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This paper investigates the problem of H1 control for active seat suspension systems via dynamic output
feedback control. A vertical vibration model of human body is introduced in order to make the modeling
of seat suspension systems more precise. Meantime, different from the existing H1 control methods
which conduct disturbance attenuation within the entire frequency domain, this paper addresses the
problem of H1 control for active seat suspension systems in finite frequency domain to match the char-
acteristics of the human body. By using the generalized Kalman–Yakubovich–Popov (KYP) lemma, the H1
norm from the disturbance to the controlled output is decreased over the chosen frequency band
between which the human body is extremely sensitive to the vibration, to improve the ride comfort. Con-
sidering a practical situation of active seat suspension systems, a dynamic output feedback controller of
order equal to the plant is designed, where an effective multiplier expansion is used to convert the con-
troller design to a convex optimization problem. Compared with the entire frequency approach for active
seat suspension systems, the finite frequency approach achieves better disturbance attenuation for the
concerned frequency range, while the performance constraint is guaranteed in the controller design,
which is verified by a practical example with certain and random road disturbances.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ride vibrations associated with a prolonged seating are the
main risk factors for lumbago or backache, which seriously affect
the mental and physical health of drivers or passengers and reduce
their working efficiency. Thus, improving ride comfort which has
developed as an applied science, is urgent. The first requirement
to increase ride comfort is to attenuate the vibration transmission
from the chassis to the driver. To achieve this goal, the vehicle seat
suspension system plays an important role.

Between the human body and the automotive cabin, seat
suspensions are not only to support the human body but also to
isolate vibrations caused by rough road. Therefore, good seat sus-
pension systems can significantly enhance ride comfort, which
makes the seat suspension control become a hot topic. Recently,
combining active vibration control mechanism with advanced con-
trol algorithms to design and analyze suspension systems has been
a popular and effective way, and attracted considerable attention
[1,2,6,8,14,18,25]. The core idea is to use active control method
in suspension systems to reduce the impact of disturbance. This
leads to the so-called active seat suspension system.
ll rights reserved.
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Most of the early studies for active seat suspension systems
mainly confined their scope to vibration control of a rigid dummy
mass on the seat. Without biodynamics included, it is clearly not
precise enough to regard the complicated human body as a rigid
mass for the individual difference. Various biomechanical models
have been developed to describe the human motion, from 1 de-
gree-of-freedom (DOF) to 15 DOF. These models can be grouped
as lumped parameter models which consider the human body as
several rigid bodies, springs and dampers.

Development of an active seat suspension system should be
accompanied by the methodologies to control it, so that the design
specifications can be satisfied. In general, the design specifications
include two aspects for the active seat suspension system. The first
one is ride comfort, which refers to isolating passengers from vibra-
tion and shock caused by road roughness. The second one can be
seen as a constraint, limited suspension stroke, which means to
keep suspension displacement within an allowable range. These
two requirements are conflicting, for example, enhancing ride com-
fort results in larger suspension stroke, while an excessive suspen-
sion bottoming can lead to a considerable deterioration of ride
comfort. Hence, extensive literature focuses on the choice of control
methodologies to manage the trade-off between the two perfor-
mance requirements, based on various control strategies, such as
linear quadratic Gauss (LQG) [22,26], H1 control, [9,10] and adap-
tive control [4,13,19]. Among the proposed methods, the H1 active
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Fig. 1. The seat-driver model of 3 DOF.
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suspensions are intensively discussed in the context of robustness
and disturbance attenuation.

In the existing literature, various control programs have been
used in active seat suspension systems to isolate the force trans-
mitted to the passengers. It is worth mentioning that most
researchers design controllers for suspension systems over the
entire frequency range, and the existing results ignore the fact
that the vibrations, imported into the active seat suspension
system, are mainly concentrated in the low frequency band.
Meanwhile, the human body is more sensitive to vibrations of
4–8 Hz in the vertical direction, and human’s organs will resonate
with the vibrations in this frequency domain (ISO2361). Hence,
the development of the finite frequency control is significative
for active seat suspension systems. Accordingly, an interesting
question would be whether we can design an H1 controller for
active seat suspension systems in finite frequency domain, which
can improve ride comfort as much as possible in the frequency
sensitive domain 4–8 Hz. Although this seems to be a meaningful
work, to the best of the authors’ knowledge, few attempts have
been made towards this direction, which motivates our present
study.

Currently, the weighting function method which has been
proved to be useful in practice, is the main strategy to deal with fi-
nite frequency problems. But it is weighting functions that increase
the system complexity, and the process of selecting appropriate
weights can be time-consuming as well. In the literature [16],
the active seat suspension control is considered over the finite fre-
quency domain, and the ride comfort is maximized by discrimina-
tory minimization of average whole-body absorbed power over a
hand of frequencies that causes most discomfort to a human being.
The method used to deal with the problem of finite frequency is to
add some weighting functions to the active seat suspension sys-
tems, which has been proved effective. However, this method is
based on the appropriate weighting function as a precondition,
and the choice of weighting function is quite time-consuming as
mentioned before, especially when the designer has to shoot for
a good trade-off between the complexity of the weights and the
accuracy in capturing desired specifications.

Recently, a significant development made by Iwasaki and Hara
is the generalized Kalman–Yakubovich–Popov (KYP) lemma [23]
that establishes the equivalence between a frequency domain
property and an linear matrix inequality (LMI) over a finite fre-
quency range, allowing designers to impose performance require-
ments over chosen finite frequency ranges. The generalized KYP
lemma is useful for the analysis and synthesis of practical applica-
tion problems [3,11,15,24].

In addition, when all the states are on-line measurable, state
feedback is an acceptable choice, as it can make use of full informa-
tion, and thus the closed-loop performance can be enhanced to its
full potential. However, state feedback control depends on the pre-
mise that all the state variables are on-line measurable, which
leads into higher cost and additional complexity. In terms that
not all the state variables can be measured on-line, output feed-
back control effects according to part of the measured states
[12]. In other words, output feedback strategy requires less sen-
sors, compared with the state feedback counterparts.

In this paper, the dynamic output feedback control of the active
seat suspension system is investigated over the finite frequency
range, where the human body is considered as a three DOF param-
eter models with rigid bodies, springs and dampers to increase the
precision. By using the generalized KYP lemma, the finite fre-
quency problems are transformed into a set of LMIs to be solved.
In addition, the suspension deflection is limited within its allowed
range to match the mechanical structure of the seat suspension. Fi-
nally, a practical example is employed to illustrate the effective-
ness of the proposed method.
The remainder of this paper is organized as follows. The prob-
lem of finite frequency H1 controller design for active seat suspen-
sion systems based on the human body constitution is formulated
in Section 2. Section 3 presents the design results of dynamic out-
put feedback controllers. The simulation illustrating the usefulness
and advantage of the proposed methodology is given in Section 4
and conclusions are given in Section 5.

Notation. For a matrix P, PT, P*, P�1 and P\ denote its transpose,
conjugate transpose, inverse and orthogonal complement, respec-
tively; the notation P > 0 (P0) means that P is real symmetric and
positive definite (semi-definite); and [P]s means P + PT. kGk1
denotes the H1-norm of transfer function matrix G(s). For matrices
P and Q, P � Q means the Kronecker product. In symmetric block
matrices or complex matrix expressions, we use an asterisk (�) to
represent a term that is induced by symmetry and diag{. . .} stands
for a block-diagonal matrix. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.
2. Active seat suspension model

The problem of active seat suspension control is depicted in
Fig. 1. It is known that an average human who subjects to vibration
typically feels more discomfort over a certain band of frequencies.
Since the seat suspension dynamics with human body on the seat
can contribute much to the research of the improvement on ride
comfort and safety, a mathematical human body model is strongly
demanded for controller synthesis to alleviate the unwanted vibra-
tion and to mitigate the transmitted vibration energy.

The seated human body exposed to vibration is a sophisticated
dynamic system whose mechanical properties are complex. This
paper selects a three DOF model (see Fig. 2) that captures the
essential dynamics of a seated human exposed to whole body
vibration out of the great amount of seated human models based
on the analytical study and experimental validation. It is found
to be appropriate for the study of biodynamic responses of seated
human subjects under vertical whole body vibration and also has a
good trade-off between the complexity and the accuracy in captur-
ing desired specifications [7,27].

The seat-driver model constituted by the seat suspension and
human body shown in Fig. 1 is employed here for the purpose of
analysis, whose detailed physical and biological structure is ab-
stracted in Fig. 2. This linear model of seated human body was
established by Wei and Griffin in 1998 [17], based on experimental
results on live human bodies, which is constructed with two
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separate mass segments interconnected by a spring and a damper
with a total mass of 51.2 kg. The mass of lower legs and feet is not
included in this representation, due to their negligible contribu-
tions to the biodynamic response of the seated body. To predict
the biodynamic responses more reasonably, the mass of buttocks
and legs is assumed to contact rigidly with the seat. The road exci-
tation input is transmitted to the cabin floor. It is assumed that
only the vertical motion of the vehicle exists for simplification.
Both pitching and rolling motions are neglected in this paper.

In Fig. 2, m1 is the mass of seat frame; m21 and m22 are the
masses of human thighs together with buttocks and the seat cush-
ion, respectively, and m2 = m21 + m22; m3 is the mass of the upper
body of a seated human. c1, c2 and k1, k2 are dampings and stiff-
nesses of the passive suspension system, respectively; c3 and k3

stand for the damping and stiffness of the components inside hu-
man body such as spines; z1, z2 and z3 are the displacements of
the corresponding masses, respectively; z0 is the road displace-
ment input; u is the active control input of the seat suspension
system.

The dynamic equations of motion of the seat suspension are
given by:

m1€z1 ¼ �c1ð _z1 � _z0Þ � k1ðz1 � z0Þ þ c2ð _z2 � _z1Þ þ k2ðz2 � z1Þ � u;

m2€z2 ¼ �c2ð _z2 � _z1Þ � k2ðz2 � z1Þ þ c3ð _z3 � _z2Þ þ k3ðz3 � z2Þ;
m3€z3 ¼ �c3ð _z3 � _z2Þ � k3ðz3 � z2Þ:

ð1Þ

Define the set of states and the disturbance input as follows:

fðtÞ ¼ fT
1ðtÞ fT

2ðtÞ fT
3ðtÞ fT

4ðtÞ fT
5ðtÞ fT

6ðtÞ
� �T

;

wðtÞ ¼ _z0ðtÞ;

where the components of state variables are given as follows:

f1ðtÞ ¼ z1ðtÞ � z0ðtÞ; f2ðtÞ ¼ _z1ðtÞ;
f3ðtÞ ¼ z2ðtÞ � z1ðtÞ; f4ðtÞ ¼ _z2ðtÞ;
f5ðtÞ ¼ z3ðtÞ � z2ðtÞ; f6ðtÞ ¼ _z3ðtÞ:

The dynamic equations in (1) can be rewritten in the following
form:

_fðtÞ ¼ AfðtÞ þ BuðtÞ þ B1wðtÞ;

where
A ¼

0 1 0 0 0 0
� k1

m1
� c1þc1

m1
k2
m1

c2
m1

0 0

0 �1 0 1 0 0
0 c2

m2
� k2

m2
� c2þc3

ms

k3
m2

c3
m2

0 0 0 �1 0 1
0 0 0 c3

m3
� k3

m3
� c3

m3

26666666664

37777777775
;

B ¼

0
� 1

m1

0
0
0
0

2666666664

3777777775
; B1 ¼

�1
c1
m1

0
0
0
0

2666666664

3777777775
:

Ride comfort can be characterized by body acceleration. As the
main performance index, we formulate an H1 control problem to
suppress disturbance. Denote body acceleration as control output
zo1(t):

zo1ðtÞ ¼ €z3ðtÞ:

Because of mechanical structure, suspension stroke should not ex-
ceed the allowable maximum zmax, that is jz1 � z0j < zmax. In order
to satisfy the performance constraint, denote

zo2ðtÞ ¼
z1 � z0

zmax
;

as an output to be constrained.
Therefore, the vehicle suspension control system can be de-

scribed as:

_fðtÞ ¼ AfðtÞ þ BuðtÞ þ B1wðtÞ;
zo1ðtÞ ¼ C1fðtÞ þ D1uðtÞ;
zo2ðtÞ ¼ C2fðtÞ;
yðtÞ ¼ CfðtÞ; ð2Þ

where

C1 ¼ 0 0 0
c3

m3
� k3

m3
� c3

m3

� �
; D1 ¼ 0;

C2 ¼
1

zmax
0 0 0 0 0

� �
;

C ¼
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

264
375:

Three sensors are installed to obtain the displacements (f1(t), f3(t)
and f5(t)), and y(t) is the measurable outputs.

Roughly speaking, traditional methods for the active seat sus-
pension system considers the vibration suppression in the whole
frequency band, which ignores the frequency requirements of the
human body. Actually, the human body has different responses
to different frequency vibrations, where vibrations over frequency
4–8 Hz are the major sources of the discomfort. In addition, though
state feedback control is a powerful strategy, it is based on the pre-
mise that all the state variables are on-line measurable, which
sometimes introduces higher cost and additional complexity by
measuring all the states. In the cases where not all the state vari-
ables can be measured on-line, output feedback control is an alter-
native, which can conduct effective control according to part of the
measured states. In other words, output feedback strategy requires
less sensors, compared with the state feedback counterparts, and
has been investigated in many studies.
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In this paper, we design a dynamic output feedback H1 control-
ler with the form:

_gðtÞ ¼ AKgðtÞ þ BK yðtÞ;
uðtÞ ¼ CKgðtÞ þ DK yðtÞ:

ð3Þ

According to the performance requirements, our goal can be
summed up as follows:

sup
-1<x<-2

kGðjxÞk1 < c; ð4Þ

jzo2ðtÞj 6 1; ð5Þ

where G(jx) represents the transfer function of the closed-loop sys-
tems from the disturbance input w(t) to the controlled output zo1(t),
and -1, -2 represent the upper and lower bounds of the chosen
frequency.
3. Dynamic output feedback controller design

This section is devoted to the problem of finite frequency H1
controller design for the active seat suspension system in (2). We
are interested in designing a dynamic output feedback controller,
such that the H1 norm of the closed-loop system is minimized over
the chosen frequency range, while respecting the constraint in (5)
within bound.

Substituting (3) into (2), and defining x(t) = [fT(t) gT(t)]T, the
closed-loop system admits the realization:

_xðtÞ ¼ AxðtÞ þ BwðtÞ;
zo1ðtÞ ¼ C1xðtÞ;
zo2ðtÞ ¼ C2xðtÞ;

ð6Þ

where

A :¼
Aþ BDK C BCK

BK C AK

� �
; B :¼

B1

0

� �
;

C1 :¼ C1 þ D1DK C D1CK½ �; C2 :¼ ½C2 0�:
ð7Þ

The transfer function of the closed-loop system from the distur-
bance input w(t) to the controlled output zo1(t) is defined as follows:

GðjxÞ ¼ C1ðjxI � AÞ�1B:
3.1. Finite frequency case

In this subsection, a dynamic output feedback controller is
designed in the finite frequency band, so that the closed-loop
system in (6) is asymptotically stable, and satisfies

sup
-1<x<-2

kGðjxÞk1 < c; ð8Þ

while respecting the constraint in (5) within bound.

Theorem 1. Give positive scalars c, g, q and let a dynamic output
feedback controller in the form of (3) be given. The closed-loop system
in (6) is asymptotically stable, and satisfies sup-1<x<-2

kGðjxÞk1 < c,
while respecting the constraint in (5) with the disturbance energy
under the bound wmax = (q � V(0))/g, if there exist symmetric matrices
P, Ps > 0, Q > 0 and general matrix W satisfying

½W�s �WTAþ Ps �WT �WTB

� �Ps 0 0
� � �Ps 0
� � � �gI

26664
37775 < 0; ð9Þ
�-1-2Q � ATW
h i

s
P � j-cQ þWT �WTB CT

1

P þ j-cQ þW �Q 0 0

�BTW 0 �c2I 0

C1 0 0 �I

26666664

37777775 < 0; ð10Þ

�I
ffiffiffiffiqp C2

� �Ps

" #
< 0; ð11Þ

where -c = (-1 + -2)/2 is a given scalar.
Proof. By using Schur complement, inequality (9) is equivalent to

1
g WTBBTW þWTP�1

s W þ ½W�s �WTAþ Ps

� �Ps

" #
< 0: ð12Þ

Performing the congruence transformation to inequality (12) by
diagf�W�1; P�1

s g, with W: = �X�1, inequality (12) can be trans-
formed to the following inequality:

1
g BBT þ P�1

s � ½X�s AP�1
s þ XT

� �P�1
s

" #
< 0: ð13Þ

By using Lemma 2, inequality (13) is equivalent to

AP�1
s þ P�1

s AT þ 1
g

BBT < 0;

with W ¼ 1
g BBT and ST ¼ AP�1

s . Clearly, we have

ATPs þ PsAþ
1
g

PsBBTPs < 0; ð14Þ

which can guarantee ATPs þ PsA < 0. From the standard Lyapunov
theory for continuous-time linear system, the closed-loop system
(6) is asymptotically stable with w(t) = 0. Note that (10) is equiva-
lent to

½I FB�X½I FB�T þ ½FAWR�s < 0; ð15Þ

where

FA ¼
�AT

I

�BT

2664
3775; FB ¼

CT
1

0

0

2664
3775; R¼

I

0

0

2664
3775

T

; X¼ T
U� PþW�Q 0

0 P

" #
TT;

P ¼
I 0
0 �c2I

� �
; U ¼

0 1
1 0

� �
; W ¼

�1 j-c

�j-c �-1-2

� �
;

with the permutation matrix T such as [ M1 M2 M3 M4] T =
[M2 M1 M4 M3]. From Lemma 1, (15) is equivalent to

F?A ½I FB�X½I FB�TF?
T

A < 0; ð16Þ

RT? ½I FB�X½I FB�TRT?
T

< 0; ð17Þ

where inequality (16) holds if and only if

FTXF < 0; ð18Þ

with

F ¼ I AT 0 CT
1

0 BT I 0

" #T

:

The inequality in (18) is equivalent to
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A B

I 0
C1 0
0 I

26664
37775

T

U� P þW� Q 0
0 P

� � A B

I 0
C1 0
0 I

26664
37775 < 0; ð19Þ

which is further equivalent to

A B
I 0

" #T

ðU� P þW� QÞ A B
I 0

" #
þ C1 0

0 I

" #T

P
C1 0
0 I

" #
< 0:

ð20Þ

By using Lemma 3, the above inequality is equivalent to

ðjxI � AÞ�1B
I

� ��
C1 0
0 I

� ��
P C1 0

0 I

� �
ðjxI � AÞ�1B

I

� �
< 0; -1 < x < -2; ð21Þ

which is equivalent to the finite frequency H1 performance index
inequality

sup
-1<x<-2

kGðjxÞk1 < c: ð22Þ

Denote V(t) = xT(t)Psx(t) as the energy function, whose deriva-
tive is obtained as

_VðtÞ ¼ 2xTðtÞPsAxðtÞ þ 2xTðtÞPsBwðtÞ:

Noting that

2xTðtÞPsBwðtÞ 6 1
g

xTðtÞPsBBTPsxðtÞ þ gwTðtÞwðtÞ;8g > 0;

we have

_VðtÞ 6 xTðtÞðATPs þ PsAþ
1
g

PsBBTPsÞxðtÞ þ gwTðtÞwðtÞ:

According to inequality (14), we have

_VðtÞ 6 gwTðtÞwðtÞ:

Integrating both sides of the above inequality from 0 to t results in

VðtÞ � Vð0Þ 6 g
Z t

0
wTðtÞwðtÞdt 6 gkwk2

2 ¼ gwmax:

This shows that

xTðtÞPsxðtÞ 6 Vð0Þ þ gwmax ¼ q: ð23Þ

Consider

max
tP0
jzo2ðtÞj2 ¼ max

tP0
xTðtÞCT

2C2xðtÞ
�� ��

2:

Using the transformation �xðtÞ ¼ P
1
2
sxðtÞ, from inequality (23) it

follows that

�xTðtÞ�xðtÞ 6 q:

Hence,

max
tP0
jzo2ðtÞj2 ¼ max

tP0
�xTðtÞP�

1
2

s CT
2C2P

�1
2

s �xTðtÞ
��� ���

2

6 q � kmaxðP
�1

2
s CT

2C2P
�1

2
s Þ; ð24Þ

where kmax(�) represents the maximum eigenvalue. Then, the
constraint in (5) holds if

qP
�1

2
s CT

2C2P
�1

2
s < I; ð25Þ

which, by Schur complement, is equivalent to (11). The proof is
completed. h
Expressions in Theorem 1 are non-convex due to the product
terms of the multiplier W, the controller parameters and coeffi-
cient matrices. In order to solve this problem, we carry on the fol-
lowing transformation.

In accordance with the partition of A in (7), we introduce a par-
tition of W and its inverse W�1 in the form:

W ¼
X Y

U V

� �
; W�1 ¼

M G

H L

� �
: ð26Þ

From the literature [21], there is no loss of generality in assuming
that U and H are invertible. Define

D1 ¼
X I

U 0

� �
; D2 ¼

I M

0 H

� �
;

and note that

WD2 ¼ D1: ð27Þ

Define

J1 ¼ diag DT
2;D

T
2;D

T
2; I

� 	
; J2 ¼ diag DT

2;D
T
2; I; I

� 	
; J3 ¼ diag I;DT

2

� 	
:

Pre- and post-multiplying (9)–(11) by J1, J2 and J3 and their trans-
poses, respectively, and defining

Q ¼ DT
2QD2; P ¼ DT

2PD2; Ps ¼ DT
2PsD2;

bA ¼ DT
2WTAD2 ¼

XTAþ bBK C bAK

Aþ BbDK C AM þ BbC K

" #
;

bB ¼ DT
2WTB ¼ XTB1

B1

" #
;

bC1 ¼ C1D2 ¼ C1 þ D1
bDK C C1M þ D1

bCK

h i
;

bC2 ¼ C2D2 ¼ ½C2 C2M�;

W ¼ DT
2WD2 ¼

XT Z

I M

" #
;

with the following linearizing changes of variables:

bAK ¼ XTAM þ XTBDK CM þ UTBK CM þ XTBCK H þ UTAK H; ð28ÞbBK ¼ XTBDK þ UTBK ; ð29ÞbCK ¼ CK H þ DK CM; ð30ÞbDK ¼ DK ; ð31Þ

Z ¼ XTM þ UTH; ð32Þ

we can give the following theorem.

Theorem 2. Give positive scalars c,g,q. A dynamic output feedback
controller in the form of (3) exists, such that the closed-loop system in
(6) is asymptotically stable, and satisfies sup-1<x<-2

kGðjxÞk1 < c,
while respecting the constraint in (5) with the disturbance energy
under the bound wmax = (q � V(0))/g, if there exist symmetric matrices
P; Ps > 0; Q > 0 and general matrices W; bAk;

bBk;
bCk;

bDk; M; X
and Z satisfying

½W�s �bA þ Ps �WT �bB
� �Ps 0 0
� � �Ps 0
� � � �gI

266664
377775 < 0; ð33Þ
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�-1-2Q � ½bA�s P � j-cQ þWT �bB bC T
1

P þ j-cQ þW �Q 0 0

�bBT 0 �c2I 0bC1 0 0 �I

266664
377775 < 0; ð34Þ

�I
ffiffiffiffiqp bC2

� �Ps

" #
< 0: ð35Þ

Moreover, if the above inequalities has a feasible solution, then the
matrices bAk; bBk; bCk; bDk; M; X and Z can be obtained. According to
(28)–(31), we will compute the controller by

DK ¼ bDK ;

CK ¼ ðbC K � DK CMÞH�1;

BK ¼ U�TðbBK � XTBDKÞ;

AK ¼ U�T bAK � XTAM � XTBDK CM � UTBK CM � XTBCK H
h i

H�1: ð36Þ
Remark 1. Note that the linear matrix inequality in (34) has com-
plex variables. According to [20], the LMI in complex variables can
be converted to an LMI of larger dimension in real variables. This

means that inequality S1 + jS2 < 0 is equivalent to S1 S2

�S2 S1

� �
< 0.

Based on the above method, inequality (34) can be split into

�-1-2Q �½bA�s PþWT �bB bCT
1

� �Q 0 0
� � �c2I 0
� � � �I

266664
377775þ j

0 �-cQ 0 0
-cQ 0 0 0

0 0 0 0
0 0 0 0

26664
37775< 0;

ð37Þ

which can be solved by
�-1-2Q � ½bA�s P þWT �bB bCT
1 0 �-cQ 0 0

� �Q 0 0 -cQ 0 0 0
� � �c2I 0 0 0 0 0
� � � �I 0 0 0 0
� � � � �-1-2Q � ½bA�s P þWT �bB bC T

1

� � � � � �Q 0 0
� � � � � � �c2I 0
� � � � � � � �I

2666666666666664

3777777777777775
< 0: ð38Þ
Remark 2. When we calculate the controller, the matrices U and
H, which cannot be directly obtained by the Theorem 2, are needed
and they should be chosen such that

UTH ¼ Z � XTM:

It is worth mentioning that the factorization of UTH can always be
achieved so that the invertible matrices U and H are deduced. In this
paper, the two invertible matrices are obtained by using the singu-
lar value decomposition approach.
3.2. Entire frequency case

In order to highlight the advantages of the finite frequency con-
troller, we design another dynamic output feedback controller in
the entire frequency domain, based on the method proposed in
the literature [5]. In this subsection, a dynamic output feedback
controller is designed over the entire frequency range, so that the
closed-loop system in (6) is asymptotically stable, and satisfies

sup
�1<x<þ1

kGðjxÞk1 < c; ð39Þ

while respecting the constraint in (5) within bound. The perfor-
mance index (39) can be further expressed as: under zero initial
condition, the closed-loop system guarantees that kzo1k2 < ckwk2

for all nonzero w 2 L2[0,1).

Corollary 1. Let positive scalars q, c be given. If there exists
symmetric matrix Pc > 0 satisfying

½PcA�s PcB CT
1

� �c2I 0
� � �I

264
375 < 0; ð40Þ

�I
ffiffiffiffiqp C2

� �Pc

" #
< 0; ð41Þ

then a stabilizing dynamic output feedback controller in the form of (3)
exists, such that

(1) the closed-loop system in (6) is asymptotically stable;
(2) under zero initial condition, the closed-loop system guarantees

that kzo1k2 < ckwk2 for all nonzero w 2 L2[0,1);
(3) the constraint in (5) is guaranteed with the disturbance energy

under the bound wmax = (q � V(0))/c2.
Proof. Since the results can easily be obtained, the proof has been
omitted here. h
Hereafter, we will show how to transform (40) and (41) into the
forms which can be solved directly. Partition the matrix Pc and its
inverse P�1

c in the form

Pc ¼
Yc Nc

NT
c #

� �
; P�1

c ¼
Xc Mc

MT
c #

� �
; ð42Þ

where ‘‘#’’ represents this position can be arbitrary. From the liter-
ature [5], there is no loss of generality in assuming that Nc and Mc

are invertible. Define

Dc1 ¼
Xc I

MT
c 0

� �
; Dc2 ¼

I Yc

0 NT
c

� �
;

and note that

PcDc1 ¼ Dc2: ð43Þ



Table 1
Model parameters of the active seat suspension system

Mass (kg) Damping coefficient (N s/m) Spring constant (N/m)

m1 15 c1 830 k1 31,000
m2 (1 + 7.8) c2 200 k2 18,000
m3 43.8 c3 1485 k3 44,130
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Define

Jc1 ¼ diagfDc1; I; Ig; Jc2 ¼ diagfI;Dc1g:

Pre- and post-multiplying (40) and (41) by Jc1 and Jc2 and their
transposes, respectively, and defining

Ae ¼ DT
c1PcAD2 ¼

AXc þ BbCc Aþ BbDcCbAc YcAþ bBcC

" #
;

Be ¼ DT
c1PcB ¼

B1

YcB1

� �
;

Ce1 ¼ C1Dc1 ¼ C1Xc þ D1
bCc C1 þ D1

bDcC
h i

;

Ce2 ¼ C2Dc1 ¼ C2Xc C2½ �;

Pc ¼ DT
c1PcDc1 ¼

Xc I

I Yc

� �
;

with the following linearizing changes of variables:bAc ¼ YcAXc þ YcBbDcCXc þ NcBK CXc þ YcBCK MT
c þ NcAK MT

c ;bBc ¼ YcBbDc þ NcBK ;bC c ¼ CK MT
c þ bDcCXc;bDc ¼ DK ; ð44Þ

we can give the following corollary:

Corollary 2. Let scalar c > 0 be given. If there exist matrices
Yc > 0,Xc > 0 and general matrices bAc; bBc; bCc; bDc satisfying

½Ae�s Be CT
e1

� �c2I 0
� � �I

264
375 < 0; ð45Þ

�I
ffiffiffiffiqp Ce2

� �Pc

" #
< 0: ð46Þ

then a stabilizing dynamic output feedback controller in the form of (3)
exists, such that

1) the closed-loop system in (6) is asymptotically stable;
2) under zero initial condition, the closed-loop system guarantees

that kzo1k2 < ckwk2 for all nonzero w 2 L2[0,1);
3) the constraint in (5) is guaranteed with the disturbance energy

under the bound wmax = (q � V(0))/c2.

Moreover, if inequalities (45) and (46) have a feasible solution, then
we will compute the controller by

DK ¼ bDc;

CK ¼ ðbCc � bDcCXcÞM�T
c ;

BK ¼ N�1
c ðbBc � YcBbDcÞ;

AK ¼ N�1
c ½bAc � YcAXc � YcBbDcCXc � NcBK CXc � YcBCK MT

c �M
�T
c : ð47Þ
10−2 10−1 100 101 102
0

10

Frequency (Hz)

Fig. 3. The curves of maximum singular values (blue line: open-loop system; red
line: system R2; black line: system R1). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Remark 3. As the same lines with Remark 2, the matrices Nc and
Mc, which cannot be directly obtained by the Corollary 2, should
satisfy

NcMT
c ¼ I � YcXc:

Here, we also obtain the two invertible matrices by using the singu-
lar value decomposition approach.
4. A design example

In this section, we will apply the above approach to design a dy-
namic output feedback H1 controller in the finite frequency do-
main based on the active seat suspension model described in
Section 2. The parameters are listed in Table 1:

Firstly, the closed-loop system with a dynamic output feedback
H1 controller in the finite frequency domain can be obtained,
based on the proposed method in Section 2, and we denote this
closed-loop system as system R1 for brevity. After solving the ma-
trix inequalities (33)–(35) for symmetric matrices P; Ps > 0; Q > 0
and general matrices W; bAk; bBk; bCk; bDk; M; X and Z with given
scalars c > 0 and -1 = 8prad/s (4 Hz), -2 = 16prad/s (8 Hz), g =
10000, the optimal guaranteed closed-loop H1 performance ob-
tained is

cmin ¼ 3:1718:

Then, the parameter matrices of the dynamic output feedback con-
troller which are shown in Appendix B, are obtained.

For subsequent comparison, we can get another closed-loop
system with a dynamic output feedback H1 controller over the en-
tire frequency range, according to the Corollary 2, and set it as sys-
tem R2. After solving the matrix inequalities in Corollary 2, we
obtain the optimal guaranteed closed-loop H1 performance:

cmin ¼ 4:8113:

The parameter matrices of the dynamic output feedback controller
in entire frequency domain are also listed in Appendix B.

In order to further illustrate the effectiveness of disturbance
suppression over the frequency band 4–8 Hz, the curves of maxi-
mum singular values are drawn in Fig. 3, where the open-loop sys-
tem (passive mode), the closed-loop system R1 (active finite
frequency mode) and the closed-loop system R2 (active entire fre-
quency mode), are compared. In Fig. 3, the dash-dot/dot/solid line
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represents the curve of maximum singular values in the open-loop
system/system R2/system R1, respectively. From Fig. 3, we can see
that the closed-loop system with finite frequency controller has
the least value of H1 norm over the frequency range 4–8 Hz, com-
pared with the passive system and the closed-loop system with an
entire frequency controller, which means an improved ride com-
fort has been achieved by the finite frequency controller.

Evaluation of the vehicle seat suspension performance is based
on the examination of two response quantities, that is, the body
acceleration of the specific frequency domain and the suspension
deflection between the cabin floor and seat frame. In order to
evaluate the suspension characteristics with respect to the two
performance requirements, both certain and random inputs are
employed in this simulation.
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time (s)
4.1. Deterministic simulation

It is assumed that the certain disturbance input has the follow-
ing form:
Fig. 5. The time-domain response of body acceleration (f = 8 Hz).

0
timedomain response
wðtÞ ¼

A sinð2pftÞ; if 0 6 t 6 T;

0; if t > T;



ð48Þ
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where A, f and T = 1/f represent the amplitude, frequency and period
of vibration, respectively. Assume A = 0.5 m, and the simulations are
given by setting the disturbance frequency as 4 Hz, 8 Hz, respec-
tively. The time-domain responses of body vertical acceleration
for the active seat suspension system are shown in Figs. 4 and 5,
where the solid/dot lines are the responses of body vertical acceler-
ation with the finite/entire frequency controller, and the dash-dot
lines respect the responses of the passive system. It is seen from
these two figures that the magnitudes for the body accelerations
are significantly decreased. Also, the accelerations for the finite fre-
quency controlled active seat suspension vanish faster than the
other two suspensions (passive suspension and entire frequency
controlled suspension). These results confirm the efficiency of the
finite frequency controller. In particular, reduced accelerations indi-
cate that the ride comfort is improved. In addition, Fig. 6 shows that
the ratio (z1 � z0)/zmax is below 1, which means the time-domain
constraint is guaranteed by the designed controller.
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Fig. 4. The time-domain response of body acceleration (f = 4 Hz).

Fig. 6. The time-domain constraint (the ratio (z1 � z0)/zmax).
4.2. Random signal simulation

Random vibrations are consistent and typically specified as ran-
dom process with a given ground displacement power spectral
density (PSD) of

GqðnÞ ¼ Gqðn0Þ
n
n0

� ��W

; ð49Þ

where n is the spatial frequency and n0 is the reference spatial fre-
quency of n0 = 0.1(1/m); Gq(n0) stands for the road roughness coef-
ficient; W = 2 is the road roughness constant. Related to the time
frequency f, we have f = nV with V for the vehicle forward velocity.
According to (49), we can obtain the PSD ground displacement:

Gqðf Þ ¼ Gqðn0Þn2
0

V
f 2 : ð50Þ

Correspondingly, PSD ground velocity is given by

G _qðf Þ ¼ ð2pf Þ2Gqðf Þ ¼ 4pGqðn0Þn2
0V ; ð51Þ

which is only related with the vehicle forward velocity. When the
vehicle forward velocity is fixed, the ground velocity can be viewed
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as a white-noise signal. Select the road roughness as Gq(n0) =
256 � 10�6 m3, which is corresponded to D Grade (Poor) according
to ISO2361 standards, to generate the random road profile. Set the
vehicle forward velocity as V = 45 km/h, and as expected, it is
observed from Fig. 7 that the closed-loop system R1 with finite
frequency controller realizes a better ride comfort, compared with
system R2 over the frequency range 4–8 Hz (since the system R1

has lower PSD body acceleration than system R2, and smaller PSD
body acceleration value results in better ride comfort), where PSD
body acceleration can be calculated by

Gz1 ðf Þ ¼ jGðjxÞj
2G _qðf Þ: ð52Þ

To check more random road profiles, we select the road rough-
ness as Gq(n0) = 16 � 10�6 m3 (B Grade, Good), Gq(n0) = 64 � 10�6

m3 (C Grade, Average), and Gq(n0) = 1024 � 10�6 m3 (E Grade, Very
Poor), respectively. From Fig. 8, it can be observed that system R1

realizes a better ride comfort in spite of the different road roughness.
With the series of simulations above, a fact is proved once

again: In the selected frequency domain, the finite frequency
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Fig. 7. The power spectral density of body acceleration (system R1: black line;
system R2: red line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 8. The power spectral density of body acceleration for four kinds of road
profiles.
method is superior to the entire frequency method in the capabil-
ity of disturbance suppression. The reason for this is that the finite
frequency approach concentrates control powers on the chosen
frequency domain and relaxes the restrictions of the other frequen-
cies, by imposing the frequency band constraints in the perfor-
mance indicators.

5. Concluding remarks

In this paper, a dynamic output feedback H1 controller for active
seat suspension system has been designed, which can suit people’s
physical structure to improve ride comfort as much as possible. The
key idea of designing the proposed controller is to use the generalized
Kalman–Yakubovich–Popov (GKYP) lemma and the linearizing
change of variables. In addition, the limited suspension stroke is guar-
anteed by considering this constraint in the controller design. The
simulation results show that the finite frequency controller achieves
better disturbance attenuation for the concerned frequency range,
and the performance constraint is also guaranteed.
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Appendix A

Lemma 1. (Projection Lemma [21]): Let C,K,H be given there exists
a matrix F satisfying

CFKþ ðCFKÞT þH < 0;

if and only if the following two conditions hold

C?HC?
T
< 0; KT?HKT?

T

< 0:
Lemma 2. (Reciprocal Projection Lemma [21]): Let P be any given
positive definite matrix. The following statements are equivalent:

(1) Wþ Sþ ST < 0:
The LMI problem
(2)
Wþ P � ½X�s ST þ XT

� �P

" #
< 0
is feasible with respect to X.
Lemma 3. (Generalized KYP Lemma [15]): Let matrices H,F andU,W
be given. Denote by Nx the null space of TxF, where Tx = [I � jxI].
The inequality

N�xHNx < 0; with x 2 ½-1 -2�;

holds if and only if there exist P, Q > 0, such that
F�ðU� P þW� QÞF < 0;
where

U ¼
0 1
1 0

� �
; W ¼

�1 j-c

�j-c �-1-2

� �
;

with -c = (-1 + -2)/2.



�3:6152 �0:48456
�34:351 �4:6028
172:32 23:006
101:65 14:557
3599:8 517:92

06 �2:7647� 105 �42379

3777777775
;

�1:2458� 109 6:8318� 1013

42471 �2:3069� 109

�55542 3:0825� 109

27823 �1:5497� 109

�7249:3 3:9391� 108

�16:182 �1:8669� 105

37777777775
;

W. Sun et al. / Mechatronics 21 (2011) 250–260 259
Appendix B

The resulting parameter matrices of the dynamic output
feedback controller in finite frequency domain:

AKf ¼

�4296:4 �393:53 �39:999 9:1582
�40632 �3765:5 �380:16 86:833

1:9431� 105 18942 1822:6 �444:89
1:7516� 105 5146:3 1120:1 �331:81
9:0486� 106 2:6433� 105 48716 �8547
1:122� 107 7:7148� 107 2:2219� 107 �2:4638� 1

2666666664

BKf ¼

215:73 �1:2399 �24:844
2049:1 �11:324 �235:43
�10195 124:01 1178:3
�6563:4 �677:16 �4434:9

�2:0397� 105 79809 �76930
�9:9297� 107 3:8266� 106 6:5246� 105

2666666664

3777777775
;

CKf ¼ 108 � ½�4:2293 � 0:38977 � 0:0396 0:00907

� 0:00358 � 0:000479�;

DKf ¼ 107 � ½2:1343 � 0:01226 � 0:24593�:

The resulting parameter matrices of the dynamic output feed-
back controller in entire frequency domain:

AKe ¼

�20:374 �1:2329� 107 3:6337� 107 1:4947� 108

�21:988 345:37 �865:65 �4272:2
30:146 �559:14 1064:8 5771:2
�15:166 281:88 �538:23 �2917:5
3:8183 �67:379 141:58 724:93
�0:00158 �0:54673 15:898 28:898

26666666664

BKe ¼ 109 �

0:8031 �1:8212 �1:0437
0:001678 0:004893 0:01803
0:026484 0:094028 0:074239
0:063187 0:022474 0:017233
�0:032487 �0:13933 0:082934
�0:28042 �0:16025 �0:005605

2666666664

3777777775
;

CKe ¼ ½4:7362� 10�6 26:998 � 79:575 � 327:32 2728:2

� 1:4961� 108�;

DKe ¼ ½�1855:3 3993:3 2285:8�:
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