM

are not zero, meaning that LIPM dynamics are not enforced

in our control framework.

In this subsection random white noises are also added in

the joint position and velocity to simulate the sensing noises.

The mean value of white noise is 0 and the variance is 1.0.

The maximum value of the velocity noise is around 10%

Fig. 3. Phase space in x, y and z direction. The vertical and horizontal axis
are velocity and position of CoM respectively. The right column shows phase
space with sensing noises included and the left column shows the phase
space without sensing noises. Note that the scales of figures are different.
zCoM has almost no movement compared with the movement of xCoM and
yCoM.

Fig. 4. The average swing time is 0.158s during 478 steps’ simulation
with peak height of swing foot α at 0.2m. And the average swing time is
0.177s during 478 steps’ simulation with peak height of swing foot α at
0.3m

of the maximum value of joint velocity while the position

noise is around 7%. Fig. 3 shows CoM states in phase space

are bounded even if some sensing noises are included. This

simulation results can be practical reference for real robot

implementation.
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Fig. 5. The first subplot shows CoM position. The second and third subplot
shows the CoM velocity and acceleration in z direction, respectively.

We test two different peak heights for the desired swing

foot trajectory and measure the swing time (Fig. 4). The

result shows that the average swing time takes longer due to

higher swing height. We can also find that the swing time

of each phase is not constant because in our foot placement

planner swing time is adjusted based on contact events.

Fig. 6. Snapshots of push recovery. A sudden push is imposed on the torso
at 20s. The time step of the snapshots is 0.05s.

B. Dynamically stable stepping with external disturbances

In this subsection we test the dynamically stepping under

two kinds of external disturbances. One is from push while

the other comes from unknown terrains.

Push recovery is demonstrated in Fig. 6. The push comes

from an external impact on the right side of the torso at

20s. The impact is 2100N and lasts for 0.002s, which is an

Fig. 7. The red line shows the evolution of the position and velocity of
CoM in y direction after impulse is exerted on the robot. The CoM state
moves in the direction of black arrows

impulse of 4.2 N · s. The total mass of the simulated robot

is around 30kg, of which the torso, hip, thigh and shank

weigh 15.1kg, 2.3kg, 3.5kg and 1.1kg, respectively. The robot

adjusts the right leg to the larger-step side of the body to

provide a re-planned foot support point. In Fig. 7 the red

line depicts the evolution of CoM state after the push. After

a few foot placement adjustments, the COM state establishes

a bounded region in the phase plane.

The dynamically stable stepping on uneven terrain are

tested as shown in Fig. 8. The robot has no prior knowledge

of the terrains. When the right foot lands on an unexpected

obstacle as the black box in Fig.8, the left foot starts to

update a new foot placement. In the screen shots of Fig. 8,

the robot steps on the obstacle twice and eventually keeps

stepping on the flat ground. This simulation result shows the

robot has robustness to the unknown terrains. Fig. 9 shows

the swing time of each phase. The swing time is shortened

when the foot lands ahead of time due to the obstacle. This

can be seen in the first few points in Fig. 9. After the robot

dose not touch the obstacle, the swing time tends to fall

within a small range.

VI. CONCLUSIONS

In this study, Whole-Body Operational Space (WBOS)

framework is adopted for dynamic locomotion control. Com-

pared with optimization-based inverse dynamics controller,

WBOS framework is highly efficient in numerical computa-

tion. The CoM motion and body posture are formulated as

tasks in operational space. All these tasks are glued together

without task priority. The tasks are coupled naturally but

simulation results show that the coupling effect is practically

acceptable. A foot placement planner based on CoM dynam-

ics is embedded as tasks in the WBOS framework. Since the

dynamics model is switched based on contact events, a fixed

swing time is not required. The simulation shows that the
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Fig. 8. Snapshots of stepping on unknown terrain. The black box is the
obstacle. The robot does not have the prior knowledge about when to step
on the obstacle. The time step of snapshots is 0.1 s

Fig. 9. Swing phase time is not constant but keeps changing with the
unpredicted contact event during 239 steps’ simulation. When the robot
happens to step on the obstacle, the swing time is shortened because of
landing head of time.

the walking controller presents robustness to push recovery

and unknown terrains. Sensing noise is taken into account to

demonstrate the practicability of the proposed controller.

One of the inherent properties of biped robots is the

floating base which could not provide control authority to

maintain balance. For biped robots with feet and actuated

ankles, the ground reaction force is unilateral and can not

provide enough forces to prevent falling. Seeking a new foot

placement is an intuitive strategy for recovering the balance.

Limitation of the foot placement recovery is its dependence

on the reachable space determined by the kinematics con-

figuration of the biped robot. Our future work will foucs on

detailed analysis of the robustness of controller framework

proposed in this study and explore multiple-step recovery

under larger push disturbances.
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