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Abstract: This paper concerns the stabilization problem of a class of Markov jump linear
system (MJLS) with defective statistics of modes transitions in the continuous-time domain.
Differing from the recent separate studies on the so-called uncertain transition probabilities
(TPs) and partially unknown TPs, the defective statistics about modes transitions in this study
take the two situations into account in a composite way. The scenario is more practicable in
that it divides the TPs into three sets: known, uncertain and unknown. The necessary and
sufficient conditions for the stability and stabilization of the underlying system are obtained by
fully using the properties of the transition rate matrix (TRM) and the convexity of uncertain
domains. The monotonicity, in concern of the existence of the admissible stabilizing controller,
is observed when the unknown elements become uncertain and the intervals of the uncertain
ones become tighter. Numerical examples are provided to verify the theoretical findings.
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1. INTRODUCTION

As a class of stochastic hybrid systems, Markov jump lin-
ear system (MJLS) has been extensively studied in control
discipline over past decades, e.g., Boukas [2005], Costa
et al. [2005]. The systems contain a finite number of modes
which jump one another, and the jumps are determined
by a transition rate matrix (TRM) in continuous-time do-
main or transition probability matrix (TPM) in discrete-
time domain. The knowledge of TRMs or TPMs, as the
statistics of the modes transitions, are commonly assumed
to be available a priori. In recent years, to relax this
ideal assumption, increasing attention has been devoted to
the defective statistics about the modes transitions. Two
concepts in the studies have been proposed, the so-called
uncertain transition probabilities (TPs) and partially un-
known TPs, see for example, De Souza et al. [2006], Karan
et al. [2006], Xiong et al. [2005], and Wang et al. [2010],
Zhang and Boukas [2009], Zhang et al. [2008], respectively.
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In the context of uncertain TPs, the elements in a TRM
and TPM are considered to be uncertain within an interval
and two description ways are adopted, the norm-bounded
and the polytopic uncertainty description. Correspond-
ingly, the true elements in a TRM or a TPM are unknown
but belong to a given range with lower and upper bounds,
e.g., Xiong et al. [2005], or a given polytope with a certain
number of vertices, e.g., De Souza et al. [2006]. It should
be noted that such given information are assumed to
be provided in practical samplings and computations of
obtaining the statistics of the transitions. On the other
hand, the concept of partially unknown TPs assume that
some elements in a TRM or TPM are exactly known, and
others are not and also without any further given infor-
mation of the statistics, e.g., Zhang and Boukas [2009].
Therefore, it can be well understood that the concept of
partially unknown TPs is more general and the concept of
uncertain TPs is less conservative since more information
are “contrived” there.

In fact, the unknown elements in the context of partially
unknown TPs can be also viewed as uncertain within
their natural intervals (either norm-bounded or polytope
uncertainty description), which can be calculated by the
known elements and the properties that the sum of each
row is zero in a TRM or one in a TPM. Therefore, the
two concepts of the defective statistics are mathematically
interrelated. Nevertheless, from different viewpoints, they
lead to the studies on the underlying MJLSs with different
levels of available knowledge being reflected. Note that,
so far, these two lines of attacks to the defective statis-
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tics of modes transitions are still separate. However, a
more practicable scenario that designers may encounter
is that some elements are exactly known, some elements
are unknown and others are unknown but with tighter
intervals (not natural intervals) offered from statistics. It
also means that in the context of partially unknown TPs,
a part of unknown elements further become uncertain ones
with extra information contrived by either norm-bounded
or polytopic uncertainty description. The goal should be
sought for in practice, under the circumstance that the
exactly known TPs can not be obtained.

In this paper, the defective statistics about modes tran-
sitions take the uncertain TPs and partially unknown
TPs descriptions into account in a composite way. The
case is more practicable, where the elements in a TRM
or a TPM are divided into three sets: known, uncertain
and unknown. The necessary and sufficient conditions for
the stability and stabilization of the underlying system in
continuous-time domain are obtained by fully using the
properties of the TRM and the convexity of uncertain
domains. The monotonicity, in concern of the existence
of the admissible stabilizing controller, is observed when
the unknown elements become uncertain or the intervals
of the uncertain ones become tighter. The remainder of
the paper is organized as follows. Section II gives the
problem formulation. Section III is devoted to the main
results of the paper. The theoretical findings are verified
via numerical examples in Section IV and the paper is
concluded in Section V.

Notation: The notations used in this paper are fairly
standard, and can be found in the relevant literature of
MJLSs. We omit them here due to the space limit.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following continuous-time Markov jump lin-
ear systems (MJLSs), defined on a complete probability
space (Ω,F ,P):

ẋ(t) = A(rt)x(t) + B(rt)u(t) (1)
where x(t) ∈ Rn is the state vector and u(t) ∈ Rl is the
control input. The Markov stochastic process {rt, t ≥ 0},
taking values in a finite set I , {1, ..., N}, governs the
switching among the different system modes and has the
following mode transition probabilities:

Pr(rt+h = j|rt = i) =
{

λijh + o(h), if j 6= i
1 + λiih + o(h), if j = i

where h > 0, limh→0(o(h)/h) = 0 and λij ≥ 0 (i, j ∈ I,
j 6= i) stands for the switching rate from mode i at time t
to mode j at time t + h, and λii = −∑

j=1,j 6=i λij for all
i ∈ I. Thus, the Markov process transition rate matrix Λ
is defined by:

Λ =




λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N

. . .
λN1 λN2 · · · λNN




The set I contains N modes of the system (1) and for
rt = i ∈ I, the system matrices of the ith mode are
denoted by (Ai, Bi), which are real known with compatible
dimensions.

In this paper, the statistics about the transition rates
of the jumping process is considered to be defective.
Specifically, we assume that some elements in matrix Λ
are not exactly known. They may be uncertain within
given intervals offered from statistics, or they do not have
such available intervals. We coin the former as “uncertain”
elements, and the latter as “unknown” ones here. Then,
take a MJLS with 5 operation modes for example, the
transition rates matrix Λ may be as:



λ11 λ̂12 [λ13 λ13] λ̂14 [λ15 λ15]
λ̂21 λ̂ij [λ23 λ23] λ24 [λ25 λ25]
λ̂31 λ̂32 [λ33 λ33] λ̂34 λ35

λ̂41 λ̂42 λ̂43 λ̂44 λ45

[λ51 λ51] λ̂52 λ53 λ̂54 [λ55 λ55]




(2)

where ∀i × j ∈ I ∈ I, each unknown element is labeled
with a hat “ ˆ ”, and each uncertain element is denoted by
a range with lower and upper bounds λij and λij .
Remark 1. Note that for the unknown elements that we
named, they actually have their “natural intervals” which
can be readily calculated by the exactly known elements,
the intervals of uncertain elements and the property that
the sum of all the elements in each row of a TRM is zero.
The reason we sort the uncertain and unknown elements
here is that, although we cannot know some element
exactly, we may obtain a tighter interval for it, not only its
natural one. Therefore, the uncertain elements relatively
have more statistics knowledge contained in their updated
intervals.
Remark 2. Note also that it is intuitionistic to represent
the uncertain element by a range as shown in (2). However,
the ranges provided in statistics may be invalid in ensuring
the property of TRM. In addition, the interactive ranges of
more than two uncertain elements may lead to a situation
that the upper bounds of some intervals cannot be reached
simultaneously. The two cases are shown in Table 1,
respectively, taking the 1st row in (2) for example. It can
be seen that the description about the uncertain elements
by means of ranges with lower and upper bounds need be
adjusted to satisfy the property of the TRM.

the 1st row in TRM (2)
Case I [−0.7 λ̂12 [0.4 0.5] λ̂14 [0.4 0.6] ]

Case II [−1.1 λ̂12 [0.4 0.5] λ̂14 [0.4 0.7] ]

Table 1. Two invalid cases of the uncertain elements

Here, for the tractability of analysis and synthesis of
the underlying MJLS, we change the description of the
uncertain elements in Λ by ranges as shown in (2) to the
description by polytopic uncertainties as below, namely,
the uncertain elements in Λ belong to a polytope PΛ with
vertices Λr,∀r = 1, 2, · · · ,M, i.e.,

PΛ ,
{

Λ|Λ =
M∑

r=1

αrΛr;αr ≥ 0,
M∑

r=1

αr = 1

}
(3)

where Λr, r = 1, 2, · · · ,M, are given TRMs still containing
partially unknown elements. The means of description for
uncertain TPs can be referred to De Souza et al. [2006]
for more details. It is worth emphasizing that in (3), the
property of each TRM Λi holds and the property of TRM
Λ will be accordingly satisfied.
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For simplicity, ∀i ∈ I, we denote I = I(i)
K ∪ I(i)

UK∪ I(i)
UC as

follows:

I(i)
K , {j : λij is known},

I(i)
UK , {j : λ̂ij is unknown},
I(i)
UC , {j : λ̃ij is uncertain}, (4)

where each uncertain element is relabeled with a tilde
“ ˜ ”. Moreover, if I(i)

K 6= ∅ and I(i)
UC 6= ∅, it is further

described as

I(i)
K = (K1, ...,Kmi

), ∀1 ≤ mi ≤ N − 2

I(i)
UC = (U1, ...,Uni

), ∀1 ≤ ni ≤ N (5)

where Ks ∈ N+, s ∈ {1, 2, . . . , mi}, and Up ∈ N+, p ∈
{1, 2, . . . , ni} represents, respectively, the sth known ele-
ment and pth uncertain element with the index K

mi
and

Uni
in the ith row of TRM Λ. Also, we denote λ

(i)
K ,∑

j∈I(i)
K

λij , λ
(i)
UC ,

∑
l∈I(i)

UC
λ̃r

il, ∀r = 1, ...M throughout
the paper. Besides, if λii is unknown, it is essential to
supply a lower bound λ

(i)
d satisfying λ

(i)
d ≤ −(λ(i)

K + λ
(i)
UC).

Remark 3. It is straightforward that the case mi = N − 1
should be excluded from (5), which means that if we know
N − 1 elements, the remaining unknown elements can be
calculated via the property of TRM.

To describe the main objective more precisely, we now in-
troduce the following definition for the underlying system.
The more details can be referred to Boukas [2005] and the
references therein.
Definition 1. (Boukas [2005]) System (1) is said to be
stochastically stable if for u(t) ≡ 0 and every initial
condition x0 ∈ Rn and r0 ∈ I, the following holds,

E

{∫ ∞

0

‖x(t)‖2 |x0, r0

}
< ∞

The purposes of this paper are to derive the stochastic
stability criteria for the system (1) when the statistics
of the transition rates is defective as stated in (3) and
to design a state-feedback stabilizing controller such that
the resulting closed-loop system is stochastically stable.
The mode-dependent controller is considered here with the
form:

u(t) = K(rt)x(t) (6)
where Ki (∀rt = i ∈ I) is the controller gain to be
determined.

The following Lemma on the stochastic stability of systems
(1) is recalled for the developments in the later Section.
Lemma 1. (Boukas [2005]) System (1) is stochastically
stable if and only if there exists a set of symmetric and
positive-definite matrices Pi, i ∈ I satisfying

AT
i Pi + PiAi + P(i) < 0 (7)

where P(i) ,
∑

j∈I λijPj

3. STABILITY AND STABILIZATION

In this section, we will derive the stability and stabilization
results based on Lemma 1 for the underlying systems. We

first give the stability criteria for the unforced system (1)
with u(t) ≡ 0.

The following theorem presents a necessary and sufficient
condition on the stochastic stability of the considered
systems with defective TRMs (3).
Theorem 1. Consider the unforced system (1) with the
defective TRM (3). The corresponding system is stochas-
tically stable if and only if there exists a set of matrices
Pi > 0, i ∈ I such that ∀i ∈ I,

Ωi − λ
(i)
K Pj − λ

(i)
UCPj < 0,∀j ∈ I(i)

UK, if i ∈ I(i)
K ∪ I(i)

UC (8)

Ωi + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
K Pj − λ

(i)
UCPj < 0,

∀j ∈ I(i)
UK, if i ∈ I(i)

UK (9)

where Ωi , AT
i Pi + PiAi + P(i)

K + P(i)
UC with

P(i)
K ,

∑
j∈I(i)

K
λijPj ,P(i)

UC ,
∑

l∈I(i)
UC

λ̃r
ilPl

and λ
(i)
d represents a given lower bound of the unknown

diagonal element if i ∈ I(i)
UK.

Proof. We shall separate the proof into two cases, i ∈
I(i)
K ∪ I(i)

UC and i ∈ I(i)
UK, and bear in mind that system (1)

is stochastically stable if and only if (7) holds.

1) Case I: i ∈ I(i)
K ∪ I(i)

UC .

Note that λ
(i)
K +λ

(i)
UC ≤ 0 in this case, then we only need to

consider λ
(i)
K +λ

(i)
UC < 0 here, since λ

(i)
K +λ

(i)
UC = 0 means the

ith row of the vertices Λr, r = 1, 2, · · · ,M, is completely
known.

Now we can rewrite the left-hand side of (7) as

Θi , AT
i Pi + PiAi + P(i)

K +
∑

j∈I(i)
UK

λ̂ijPj

+
∑

l∈I(i)
UC

(∑M

r=1
αrλ̃

r
il

)
Pl

=
M∑

r=1

αr

{
AT

i Pi + PiAi + P(i)
K +

∑
l∈I(i)

UC
λ̃r

ilPl

+
∑

j∈I(i)
UK

λ̂ijPj

}

where the elements λ̂ij , ∀j ∈ I(i)
UK are unknown and∑M

r=1 αrλ̃
r
il, ∀l ∈ I(i)

UC represents the uncertain element
in the polytopic uncertainty description.

As
∑M

r=1 αr = 1 and αr can take value arbitrarily in [0, 1],
we know that Θi < 0 holds if and only if

AT
i Pi + PiAi + P(i)

K + P(i)
UC +

∑
j∈I(i)

UK
λ̂ijPj < 0 (10)

which can be further written as

Ωi − (λ(i)
K + λ

(i)
UC)

∑
j∈I(i)

UK

λ̂ij

−(λ(i)
K + λ

(i)
UC)

Pj < 0

By 0 ≤ λ̂ij

−(λ
(i)
K +λ

(i)
UC)

≤ 1 and
∑

j∈I(i)
UK

λ̂ij

−(λ
(i)
K +λ

(i)
UC)

= 1, we

know that the above inequality equals that
∑

j∈I(i)
UK

λ̂ij

−(λ(i)
K + λ

(i)
UC)

(
Ωi − (λ(i)

K + λ
(i)
UC)Pj

)
< 0 (11)
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Thus, for 0 ≤ λ̂ij ≤ −(λ(i)
K + λ

(i)
UC), (11) is equivalent to

Ωi − (λ(i)
K + λ

(i)
UC)Pj < 0, ∀j ∈ I(i)

UK, which implies that, in
the presence of both unknown elements λ̂ij and uncertain
elements λ̃ij , the system is stable if and only if (8) holds.

2) Case II: i ∈ I(i)
UK.

In this case, λ̂ii is unknown, λ
(i)
K + λ

(i)
UC ≥ 0 and λ̂ii ≤

−λ
(i)
K − λ

(i)
UC . Also, we only consider λ̂ii < −λ

(i)
K − λ

(i)
UC

here, since λ̂ii = −λ
(i)
K − λ

(i)
UC means the ith row of the

vertices Λr, r = 1, 2, · · · ,M is completely known.

Now the left-hand side of the stability condition in (7) can
be rewritten as

Θi , AT
i Pi + PiAi + P(i)

K +
∑

l∈I(i)
UC

(
M∑

r=1

αrλ̃
r
il

)
Pl

+λ̂iiPi +
∑

j∈I(i)
UK,j 6=i

λ̂ijPj

=
M∑

r=1

αr

(
Ωi + λ̂iiPi +

∑
j∈I(i)

UK,j 6=i
λ̂ijPj

)

Likewise, as
∑M

r=1 αr = 1 and αr can take value arbitrarily
in [0, 1], one has that Θi < 0 holds if and only if

Ωi + λ̂iiPi +
∑

j∈I(i)
UK,j 6=i

λ̂ijPj < 0

which can be rewritten as

Ωi + λ̂iiPi + (−λ̂ii − λ
(i)
K − λ

(i)
UC)

×
∑

j∈I(i)
UK,j 6=i

λ̂ij

−λ̂ii − λ
(i)
K − λ

(i)
UC

Pj < 0

Considering the fact 0 ≤ λ̂ij

−λ̂ii−λ
(i)
K −λ

(i)
UC

≤ 1 and
∑

j∈I(i)
UK,j 6=i

λ̂ij

−λ̂ii−λ
(i)
K −λ

(i)
UC

= 1, we know that the above

inequality equals that

∑
j∈I(i)

UK,j 6=i

λ̂ij

−λ̂ii − λ
(i)
K − λ

(i)
UC

(Ωi + λ̂iiPi

−λ̂iiPj − λ
(i)
K Pj − λ

(i)
UCPj) < 0 (12)

which means that (12) is equivalent to ∀j ∈ I(i)
UK, j 6= i,

Ωi + λ̂iiPi − λ̂iiPj − λ
(i)
K Pj − λ

(i)
UCPj < 0 (13)

As λ̂ii is lower bounded by λ
(i)
d , we have

λ
(i)
d ≤ λ̂ii < −λ

(i)
K − λ

(i)
UC

which implies that λ̂ii may take any value between [λ(i)
d , δ−

λ
(i)
K − λ

(i)
UC ] for some δ < 0 arbitrarily small. Then λ̂ii can

be further written as a convex combination
λ̂ii = βδ − βλ

(i)
K − βλ

(i)
UC + (1− β)λ(i)

d

where β takes value arbitrarily in [0, 1]. Thus, (13) holds
if and only if ∀j ∈ I(i)

UK, j 6= i,

Ωi +
(
δ − λ

(i)
K − λ

(i)
UC

)
(Pi − Pj)

− λ
(i)
K Pj − λ

(i)
UCPj < 0 (14)

and

Ωi + λ
(i)
d Pi − λ

(i)
d Pj − λ

(i)
K Pj − λ

(i)
UCPj < 0 (15)

simultaneously hold. Since δ is arbitrarily small, (14) holds
if and only if

Ωi +
(
−λ

(i)
K − λ

(i)
UC

)
(Pi − Pj)

− λ
(i)
K Pj − λ

(i)
UCPj < 0

i.e.,
Ωi − λ

(i)
K Pi − λ

(i)
UCPi < 0

which is the case in (15) when j = i, ∀j ∈ I(i)
UK. Hence (13)

is equivalent to (9).

Therefore, in the presence of both unknown elements and
uncertain elements, one can readily conclude that the
system is stable if and only if (8) and (9) hold for i ∈ I(i)

K ∪
I(i)
UC and i ∈ I(i)

UK, respectively.

Now let us consider the stabilization problem of system (1)
with control input u(t). The following theorem provides
necessary and sufficient conditions for the existence of a
mode-dependent stabilizing controller with the form (6).
Theorem 2. Consider system (1) with the defective TRM
(3). If there exist matrices Xi > 0 and Yi, ∀i ∈ I, such
that 


Φi + Ξi T (i) ziXi

∗ −X (i) 0
∗ ∗ −Xj


 < 0,∀j ∈ I(i)

UK (16)

where

Ξi ,





λiiXi, if i ∈ I(i)
K

λ̃r
iiXi, if i ∈ I(i)

UC
λ

(i)
d Xi, if i ∈ I(i)

UK
Φi , AiXi + XiA

T
i + BiYi + Y T

i BT
i

zi ,





√
−λ

(i)
K − λ

(i)
UC , if i∈I(i)

K ∪ I(i)
UC√

−λ
(i)
d − λ

(i)
K − λ

(i)
UC , if i ∈ I(i)

UC
and

X (i) , diag
[
XK1 , . . . , XKmi

, XU1 , . . . , XUni

]
,

T (i) ,
[√

λiK1Xi, . . . ,
√

λiKmi
Xi,

√
λ̃r

iU1
Xi,

. . . ,
√

λ̃r
iUni

Xi

]
(17)

and ∀s ∈ {1, 2, . . . , mi}, Ks 6= i, ∀p ∈ {1, 2, . . . , ni},
Up 6= i, with Ks and Up described in (5). Then there exists
a mode-dependent stabilizing controller of the form in (6)
such that the closed-loop system is stochastically stable.
In addition, if the conditions of (16) have a solution, an
admissible controller gain is proposed by

Ki = YiX
−1
i (18)

Proof. Consider system (1) with the control input (6) and
replace Ai by Ai + BiKi in (8)–(9), respectively. Then, if
i ∈ I(i)

K , performing a congruence transformation to (8) by
P−1

i , we can obtain
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(Ai + BiKi) P−1
i − P−1

i (λ(i)
K + λ

(i)
UC)PjP

−1
i

+ P−1
i (P(i)

K + P(i)
UC)P

−1
i + P−1

i (Ai + BiKi)
T

< 0(19)

Setting Xi , P−1
i , Yi , KiXi and considering (17), by

Schur complement, one can obtain that (19) is equivalent
to the case i ∈ I(i)

K in (16). In a similar way, if i ∈ I(i)
UC

or i ∈ I(i)
UK, the corresponding cases in (16) can be worked

out from (8) or (9), respectively. Meanwhile, due to Yi =
KiXi, the desired controller gain is given by (18).
Remark 4. The defective TRMs (3) considered in Theo-
rem 2 contain both uncertain TPs and unknown TPs.
If we consider one of them, i.e., only uncertain TPs or
partially unknown TPs exist in (3), then we can obtain two
corollaries from Theorem 2, respectively, in what follows.
Corollary 1. Consider system (1) with partially unknown
TPs, i.e., I(i)

UC = ∅ in the defective TRM (2). If there exist
matrices Xi > 0 and Yi, ∀i ∈ I, such that




Φi + λiiXi T (i)
K

√
−λ

(i)
K Xi

∗ −X (i)
K 0

∗ ∗ −Xj


 < 0,

∀j ∈ I(i)
UK, if i ∈ I(i)

K (20)




Φi + λ
(i)
d Xi T (i)

K

√
−λ

(i)
d − λ

(i)
K Xi

∗ −X (i)
K 0

∗ ∗ −Xj


 < 0,

∀j ∈ I(i)
UK, if i ∈ I(i)

UK (21)

where Φi , AiXi + XiA
T
i + BiYi + Y T

i BT
i and

X (i)
K , diag

[
XK1 , . . . , XKmi

]
,

T (i)
K ,

[√
λiK1Xi, . . . ,

√
λiKmi

Xi

]

and ∀s ∈ {1, 2, . . . , mi}, Ks 6= i, with Ks described
in (5). Then there exists a mode-dependent stabilizing
controller of the form in (6) such that the closed-loop
system is stochastically stable. In addition, if (20)–(21)
have a solution, an admissible controller gain is proposed
by (18).
Corollary 2. Consider system (1) with uncertain TPs, i.e.,
I(i)
UK = ∅ in the defective TRM (3). If there exist matrices

Xi > 0 and Yi, ∀i ∈ I, such that[
Φi + Ξi T (i)

∗ −X (i)

]
< 0 (22)

where

Ξi ,
{

λiiXi, if i ∈ I(i)
K

λ̃r
iiXi, if i ∈ I(i)

UC
and Φi,X (i) and T (i) are denoted in Theorem 2, and
∀s ∈ {1, 2, . . . , mi}, Ks 6= i, ∀p ∈ {1, 2, . . . , ni}, Up 6= i,
with Ks and Up described in (5). Then there exists a
mode-dependent stabilizing controller of the form in (6)
such that the closed-loop system is stochastically stable.
In addition, if the conditions of (22) have a solution, an
admissible controller gain is proposed by (18).
Remark 5. The proofs for Corollaries 1 and 2 can be
obtained from Theorem 2 by removing the set of uncertain

elements, or the set of unknown elements, respectively. It is
straightforward that the case of defective statistics and the
corresponding MJLSs addressed in Theorem 2 are more
general.
Remark 6. Note that in Theorem 2, the level of the de-
fective statistics varies as the unknown elements become
uncertain or the intervals of the uncertain elements become
tighter. Then it is natural to conjecture that there will
exist a monotonicity with respect to the system perfor-
mance (or the existence of the stabilizing controllers in this
paper), as the level of the defective TRMs varies, which we
will verify via numerical examples in next section.

4. NUMERICAL EXAMPLES

In this section, two numerical examples are provided to
show the validity of the theoretical results. In particular,
we will also verify the monotonicity that we conjectured
when the levels of the defective statistics varies. For the
conciseness, we denote the sth row of the rth vertices in the
polytope uncertainty description as Λs

r, ∀s = 1, .., N,∀r =
1, ..., M .
Example 1. Consider MJLS (1) with four operation modes
and the following system matrices:

A1 =
[−27 −13.5

18 12.6

]
, A2 =

[
28.8 −5.9
18 25.2

]
,

A3 =
[−3.6 1.8

18 18

]
, A4 =

[
18 −4.1
18 −19.8

]
,

B1 =
[

1
0

]
, B2 =

[
0
−1

]
,

B3 =
[

1
−2

]
, B4 =

[−1
1

]
.

The TRM (3) consists of two vertices Λi, i = 1, 2, where
Λ1

1 and Λ1
2 are given by

Λ1
1 = [−3.3, λ̂12, 1.6, λ̂14],Λ1

2 = [−3.3, λ̂12, 3.2, λ̂14] (23)
and other rows Λs

1, Λs
2, s = 2, 3, 4 are same with elements

∀r = 1, 2

Λ2
r = [λ̂21, λ̂22, λ̂23, 0.5],

Λ3
r = [λ̂31, 0.6,−2.5, λ̂34],

Λ4
r = [λ̂41, λ̂42, λ̂43,−1.2] (24)

For convenient verifications, we rewrite the true TRM Λ
from (23) and (24) as the following description:

Λ =

Mode 1 2 3 4

1 −3.3 λ̂12 [1.6, 3.2] λ̂14

2 λ̂21 λ̂22 λ̂23 0.5
3 λ̂31 0.6 −2.5 λ̂34

4 λ̂41 λ̂42 λ̂43 −1.2

where the uncertain element λ̃13 has a range [1.6, 3.2]. The
purpose here is to verify the monotonicity with respect to
the lower bound λ

(2)
d of the unknown element λ̂22 when the

range of the uncertain elements λ̃13 become tighter. Such
a change of the range can be realized by assigning different
values for λ̃13 in Λ1

r, r = 1, 2. Firstly, it can be checked that
the open-loop system is unstable based on Theorem 1 for
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any λ
(2)
d ∈ (−∞,−0.5]. Then by Theorem 2, together with

using the bisection method, we can obtain the minimal
value of λ

(2)
d , below which the stabilizing controller will

not exist. Table 2 gives the different minimal values of
λ

(2)
d corresponding to different ranges of λ̃13.

system λ̂13 λ
(2)
d min

1 [1.6, 3.2] −6.2682
2 [1.9, 2.9] −7.6323
3 [2.2, 2.6] −9.8732

Table 2. Minimal values of λ
(2)
d

From Table 2, a monotonicity can be observed that when
the range of λ̃13 becomes tighter, the value of λ

(2)
d min be-

comes smaller, which means that the admissible stabilizing
controller exists for the system within a larger domain of
unknown element λ̂22. The controller gains are omitted
here due to space limit.
Example 2. Consider MJLS (1) with four operation modes
and the following system matrices:

A1 =
[−22.5 −12.6

18.7 11.9

]
, A2 =

[
27.2 −5.8
18 25.2

]
,

A3 =
[−3.4 1.7

15.3 17

]
, A4 =

[
17 −3.9
17 −18.7

]
,

B1 =
[

1.1
0

]
, B2 =

[
0
−1

]
,

B3 =
[

1
−2.1

]
, B4 =

[−0.9
1

]
.

and the TRM is considered as

Λ =

Mode 1 2 3 4

1 −1.3 λ̂12 λ̂12 λ̂12

2 λ̂21 λ̂22 λ̂23 0.5
3 λ̂31 λ̂32 −4.5 λ̂34

4 λ̂41 λ̂42 λ̂43 −1.2

(25)

The purpose of this example is to verify the monotonicity
when unknown elements become uncertain ones. We assign
the unknown elements λ̂31 and λ̂32 with different ranges,
which can be realized by further giving different vertices
based on Λ in (25). By Theorem 2 and bisection method,
we can obtain the minimal values of λ

(2)
d below which the

stabilizing controller does not exist for the system. The
computation results are listed in Table 2. It can be seen
that when more unknown elements become uncertain, the
minimal value of λ

(2)
d decreases, which means the solutions

of stabilizing controllers are feasible within a larger domain
of λ̂22.

system λ̂31 λ̂32 λ
(2)
d min

1 ? ? −3.7930
2 [1.6, 2.0] ? −5.4071
3 [1.6, 2.0] [1.8, 2.2] −8.5680

Table 3. Unknown elements turning into uncertain ones

In Examples 1 and 2, the validity of the obtained Theorem
2 is demonstrated, that is, the stabilizing controllers for the
underlying systems exist despite the defective statistics of
modes transitions, which contains both uncertain elements
and unknown elements in the corresponding TRM. In
addition, the level of defective statistics about modes tran-
sitions decreases, as the the ranges of uncertain elements
are tighter, or as the unknown elements become uncertain,
i.e., with further contrived ranges. It can be concluded
from Tables 2 and 3 that more knowledge on the statistics
of modes transitions are available to the designers, the
relevant system performance (the existence of admissible
stabilizing controllers here) will be improved.

5. CONCLUSIONS

In this paper, the problem of the stabilization of MJLSs
with a class of defective description of mode transitions
was investigated. The defective statistics about modes
transitions in the study composite the recent separate
studies, the uncertain TPs and partially unknown TPs and
the underlying systems are more general accordingly. By
using the property of TRM and the convexity of uncertain
domains, the necessary and sufficient conditions for the
stability and stabilization of the underlying system are
obtained. A monotonicity, in concern of the existence of
the admissible stabilizing controller, is observed when the
unknown elements become uncertain or the ranges of the
uncertain ones become tighter. It is expected that the idea
and approaches behind the paper can be used to other
analysis and synthesis problems of the underlying systems.
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