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Abstract: This paper aims to obtain a Bounded Real Lemma (BRL) for a class of Markov
jump linear systems (MJLSs) with time-varying transition probabilities (TPs) in discrete-time
domain. The time-varying character of TPs is considered as piecewise-constant and the variation
of TP matrices is subject to average dwell time (ADT) switching, i.e., the number of switches
in a finite interval is bounded and the average time between two consecutive switchings of
TP matrices is not less than a constant. Combining the Lyapunov function approach and the
linear matrix inequality technique, a BRL for the underlying system is derived in order to check
whether the corresponding system is stochastically stable and has a guaranteed H∞ noise-
attenuation performance index scheduled based on the variation of TP matrices. A numerical
example is provided to demonstrate that the method obtained in this paper is a significant
improvement over previous one.

Keywords: Average dwell time (ADT), H∞ performance analysis, Linear matrix inequality,
Markov jump linear systems (MJLSs), Piecewise-Constant TPs.

1. INTRODUCTION

Markov jump systems (MJSs) rapidly developed and flour-
ished due to the powerful modeling ability of Markov pro-
cess in many fields, such as aerospace industry, de Farias
et al. [2005], communication systems, Zhang et al. [2005],
Seiler and Sengupta [2005], biology and medicine, Chan
et al. [2002], Ullah and Wolkenhauer [2007], economics,
Fingleton [1997], Gonzalez et al. [2005], etc. The system
is hybrid in essence, where the continuous and discrete
dynamics are, respectively, described by a set of classi-
cal differential (or difference) equations and an attached
Markov stochastic process (or Markov chain) governing
the transitions among them. As a crucial factor, the tran-
sition rates (TRs) or transition probabilities (TPs) in
the Markov process or Markov chain determine system
behavior and performance. Over the past decades, the
system has been mainly studied upon the assumption
that the TRs (or TPs) are certain and completely known.
Recent investigations considering MJSs with uncertain or
partially unknown TRs (or TPs) have also been reported
in literature, see for example, Zhang et al. [2008], Xiong
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et al. [2005], Zhang and Boukas [2009]. Yet, so far, almost
all the available analysis and synthesis results assume that
the Markov processes or Markov chains in the underlying
systems are time-invariant.

However, the assumption is not true in practice. A typical
example can be found in Internet-based Networked control
systems (NCS). It is well-known that the packet dropouts
and channel delays in Internet can be modeled by Markov
chains and the resulting systems are accordingly the tra-
ditional MJSs, Seiler and Sengupta [2005], Zhang et al.
[2005], Krtolica et al. [1976]. But for the Internet nowa-
days, the delays or packet losses are distinct at different
periods, the resulting TP matrix may vary throughout the
running time of the modeled system. For another example,
we refer to the VTOL (vertical take-off landing) helicopter
system, Narendra and Tripathi [1973], where the airspeed
variations involved in the system matrices are ideally mod-
eled as time-invariant Markov chain, de Farias et al. [2000].
But all the probabilities of the jumps among multiple
airspeeds will not be fixed when external environment (like
weather) changes. The similar phenomenon also arises in
other practical systems, Krtolica et al. [1976].

The existence of variations in TRs (or TPs) challenges the
traditional control approaches for MJSs, and the integrity
in control theory suggests the desirability of allowing the
TRs (or TPs) to vary. By time-varying character, we mean
that the TR or TP matrix in the Markov process or
Markov chain changes depending on time. In fact, there
are some burgeoning studies on the stability of a class of
MJLSs with uncertain TRs (TPs), where the uncertainties
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can be thought as the ones from either modeling or the
variations in practice, e.g., Xiong et al. [2005], Karan et al.
[2006], Boukas et al. [1999] . Accordingly, the analogous
knowledge for uncertain dynamic systems is absorbed
and the robust methodologies are adopted to solve the
norm-bounded or polytopic uncertainties likely existing in
the TRs. It is also observed in Xiong et al. [2005] that
uncertainties in TRs may lead to instability, which directly
means if TRs vary in the system running period, the
desired stability or performance might be lost. The method
avoids the measurement of the variations in TRs, but
probably conservative. Therefore, it is incomplete to only
study the uncertain TPs. Recently, a class of time-varying
Markov processes (or chains) subject to deterministic
switching signal have been proposed, Bolzern et al. [2010].
It implies that the TRs (or TPs) therein are varying but
invariant within an interval. The so-called MJLSs with
piecewise-constant TPs is supposed to contain a finite set
of consecutive time-invariant Markov processes (or chains)
with different intervals, longer or shorter. Hence, the whole
system can be viewed as a switched system, where each
subsystem is the usual MJS. An illustration about a
possible variation of TP matrices subject to deterministic
switching signal and the corresponding possible path of
modes evolution is given in Fig. 1.

On the other hand, in the area of determined switched
systems, rapid progress has shown that another class of
switching signals, the so-called average dwell time(ADT)
switching is more general and flexible than the DT switch-
ing, Liberzon [2003], in related stability analyses and con-
trol syntheses. The reason is that, in the ADT switching,
the number of switches in a finite interval is bounded and
the average time between consecutive switching is not less
than a constant, Hespanha and Morse [1999], Liberzon
[2003]. However, in Bolzern et al. [2010], the switching
signal is still restricted to the DT switching, the advanced
ADT switching rule has not been included to investigate
the control problems of the MJLSs with piecewise-constant
TPs.

In this paper, we investigate the H∞ performance analysis
problem for a class of discrete-time MJLSs with piecewise-
constant TPs. The variation of piecewise-constant TP ma-
trices is determined by a high-level ADT switching signal.
Utilizing the Lyapunov function, a BRL in discrete-time
of the underlying system is derived. The remainder of the
paper is organized as follows. In section 2, the basic defini-
tions on stability and H∞ performance of the underlying
system are represented, and the H∞ performance analysis
problem is formulated. The BRL is derived in Section 3.
A numerical example for illustration is given in Section 4
and we conclude the paper in Section 5.

Remark 1. It is noticed that in this paper the high-
level switching signal determining the variation of TPs
is a typical slow switching signal, the ADT switching.
However, in Zhang [2009], the variations of TPs are subject
to two types of switching signal: the fast switching and
the stochastic switching. Therefore, the variation of TPs
considered in this paper is essentially different from those
in Zhang [2009].

Notation: The notation used in this paper is standard.
The superscript “T” stands for matrix transposition, Rn

denotes the n dimensional Euclidean space, the notation
∥·∥ refers to the Euclidean vector norm; N+ represents the
sets of positive integers. l2[0,∞) is the space of summable
infinite sequence over [0,∞) and for w(k) ∈ l2[0,∞), its

norm is given by ∥w∥2 =
√∑∞

k=0
|w(k)|2. For notation

(Ω,F ,P), Ω represents the sample space, F is the σ-
algebra of subsets of the sample space and P is the prob-
ability measure on F . E [·] stands for the mathematical
expectation and for z(k) ∈ l2 ((Ω,F ,P), [0,∞)) , its norm

is given by ∥z∥E2
=

√
E
[∑∞

k=0
|z(k)|2

]
. In addition, in

symmetric block matrices or long matrix expressions, we
use * as an ellipsis for the terms that are introduced by
symmetry and diag{· · · } stands for a block-diagonal ma-
trix. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations. The
notation P > 0 (≥ 0) means P is real symmetric positive
(semi-positive) definite, Mi is adopted to denote M(i) for
brevity. I and 0 represent respectively, identity matrix and
zero matrix.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Fix the probability space (Ω,F ,P) and consider the fol-
lowing discrete-time MJLS:

x(k + 1) = A(rk)x(k) + E(rk)w(k)
z(k) = C(rk)x(k) + F (rk)w(k)

(1)

where x(k) ∈ Rnx is the state vector, w(k) ∈ Rnw

is the disturbance input which belongs to l2[0,∞) and
z(k) ∈ Rnz is the output vector. The stochastic process

{rk, k ≥ 0}, taking values in a finite set I , {1, . . . , N},
governs the switching among the different system modes
with the following mode transition probabilities:

Pr(rk = j|rk = i) = π
(σk)
ij

where π
(σk)
ij ≥ 0, ∀i, j ∈ I denotes the transition

probability (TP) from mode i to mode j at time k ∈
[kl, kl+1), and

∑N
j=1 π

(σk)
ij = 1 for all i ∈ I. Here, by k,

we mean that the TPs are time-varying, meanwhile, we
assume that σk is a piecewise constant function of time k.
Furthermore, the TP matrix Π(σk) can be defined by:

Π(σk) =


π
(σk)
11 π

(σk)
12 · · · π

(σk)
1N

π
(σk)
21 π

(σk)
22 · · · π

(σk)
2N

...
...

. . .
...

π
(σk)
N1 π

(σk)
N2 · · · π

(σk)
NN

 (2)

The set I contains N modes of system (1) and for
rk = i, i ∈ I, the system matrices of the ith mode are
denoted by (Ai, Bi, Ci, Di, Ei, Fi), which are real known
with appropriate dimensions.

As a high-level signal to determine the time-varying prop-
erty of rk, we assume that σk vary in another finite set
M , {1, . . . ,M} , M > 1, without loss of generality.
Specifically, σk is a given initial condition sequence, s
denoting σk for simplicity. At an arbitrary time k, σ may
be dependent on k or x(k), or both, or other logic rules. For
a switching sequence k0 < k1 < k2 < ..., σ is continuous
from right everywhere and may be either autonomous or
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controlled. When k ∈ [kl, kl+1), we say that the σth
kl

TP
matrix is active.

To more precisely describe the main objective, we also
introduce the following definitions for system (1).

Definition 1. (Hespanha and Morse [1999]) For switching
signal σ and any K > k > k0, let Nσ(K, k) be the
switching numbers of σ over the interval [k,K). If for any
given N0 > 0 and τa > 0, we have Nσ(K, k) ≤ N0 + (K −
k)/τa, then τa and N0 are called average dwell time and
the chatter bound, respectively.

Definition 2. (Boukas [2005]) System (1) is said to be
internally stochastically stable if for u(k) ≡ 0, w(k) ≡
0, k ≥ 0 and every initial condition x0 ∈ Rnx and r0 ∈
I, σ0 ∈ M, the following holds:

E

{ ∞∑
k=0

∥x (k) ∥2|x0, r0, σ0

}
< ∞

Definition 3. (Boukas [2005]) Given a scalar γ > 0, system
(1) is said to be stochastically stable and has an H∞ noise
attenuation performance index γ, if it is stochastically
stable and under zero initial condition, ∥z∥E2

< γ ∥w∥2
hold for all nonzero wk ∈ l2[0,∞).

Thus, the problem to be addressed in the paper is: consider
system (1) with piecewise-constant TP matrices (2), derive
a BRL for the system with an admissible ADT condition
to check whether the system is stochastically stable and
achieve a guaranteed H∞ noise-attenuation performance
scheduled based on the variation of TP matrices.

Before proceeding further, we present the following result
on the H∞ noise-attenuation performance analysis for
system (1) in Costa et al. [2005] for later use.

Lemma 1. System (1) with time-invariant TPs is inter-
nally stochastically stable and has a guaranteed H∞ per-
formance index γ if and only if there exists a set of
symmetric and positive-definite matrices Pi,∀rk = i, i ∈ I
satisfying: −P̄i 0 P̃iAi P̃iEi

∗ −I Ci Fi

∗ ∗ −Pi 0
∗ ∗ ∗ γ2I

 < 0

where P̃i ,
N∑
j=1

πijPj .

3. BOUNDED REAL LEMMA

In this section, we will first develop a BRL for a class of
MJLSs with uncertain TPs, and further give a BRL for the
underlying system with piecewise-constant TPs subject to
ADT switching.

In Lemma 1, we have assumed that the TP was free
of uncertainties, which is not real in practice since it is
always difficult to get the exact TP matrix. In the following
proposition, we will try to take account of the uncertainties
that may influence the TPs and establish equivalent result
to Lemma 1. The uncertainties we will consider for the TP
matrix are of polytopic ones.

As described in De Souza et al. [2006], it is assumed that
TP matrix Π = [πij ]N×N belongs to a given polytope PΠ

with vertices Πm,m = 1, 2, . . . s, i.e.,

PΠ ,
{
Π|Π =

s∑
m=1

αmΠm; 0 < αm < 1,

s∑
m=1

αm = 1

}
where αm means the uncertain parameter, s denoting the
total number of the vertices, is a given positive integer,
and Πm is known TP matrix whose expression is given by:

Πm =


πm
11 πm

12 · · · πm
1N

πm
21 πm

22 · · · πm
2N

...
...

. . .
...

πm
N1 πm

N2 · · · πm
NN


Furthermore, adopting the robust methodologies, a BRL
for a class of MJLSs with uncertain TPs can be derived,
which is obtained in the following proposition.

Proposition 1. Consider system (1) with polytopic uncer-
tain TPs. If there exist matrices Pi > 0,∀rk = i, i ∈ I,
such that the following holds for all admissible uncertain-
ties:

Ψm
i ,

−P̃m
i 0 P̃m

i Ai P̃m
i Ei

∗ −I Ci Fi

∗ ∗ Pi 0
∗ ∗ ∗ −γ2I

 < 0, (3)

where P̃m
i ,

N∑
j=1

πm
ijPj , then the system is stochastically

stable and has a guaranteed H∞ performance index γ.

Proof. Construct a Lyapunov function as

V (xk, rk) = xT
k P (rk)xk

Then, from the point (xk = x, rk = i), ∀rk = i, i ∈ I, we
know that for system (1):

∆V (xk, i) =E [V (xk+1, rk+1) |x, i]− V (xk, i)

= xT
k+1

 N∑
j=1

s∑
m=1

αmπm
ijPj

xk+1 − xT
k Pixk

=
s∑

m=1

αm{xT
k

[
AT

i P̃m
i Ai − Pi

]
xk

+2xT
kA

T
i P̃m

i Eiwk + wT
k E

T
i P̃m

i Eiwk}

where P̃m
i ,

N∑
j=1

πm
ijPj ,

∑s
m=1 αmπm

ij represents the un-

certain element in the polytopic uncertainty description.

As
∑s

m=1 αm = 1 and αm can take value arbitrarily in

[0, 1], when w (k) ≡ 0, if AT
i P̃m

i Ai − Pi < 0, one has
∆V (xk, i) < 0. Following a similar vein in the proof of
Theorem 1 in Boukas and Liu [2001], it can be shown
that E

{∑∞
k=0 ||xk||2x0, r0

}
< ∞, that is, the system is

stochastically stable. By Schur complement, AT
i P̃m

i Ai −
Pi < 0 is equivalent to[

−P̃m
i P̃m

i Ai

∗ −Pi

]
< 0 (4)

Now, to establish the H∞ performance analysis criterion
for system (1), consider the following performance index:
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J , E

{ ∞∑
k=0

[
zTk zk − γ2wT

k wk

]}
under zero initial condition, V (xk, i) |k=0 = 0, and we have

J <
∞∑
k=0

[
zTk zk − γ2wT

k wk +∆V (xk, i)
]
=

∞∑
k=0

ζTk Φ
m
i ζk

where ζk ,
[
xT
k wT

k

]T
and

Φm
i ,[
AT

i P̃m
i Ai − Pi + CT

i Ci AT
i P̃m

i Ei + CT
i Fi

∗ −γ2
i I + ET

i P̃m
i Ei,s + FT

i Fi

]
By Schur complement, (3) guarantees Φm

i < 0, which
means J < 0, i.e., ∥z∥E2

< γ ∥w∥2. Therefore, against

the arbitrary variation, we conclude that system (1) is
stochastically stable and has a prescribedH∞ performance
if (3) holds, which completes the proof. �
Remark 2. Note that (4) can be seen as the counterpart,
in the discrete-time domain, of the stable condition de-
rived in Boukas [2005]. Regardless the information of the
variation of TP matrices, the approach may be probably
conservative.

Taking the information on the variation of TP matrices
into account, we can derive a less conservative H∞ per-
formance analysis criterion. In the following theorem, the
BRL for system (1) scheduled based on the variation of
TP matrices is given.

Theorem 2. Consider system (1) and let 0 < α < 1
and µ ≥ 1 be given constants. If there exist matrices
Pi,s > 0,∀σk = s, s ∈ M, rk = i, i ∈ I, such that
∀(i, j) ∈ I × I, i ̸= j,

Pi,s <µPj,s (5)

Ψi,s ,

−P̃i,s 0 P̃i,sAi P̃i,sEi

∗ −I Ci Fi

∗ ∗ −(1− α)Pi,s 0
∗ ∗ ∗ −γ2

i I

 < 0, (6)

with P̃i,s ,
N∑
j=1

πs
ijPj,s, then the system is stochastically

stable and has a guaranteed H∞ performance index γs =
max{γi} for any switching signal with ADT satisfying

τa > τ∗a = − lnµ/ ln ᾱ (7)

Proof. Construct a Lyapunov function as the following
quadratic form:

V (xk, rk, σk) = xT
k P (rk, σk)xk

Then, we have

∆V (xk, i, s) =E [V (xk+1, rk+1, σk) |x, i, s]− V (xk, i, s)

= xT
k+1

 N∑
j=1

πs
ijPj,s

xk+1 − xT
k Pi.sxk

= xT
k

[
AT

i P̃i,sAi − Pi,s

]
xk

+2xT
kA

T
i P̃i,sEiwk + wT

k E
T
i P̃i,sEiwk

≤−αxT
k Pi,sxk

Assuming wk ≡ 0, adding up △V (xk, i, s) from kl to
k and taking expectations, then by some mathematical
operations, we have

E [V (xk+1, rk+1, s) |xkl
, rkl

, σkl
]

≤ (1− α)
(k−kl) E [V (xkl

, rkl
, σkl

)] (8)

Since (5) holds at switching instant kl, we have

E [V xkl
, rkl

, σkl
] ≤ µE

[
V xkl

, rkl
, σkl−1

]
(9)

Together with (8) and (9), one obtains

E [V (xk, rk, σk) |xk0 , rk0 , σk0 ]

≤ (1− α)
(k−kl) µE

[
V
(
xkl

, rkl
, σkl−1

)
|xk0 , rk0 , σk0

]
≤ · · ·
≤ (1− α)

(k−k0) µNσ(k0,k)E [V xk0 , rk0 , σk0 ]

≤ (1− α)
(k−k0) µN0+

k−k0
τa E [V (xk0 , rk0 , σk0)]

= µN0 (1− α)
(k−k0) µ

k−k0
τa E [V (xk0 , rk0 , σk0)]

= µN0e(k−k0)[ln(1−α)+ 1
τa

lnµ]E [V (xk0 , rk0 , σk0)] (10)

If ADT satisfies (7), we have

ln (1− α) +
1

τa
lnµ < 0

that is,

eln(1−α)+ 1
τa

lnµ < 1
Then, let ε , eln(1−α)+ 1

τa
µ and c , µN0 , (10) is equal to

E [V (xk, rk, σk) |xk0 , rk0 , σk0 ] ≤ cεkE [V (xk0 , rk0 , σk0)]

Hence, we have

E

Nσ(K,k)∑
k=0

V (xk, rk, σk) |xk0 , rk0 , σk0


≤ c

(
1 + ε+ · · ·+ εNσ(K,k)

)
V (xk0 , rk0 , σk0)

=
c
(
1− εNσ(K,k)+1

)
V (xk0 , rk0 , σk0)

1− ε
that is,

lim
Nσ(K,k)→∞

E

Nσ(K,k)∑
k=0

V (xk, rk, σk) |xk0 , rk0 , σk0


≤ cV (xk0 , rk0 , σk0)

1− ε
Defining

M (xk0 , rk0 , σk0) ,
(

min
i∈I,s∈M

λminPi,s

)−1
cV (xk0 , rk0 , σk0)

1− ε

since

V (xk, rk, σk) = xT
k P (rk, σk)xk

≥ xT
k

(
min

i∈I,s∈M
λminPi,s

)
xk

which means

lim
Nσ(K,k)→∞

E

Nσ(K,k)∑
k=0

∥x (k) ∥2|xk0 , rk0 , σk0


≤M (xk0 , rk0 , σk0) < ∞
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then the system is stochastically stable.

Hence, if ∆V (xk, i, s) + αV (xk, i, s) < 0, combining with
(5) and (7), we have E

{∑∞
k=0 ||xk||2|x0, r0

}
< ∞, that is,

the system is stochastically stable.

On the other hand, by Schur complement, denoting Ωi,s ,
AT

i P̃i,sAi − (1− α)Pi,s, (6) equals to[
Ωi,s + CT

i Ci AT
i P̃iEi + CT

i Fi

∗ −γ2
i I + ET

i P̃i,sEi + FT
i Fi

]
< 0 (11)

It follows from (11) that

E

{
ζT

[
Ωi,s + CT

i Ci AT
i P̃i,sEi + CT

i Fi

∗ −γ2
i I + ET

i P̃i,sEi + FT
i Fi

]
ζ

}
< 0

where ζ ,
[
xT
k wT

k

]T
. Denoting Γ(d) , zTd zd − γ2

i w
T
d wd,

we have

E [V (xk+1, rk+1, σk) |x, i, s]
≤ (1− α)E (V (xk, rk, σk))− E (Γ(k)) (12)

Sum up (12) from k0 to k and denote ᾱ , 1 − α, yields
∀σk = s, s ∈ M,

E {V (xk, rk, s)|xk0 , rk0 , s}

≤ ᾱk−k0E {V (xk0 , rk0 , s)} −
∑k−1

d=k0

ᾱk−d−1E (Γ(d))

One has E {V (xk0 , rk0 , s)} = V (xk0 , rk0 , s) = 0 and
E {V (xk, rk, s)|xk0 , rk0 , s} ≥ 0, under zero condition, thus∑k−1

d=k0

ᾱk−d−1E (Γ(d)) ≤ 0

Since E
(
wT

d wd

)
= wT

d wd, denoting ᾰ , ᾱk−d−1, we have∑k−1

d=k0

ᾰE
(
zTd zd

)
≤

∑k−1

d=k0

ᾰγ2
i w

T
d wd

Therefore,

∑∞

k=k0

∑k−1

d=k0

ᾰE
(
zTd zd

)
≤

∑∞

k=k0

∑k−1

d=k0

ᾰγ2
i w

T
d wd

⇔
∑∞

d=k0

∑∞

k=d
ᾰE

(
zTd zd

)
≤

∑∞

d=k0

∑∞

k=d
ᾰγ2

i w
T
d wd

⇔
∑∞

d=k0

1

αᾱ
E
(
zTd zd

)
≤

∑∞

d=k0

1

αᾱ
γ2
i w

T
d wd

⇔
∑∞

d=k0

E
(
zTd zd

)
≤

∑∞

s=k0

γ2
i w

T
d wd

As a result, for system (1) with sth TP Matrix, we
know the H∞ performance index is not greater than γi.
Therefore, we conclude that system (1) is stochastically
stable for any switching signal satisfying (7) and has a
guaranteed H∞ performance index γs = max{γi}. �

4. A NUMERICAL EXAMPLE

In this section, a numerical example will be given to show
the validity and potential of our developed theoretical
results in the discrete-time case.

Example 1. Consider MJLS (1) with two operation modes
and the following data:

A1 =

[
0.88 −0.05
0.4 −0.72

]
, A2 =

[
−0.8 0.16
0.8 0.64

]
,

C1 = [ 0.2 0.1 ] , C2 = [−0.1 0.2 ] ,

E1 = [ 0.7 1.3 ] , E2 = [−1.1 0.9 ] ,

F1 = 0.3, F2 = −1.1

The piecewise-constant TP matrices are given as:

TP1 =

[
0.1 0.9
0.1 0.9

]
, TP2 =

[
0.8 0.2
0.9 0.1

]
Our purpose here is to derive a BRL and find out admissi-
ble switching signals for the system to check whether the
system is stochastically stable with an H∞ disturbance
attenuation performance. The data of H∞ performance
computed by using different approaches are listed in the
following table.

Table 1. H∞ performance indices

Methods τ∗a Minimum γs
Proposition 1 − 7.9774
Theorem 1

µ = 1.01, α = 0.01
0.99 3.0211

Theorem 1
µ = 1.01, α = 0.0025

3.9752 2.9582

In the above example, it can be seen from the comparison
in Table 1 that, with further modeling of Markov process
for the variation of TR or TP matrices, the improvement of
Theorem 1 over Proposition 1 in concern of conservatism
is quite obvious. This is resulted from the fact that
Proposition 1 without extra knowledge on the variation of
the TP matrices has to consider all the TPs. In addition, it
is easily observed that the slower the TP matrices vary, the
less conservative H∞ performance index can be achieved.

5. CONCLUSIONS

The H∞ performance analysis problem for a class of
discrete-time MJLSs with piecewise-constant TPs is inves-
tigated. The variations on the piecewise-constant TPs are
subject to ADT switching. Utilizing a special construction
of Lyapuov function, a BRL for the underlying system is
derived in order to check whether the system is stochas-
tically stable and has a guaranteed H∞ noise-attenuation
performance index scheduled based on the variation of TP
matrices. A numerical example demonstrates the theoret-
ical finding. The idea and method behind this paper can
be thereby used to deal with the other problems of the
underlying system such as H∞ control, H∞ estimation,
H∞ model reduction, etc.
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Fig. 1. A variation of TP matrices subject to deterministic
switching signal and the corresponding possible path
of modes evolution
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