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Abstract— Trajectory optimization is becoming increasingly
powerful in addressing motion planning problems of under-
actuated robotic systems. Numerous prior studies solve such
a class of large non-convex optimal control problems in a
hierarchical fashion. However, numerical accuracy issues are
prone to occur when one uses a full-order model to track
reference trajectories generated from a reduced-order model.
This study investigates an approach of Alternating Direction
Method of Multipliers (ADMM) and proposes a new splitting
scheme for legged locomotion problems. Rigid body dynamics
constraints and other general constraints such as box and
cone constraints are decomposed to multiple sub-problems in
a principled manner. The resulting multi-block ADMM frame-
work enables us to leverage the efficiency of an unconstrained
optimization method–Differential Dynamical Programming–to
iteratively solve the optimizations using centroidal and whole-
body models. Furthermore, we propose a Stage-wise Acceler-
ated ADMM with over-relaxation and varying-penalty schemes
to improve the overall convergence rate. We evaluate and
validate the performance of the proposed ADMM algorithm
on a car-parking example and a bipedal locomotion problem
over rough terrains.

I. INTRODUCTION

Trajectory optimization approaches have been investigated
extensively in the field of dynamic legged locomotion [1]–
[3]. However, the optimal control problem of underactuated
robots with high degrees of freedom (DoFs) commonly
suffers from the curse of dimensionality, non-convexity,
and intractable computation complexity. To address these
issues, a majority of existing results employ a hierarchical
approach: firstly solve the locomotion problem based on
a reduced-order model such as linear inverted pendulum
[4] or centroidal model [5]; then employ a whole-body
model to track reference trajectories generated from the
reduced-order model. Via this hierarchy, the complexity of
optimization problems reduces significantly, and successful
implementations have been achieved in [3], [6]. However, the
mismatch between simplified and whole-body models often
leads to severe tracking problems and even locomotion falls,
given that the simplified model does not have a knowledge
of how the angular momentum affect full-body motions.

Solving trajectory optimizations in a distributed and it-
erative manner provides an alternative direction to address
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such a mismatch across different models. The rationale of
alternatively solving centroidal and whole-body models is
initially proposed in [7]. Recently, the work of [8] leverages
Alternating Direction Method of Multipliers (ADMM) to
decompose the original optimal control of a locomotion
problem into two sub-blocks iteratively, which minimizes
their local cost functions. Multiple coupling constraints are
introduced to achieve dynamics consensus between the cen-
troidal and whole-body models. However, the above works
share two common drawbacks: (i) the power of using a
splitting scheme such as ADMM for locomotion dynamics
decomposition has not been exploited to its full potential; (ii)
the stopping criterion (or equivalently convergence criterion)
is not clearly defined. Thus, the feasibility of the whole-body
motions is not always guaranteed, although they claim that
the algorithm can converge within a few iterations. In our
study, we will analyze three ADMM variants and propose
an accelerated method in a stage-wise fashion. A stopping
criterion will be clearly defined to generate feasible whole-
body motions.

Distributed optimization algorithms such as ADMM have
numerous variants regarding specific applications and re-
quired convergence rates. A classical ADMM algorithm is a
special case of Douglas-Rachford splitting methods [9], and
is formulated in [10] for the first time to solve an optimiza-
tion problem that is separable into two sub-problems with
a consensus constraint. This algorithm guarantees a global
convergence upon the premise that the sub-problems are
closed, proper, and convex while the augmented Lagrangian
has a saddle point (see [10], Sec. III). A natural extension
to this method is a Gauss-Seidel multi-block ADMM, which
has been successfully evaluated in numerous real-world prob-
lems [11], [12]. Although the general multi-block ADMM is
not guaranteed to converge [13], the study in [14] proves
a sub-linear convergence rate under specific assumptions
on convexity and a bounded Lagrangian multiplier coeffi-
cient. Non-convex problems have also been studied in [15],
where the convergence is merely guaranteed under specific
conditions on objectives and penalty parameters. In this
study, we aim at exploiting the distributed structure of this
multi-block ADMM algorithm to solve legged locomotion
problems possessing a well-established dynamics structure.

A salient feature of our proposed ADMM algorithm is
to handle constraints in one designated sub-block while
allowing other sub-blocks to solve unconstrained optimiza-
tions via off-the-shelf solvers such as Differential Dynamical
Programming (DDP) or iterative Linear Quadratic Regu-
lator (iLQR). Recently, advanced DDP-type optimization
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approaches have been proposed to handle constraints. In [2],
[16], an additional quadratic program is solved in each time
step of the DDP backward pass. In [17], an Augmented
Lagrangian method is used to solve an unconstrained prob-
lem by converting constraints into penalty costs. Applying
ADMM methods to convex quadratic cost functions with
linear dynamics and box constraints is proposed in [18].
This work is extended to solve an optimization with cone
constraints in [19]. The study in [20] devises an outer loop
based on Sequential Convex Programming (SCP) and applies
consensus ADMM to handle constraints. Our strategy for
addressing constraints is to take advantage of the ADMM
distributed structure, and thoroughly decompose the whole-
body dynamics. We design a new block for handling ad-
ditional constraints without adjusting the same distributed
framework. Compared to the constrained problem of each
block solved by interior-point or active-set methods, the
DDP-type operator splitting scheme employed in our study
benefits from a low computational burden per ADMM iter-
ation [18]. The reason lies in that unconstrained trajectory
optimizations are solved for centroidal and whole-body mod-
els, respectively, leveraging the efficiency of DDP.

In light of the discussions above, our contributions are
summarized as follows: (i) proposing a novel distributed
optimization framework to decompose the large-scale, highly
complex optimization problem into multiple sub-problems,
inspired by multi-block ADMM and an operator splitting
method from [18], [19]; (ii) devising a Stage-wise Ac-
celerated ADMM (SWA-ADMM) with over-relaxation and
varying-penalty schemes which improve the convergence rate
than that of standard ADMM and its variants; (iii) providing
a general, parallelizable framework capable of handling more
dynamics and task constraints by introducing additional sub-
blocks. This framework is applicable to general robotic
systems involving Lagrangian rigid body and underactuated
dynamics.

II. PROBLEM FORMULATION

Free-floating rigid body dynamics are widely investigated
for modeling underactuated legged locomotion [21]–[23].
Given a sequence of predefined footsteps, we aim to generate
whole-body feasible motions for a bipedal walking robot.
With ground contact forces and underactuated dynamics, the
whole-body dynamics are expressed as:

H(q)q̈ + C(q, q̇) = Bu + JTc λ (1)

where q ∈ Rn is the generalized joint configuration for a
robot; u ∈ Rm is the control input; λ is the contact force of
the corresponding foot contact point. The matrix H ∈ Rn×n
is the inertia matrix, C ∈ Rn is the sum of gravitational,
centrifugal and Coriolis forces, B ∈ Rn×m is the selection
matrix, Jc is the stacked Jacobian matrix for foot contact
points.

Exploring the structure of Lagrangian dynamics in Eq. (1)
enables a straightforward decomposition. The first 6 rows
represent underactuated dynamics of the center-of-mass
(CoM) state while the remaining ones represent actuated

dynamics at the joint level. The decomposed dynamics are
formulated as:

mc̈ =
∑

j
λj +mg (2a)

Iθ̈ =
∑

j
(pj − c)× λj (2b)

H̄(q)q̈ + C̄(q, q̇) = u + J̄Tc λ (2c)

where Eqs. (2a) and (2b) define a centroidal momentum
model. The center of mass position, orientation and moment
of inertia are denoted by c, θ, and I. The jth contact point
is pj . The quantities for actuated joints are denoted by
H̄, C̄ and J̄c. We define s = (cT ,θT ,qT , ċT , θ̇T , q̇T )T

as the generalized state. The state of centroidal model
is expressed as scen = (cT ,θT , ċT , θ̇T )T and the one
for whole-body is swbd = (qT , q̇T )T . The control in-
puts for centroidal and whole-body models are contact
force λ and torque input u, respectively. A sequence
of state-control pairs represents a trajectory φ. We have
φwbd := (swbd[1, . . . , T ],u[1, . . . , T − 1]) and φcen :=
(scen[1, . . . , T ],λ[1, . . . , T − 1]) representing trajectories of
whole-body and centroidal models. This dynamic decompo-
sition has been investigated in [7] and [8] to facilitate solving
the optimization problem.

Based on dynamics decomposition for centroidal and
whole-body models, we formulate a general optimal control
problem:

min
φcen,φwbd

N∑
i=1

[
Lwbd(swbd[i],u[i]) + Lcen(scen[i],λ[i])

]
subject to H(q)q̈ + C(q, q̇) = Bu + JTc gλ(q, q̇,u)

(3a)

mc̈ =
∑

j
λj +mg (3b)

Iθ̈ =
∑

j
(pj − c)× λj (3c)

c = CoM(q) (3d)(
mċ

Iθ̇

)
= Ag(q)q̇ (3e)

λ = gλ(q, q̇,u) (3f)
s ∈ S, u ∈ U (3g)
gλj

(q, q̇,u) ∈ Fj , ∀j ∈ Icontact (3h)

where Lwbd and Lcen stand for local cost functions of whole-
body and centroidal models. A mapping from the generalized
state q to center of mass state c is expressed as CoM(·).
The centroidal momentum matrix is denoted as Ag [5]. The
function for computing contact forces of the whole-body
model is gλ(q, q̇,u) [24]. We use Icontact := {left, right}
to index contact phases.

Eqs. (3a), (3b) and (3c) are aforementioned dynamics
equations. Eqs. (3d), (3e) and (3f) are named as dynamics
consensus constraints to enforce consensus between whole-
body and centroidal models for center of mass state, linear
and angular momentum, and contact forces. Eqs. (3g) and
(3h) are additional constraints incorporated in this optimiza-
tion problem. This formulation is analogous to the one in [8]
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but solved using different ADMM algorithms introduced in
next sections. As a minor comment, in [8], the friction cone
constraint λj ∈ Fj is incorporated in the centroidal model
sub-block while we solve Eq. (3h) in the whole-body model.

III. PRELIMINARIES

In this section, we introduce the basic optimization formu-
lations of two Alternating Direction Method of Multipliers
(ADMM) variations.

A. Multi-block ADMM

ADMM algorithms solve optimization problems in a dis-
tributed manner. The classical ADMM is formulated in [10]
to solve an optimization problem that is separable into two
blocks with a linear coupling constraint. The optimization
problem can be written as:

min
x,z

f(x) + g(z) s.t. Ax +Bz = c (4)

where x and z are two sets of variables that construct a
separable objective.

Multi-block ADMM is a natural extension to a more
general case, where the objective function is separable into
N blocks (N ≥ 3):

min
x1,x2,...,xN

N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b (5)

where xi ∈ Rni , Ai ∈ Rm×ni , b ∈ Rm.
The augmented Lagrangian is expressed as:

Lρ(x1, . . . ,xN ,y) =

N∑
i=1

fi(xi) + yT (

N∑
i=1

Aixi − b)

+
ρ

2
‖
N∑
i=1

Aixi − b‖2
(6)

where y is a dual variable and ρ is an augmented Lagrangian
parameter. The constant term in Eq. (6) can be ignored to
derive a simplified augmented Lagrangian using a scaled dual
variable:

Lρ(x1, . . . ,xN ,w) =

N∑
i=1

fi(xi) +
ρ

2
‖
N∑
i=1

Aixi − b + w‖2

where wk = yk/ρ. The scaled form is compact and easier to
work with [10]. Similar to the standard ADMM, this multi-
block ADMM contains a sequential update for both primal
and dual variables:

xk+1
1 := arg min

x1

Lρ(x1,x
k
2 , . . . ,x

k
N ;wk) (7a)

. . .

xk+1
i := arg min

xi

Lρ(x
k+1
1 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
N ;wk)

. . . (7b)

xk+1
N := arg min

xN

Lρ(x
k+1
1 , . . . ,xk+1

N−1,xN ;wk) (7c)

wk+1 := wk + (

N∑
i=1

Aix
k+1
i − b) (7d)

B. Consensus ADMM

The consensus ADMM is a special case of multi-block
ADMM and solves the following optimization:

min
x̄,x1,x2,...,xN

N∑
i=1

fi(xi) + g(x̄)

s.t. xi = x̄ i = 1, . . . , N

(8)

where x̄ is a global set of decision variables and g is
a regularization function such as an indicator function to
penalize constraint violations of state decision variables.
Note that this type of consistency constraint can also be
applied to control decision variables. This indicator function
regarding a closed convex set C is defined as:

IC(x,u) =

{
0, (x,u) ∈ C
+∞, otherwise

(9)

where infinite values enforce convex constraints on states and
controls.

IV. DISTRIBUTED TRAJECTORY OPTIMIZATION

Multi-block ADMM is suitable for splitting the locomo-
tion problem in Sec. II into multiple blocks. In this section,
we will analyze and implement three ADMM variants and
compare their convergence performance. In particular, we
propose a novel accelerated multi-block ADMM method
and demonstrate the faster convergence rate of the proposed
methods.

A. Operator splitting of locomotion dynamics

By defining a set of state and control variable copies, we
use an indicator function and induced consistency constraints
to incorporate bounding inequality constraints in Eqs. (3g)
and (3h). Similar to the decision variables of centroidal
and whole-body sub-blocks, the newly-introduced decision
variables are denoted as φp = (s̄[1, . . . , T ], ū[1, . . . , T −
1], λ̄[1, . . . , T − 1]), where the subscription p denotes a
projection on certain admissible sets. By adding the third
sub-block, the optimal control problem in (3) is reformulated
as:

min
φcen,φwbd,φp

N∑
i=1

[
Lwbd(swbd[i],u[i]) + Lcen(scen[i],λ[i])

+ IS,U,F (s̄[i], ū[i], λ̄[i])
]

(10)

where IS,U,F is the indicator function of joint-limit, torque-
limit and friction cone constraint in Eqs. (3g) and (3h). The
coupling constraints in this study are defined as:

Definition 1 (Coupling constraints). Coupling constraints in
our multi-block framework are equality constraints connect-
ing decision variables from two distinct sub-blocks.

CoM(q) = c

Ag(q)q̇ =

[
mċ

Iθ̇

]
gλ(q, q̇,u) = λ

 dynamics consensus constraints

(11)
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s = s̄

u = ū

gλ(q, q̇,u) = λ̄

 projection consistency constraints

Definition 2 (Consistency constraints). Consistency con-
straints are the last three constraints of coupling constraints
in Definition 1 and make consensus between decision vari-
ables from two distinct sub-blocks.

The first three dynamics consensus constraints are analo-
gous to the work of Budhiraja et.al [8]. Distinct from their
splitting method incorporating the friction cone constraint
into the centroidal model sub-block, three more consistency
constraints are introduced in our study to form a projection
sub-block. As shown in Fig. 1, the local cost functions of
centroidal and whole-body sub-blocks and global projection
copies form a bipartite graph [10]. Each edge of this graph
denotes a coupling constraint between two sets of variables1.
The consistency constraints between local variables and
global projection copies ensure the former ones are inside
a desired convex set. For instance, s = s̄ corresponds to an
indicator function IS , ensuring s to stay within a convex
set S in Eq. (3g). Note that the friction cone constraint in
Eq. (3h) and contact force consensus constraint in Eq. (3f)
are redundant in our locomotion problem. Therefore we only
define a projection from gλ(q, q̇,u) to a global variable copy
λ̄.

Given the formulation above, we design a decomposition
method analogous to multi-block ADMM. Each of the cou-
pling constraints in Eq. (11) has an augmented Lagrangian
parameter ρi and a corresponding dual variable wi with
i ∈ I := {c, h, λ, j, t, f}. We define a set of primal residuals
ri for all the constraints in Eq. (11):

rc = CoM(q)− c

rh = Ag(q)q̇−
[
mċ

Iθ̇

]
rλ = gλ(q, q̇,u)− λ

rj = s− s̄

rt = u− ū

rf = gλ(q, q̇,u)− λ̄
(12)

The following steps solve each sub-problem and update
the dual variables iteratively in a scaling form.

Primal updates:

φk+1
cen := arg min

φcen

N∑
i=1

Lcen(φcen) +
∑

i=c,h,λ

ρi
2
‖ri + wk

i ‖22

(13a)

φk+1
wbd := arg min

φwbd

N∑
i=1

Lwbd(φwbd) +
∑
i∈I

ρi
2
‖ri + wk

i ‖22

(13b)

φk+1
p := arg min

φp

N∑
i=1

IS,U,F (φp) +
∑
i=j,t,f

ρi
2
‖ri + wk

i ‖22

(13c)

1For other underactuated robotic systems, we design different (i) variables
for global projection copies and (ii) edges between local and global variables
according to specific constraints in Eqs. (3g) and (3h)

Fig. 1. Structure of the splitting problem in Eqs. (10) and (11). The
left illustrates local objective terms for whole-body and centroidal models.
φwbd, φcen and φp are variable trajectories of the whole-body, centroidal
and projection sub-blocks respectively. The nodes in this graph denote
decision variables from each sub-block. Each black edge refers to a
consistency constraint while a red edge represents a nonlinear dynamics
consensus constraint. An edge with a dash line denotes another consistency
constraint but not implemented in our study.

Dual updates:

wk+1
c = wk

c + CoM(qk+1)− ck+1 (13d)

wk+1
h = wk

h +Ag(q
k+1)q̇k+1 −

[
mċk+1

Iθ̇k+1

]
(13e)

wk+1
λ = wk

λ + gλ(qk+1, q̇k+1,uk+1)− λk+1 (13f)

wk+1
j = wk

j + sk+1 − s̄k+1 (13g)

wk+1
t = wk

t + uk+1 − ūk+1 (13h)

wk+1
f = wk

f + gλ(qk+1, q̇k+1,uk+1)− λ̄k+1 (13i)

where the elements ri in Eqs. (13a)-(13c) are continuously
recomputed with updated decision variables over iterations.
Detailed expressions of ri are ignored due to limited space.
Eqs. (13a) and (13b) are only subject to centroidal and
whole-body dynamics respectively without any other addi-
tional constraints.

In this new operator splitting scheme, each sub-block of
the centroidal and whole-body models is an unconstrained
optimization problem and are both solved by DDP. Note
that in Eq. (13b), the contact constraint is incorporated in
the forward pass to obtain contact-consistent ground reaction
forces, which is similar to the approach in [24]. The whole-
body contact force gλ(q, q̇,u) is expressed as new state
variable. To cope with the constraints s ∈ S,u ∈ U and
λ ∈ F , the sub-block in Eq. (13c) reduces to a projection
operator on the admissible sets S, U and F :

φk+1
p := arg min

φp∈C

∑
i=j,t,f

ρi
2
‖ri + wi‖22

C := {(s̄, ū, λ̄)|s̄ ∈ S, ū ∈ U , λ̄ ∈ F}

which is interpreted as a simple saturation function. This
projection operator is capable of handling cone constraints
[10]. This subspace projection can be implemented more
efficiently (see [19] Sec. 4).

The whole iterative process is illustrated in Algorithm
1. Decision variables φ0

cen and φ0
wbd are warm-started to
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Algorithm 1 Multi-block ADMM solver for locomotion
1: φcen ← φ0

cen,φwbd ← φ0
wbd,φp ← φ0

p

2: wi ← w0
i , ρi ← ρ0

i , i = I
3: repeat
4: φcen ← DDP-centroidal(φcen,φwbd,φp,wi, ρi), i =

{c, h, λ}
5: φwbd ← DDP-wholebody(φwbd,φcen,φp,wi, ρi), i =

I
6: φp ← Projection(φwbd,φcen,wi, ρi) i = {j, t, f}
7: wi ← wi + ri i = I
8: until stopping criterion is satisfied

make each sub-block mutually solvable and the output from
previous ADMM iteration is used as a warm-start for the
current ADMM iteration.

B. Convergence analysis and stopping criteria

The convergence of our algorithm is not formally guar-
anteed due to highly nonlinear dynamics constraints and
nonlinear coupling constraints in Eq. (11). However, it is
realized that if dynamics consensus constraints are satisfied,
our multi-block operator splitting method reduces to a con-
sensus ADMM, whose convergence is guaranteed under mild
conditions [15]. In practice, multi-block operator splitting
methods are powerful and have a broad spectrum of appli-
cations for large-scale non-convex optimization problems.

To determine when the convergence is achieved, a stopping
criterion is designed for all the coupling constraints. We use
the l2-norm of primal residuals with a tolerance ε:

‖rki ‖2 ≤ ε
pri
i , i = I

where εpri are predefined positive scalars.
In practice, achieving high accuracy of all constraint resid-

uals is challenging yet unnecessary. For instance, constraints
related to walking robot contact forces often have large
values due to robot gravity. In that case, relatively large
residuals make these constraints difficult to satisfy the small
tolerance values in stopping criteria but do not significantly
affect the result accuracy. In this study, we suggest specifying
the primal tolerance to be on a similar order of magnitude
as the physical variable in each constraint. Meanwhile, a
maximum iteration is set up as one stopping criterion. If
the tolerances are relatively small, the ADMM sometimes
terminates by hitting the maximum iteration to avoids more
iteration runs without further cost reductions.

On the other hand, the local penalty costs sometimes do
not converge to appropriate tolerance values that guarantee
feasible whole-body motions. Although it is not easy to
explicitly assess the feasibility of generated whole-body
motions, we design an additional stopping criterion for the
local cost reduction to remedy the shortcoming of using
residual-only stopping criteria:

|Lkwbd − Lk−1
wbd| ≤ ε

cost (15)

where the local cost tolerance εcost plays a similar role as to
the cost reduction in DDP.

With predefined tolerances εpri and εcost, feasible motions
are generated for complex locomotion behaviors such as
walking over rough terrain. This type of locomotion be-
haviors usually requires more iterations to converge in the
context of the standard ADMM set-up.

C. ADMM variations for improving convergence rate
The overall operator splitting method can generate solu-

tions with moderate accuracy after the first few iterations
and solve large-scale problems effectively [18]. However,
a major defect of standard ADMM algorithms is its sub-
linear convergence rate leading to unsatisfactory accuracy.
To address this hurdle, we aim at an accelerated variant of
the ADMM method to achieve a faster convergence rate.

In our locomotion formulation, since the ADMM frame-
work we are using in Eq. (13) has nonlinear coupling
constraints among multiple sub-blocks, standard accelerated
methods with linear constraints are not directly applicable. In
addition, dynamics constraints in each sub-block are highly
nonlinear, resulting in a highly non-convex optimization
problem.

In this section, we first introduce multiple ADMM vari-
ations that improve the convergence rate. Based on these
variations, we study three modified ADMM methods, com-
pare their performance, and advocate an accelerated ver-
sion, which numerically improves the convergence rate of
consistency constraints in our multi-block operator splitting
method.

1) Over-relaxation: For a two-block ADMM, over-
relaxation is to introduce a new parameter α and replace
A1x

k+1
1 in Eq. (7b) by:

αA1x
k+1
1 − (1− α)(A2x

k
2 − b) (16)

where α ∈ (0, 2) is a relaxation parameter. In particular,
α < 1 denotes under-relaxation, while α > 1 denotes
over-relaxation. This scheme has been studied in [9], and
experiments have empirically shown that values of α ∈
[1.5, 1.8] improve the convergence.

2) Varying-penalty parameter: Another variation is to
adjust the penalty parameter ρ per iteration according to the
relative values of primal and dual residuals [10]. As such, the
convergence performance will be less sensitive to the initial
value of ρ. This varying-penalty parameter is defined as:

ρk+1 :=


τ incrρk if ‖rk‖22 > µ‖dk‖22
ρk/τdecr if ‖dk‖22 > µ‖rk‖22
ρk otherwise

(17)

where µ > 1, τ incr > 1, and τdecr > 1. The dual residual
dk for projection constraints are expressed by:

dkj = ρkj (s̄k − s̄k−1), dkt = ρkt (ūk − ūk−1),

dkf = ρkf (λ̄k − λ̄k−1)
(18)

Typically, the choices could be µ = 10 and τ incr = τdecr =
2. The essence of adapting penalty parameters in each
iteration is interpreted as maintaining the primal and dual
residuals within a factor µ of one another as they converge
to zero.
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3) Fast ADMM: Goldstein et al. [25] proposed a Fast
ADMM for the two-block problem based on a Nestorov
acceleration method [26]. The Fast ADMM has been proved
to guarantee a quadratic convergence rate under strong con-
vexity assumptions for each sub-block. A predictor-corrector
step is applied to achieve this acceleration, where new sets
of primal and dual variables are updated sequentially with a
varying coefficient (More details are provided in [25]).

However, the strong convexity assumption restricts this al-
gorithm to be only applicable for highly structured optimiza-
tion problems. Again, this algorithm does not apply to our
locomotion problem which contains centroidal and whole-
body non-linear dynamics. For the projection sub-block, it
has a non-smooth and non-convex saturation function.

Based on the ADMM variations aforementioned, we define
a Stage-wise Accelerated ADMM (SWA-ADMM) as below.

Definition 3 (SWA-ADMM). Stage-wise Accelerated
ADMM is defined as the multi-block ADMM based oper-
ator splitting method in Eq. (13), incorporating the over-
relaxation in Eq. (16) and varying-penalty in Eq. (17)
schemes in a stage-wise fashion to achieve an accelerated
convergence rate.

Convergence rate of the proposed SWA-ADMM outper-
forms that of the standard multi-block ADMM based oper-
ator splitting method in Eq. (13) under the condition that
ADMM variations are implemented appropriately. Empiri-
cally, applying the over-relaxation facilitates the convergence
rate during the first few iterations [18]. Meanwhile, adopting
a varying-penalty scheme enables us to achieve satisfactory
small primal residuals. However, there is a caveat to apply
them simultaneously. If the varying-penalty mechanism is
applied from the first iteration, the scaling parameters in
Eq. (17) possibly make the penalty cost coefficient ρ become
unreasonably large. Accordingly, the convergence of local
cost functions Lwbd and Lcen deteriorates and requires more
iterations.

With the caveat of applying over-relaxation and varying-
penalty schemes elaborated above, we propose to integrate
these two schemes into our multi-block framework in a stage-
wise fashion. In Algorithm 2, we use over-relaxation from
the beginning with α = 1.65. Then we apply the varying-
penalty and over-relaxation schemes simultaneously after
kth

sw iteration, such that the primal residual converges faster
without over-penalizing constraint violations during the first
few iterations. The performance of three ADMM variants
will be compared in the next section.

V. RESULTS

In this section, we evaluate the multi-block ADMM and
SWA-ADMM algorithms using a car-parking problem and
a kneed compass gait walker. The locomotion example is
implemented in a robotics optimization toolbox Drake [27].

A. Car-parking problem

The car-parking problem with bounded control inputs is
a well studied example in control-limited DDP [2] and

Algorithm 2 Stage-wise Accelerated ADMM solver
1: φcen ← φ0

cen,φwbd ← φ0
wbd,φp ← φ0

p

2: wi ← w0
i , ρi ← ρ0

i , i = I
3: repeat
4: φcen ← DDP-centroidal(φcen,φwbd,φp,wi, ρi)

i = {c, h, λ}
5: φwbd ← DDP-wholebody(φwbd,φcen,φp,wi, ρi)

i = I
6: φ′p ← α(s,u,λ) + (1− α)(s̄, ū, λ̄)
7: φp ← Projection(φ′p,wi, ρi) i = {j, t, f}
8: wi ← wi + ri i = I
9: if current iteration > ksw then

10: if ‖ri‖22 > µ‖di‖22 then
11: ρi = τ incrρi
12: else if ‖di‖22 > µ‖ri‖22 then
13: ρi = ρi/τ

decr

14: end if
15: end if
16: until stopping criterion is satisfied

TROSS [20]. This example enables us to benchmark the
performance of the proposed ADMM solvers. The operator
splitting for this system is only for a control-limit constraint,
and therefore a two-block ADMM problem is studied.

The car dynamics have a 4-dimensional state vector, x̂ =
(x, y, θ, v) where (x, y) is the car position, θ is the car angle
relative to the x-axis, and v is the velocity of front wheels.
Control inputs are the front wheel angle ω and acceleration
a, with limits of ±0.5 rad and ±2.0 m/s2, respectively. The
objective is to move the car from an initial state (1, 1, 3π

2 , 0)
to a parking goal state (0, 0, 0, 0).

In this example, we apply the same running cost and final
cost as the one in [2]. In SWA-ADMM set-up, the initial
Lagrangian parameter ρ is set as 0.01. Zero control inputs
are used as an initial guess. Dual variables are initialized as
zero. The varying-penalty parameters are set as µ = 10 and
τ incr = τdecr = 2 while ksw is set as 16. For the purpose
of benchmarking, our DDP uses the same parameters as the
ones in [2]. The resulting trajectories and the performances
for multiple ADMM variants are shown in Fig. 2.

Two observations are stated as below: (i) the generated car
trajectory of our SWA-ADMM solver is significantly distinct
from the one generated by control-limited DDP, indicating
a different descent path for these two methods. Also, our
method has a lower total cost after convergence than theirs.
We attribute this observation to the different descent path
induced by the ADMM algorithm; (ii) the SWA-ADMM
shows a better convergence rate compared with other ADMM
variants.

B. Locomotion problem

A kneed compass gait walker is used to evaluate our
proposed ADMM algorithms (see Fig. 3). This underactuated
walker is comprised of two legs and has three actuators in
total: one is a hip joint while the other two are knee joints.
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Fig. 2. (a) Comparison of parking trajectories and controls between our
ADMM optimizer and control-limited DDP [2]. The upper two figures are
our results while the bottom ones use control-limited DDP. The left column
displays parking trajectories after convergence while the right column
displays the control inputs. (b) Comparison of residuals between ADMM
variants. The blue line shows the proposed SWA-ADMM method.

The operator splitting method via ADMM aims at dynamics
consensus between reduced-order and whole-body models.

1) Cost function design: For the whole-body sub-block,
we use (i) augmented Lagrangian penalty costs, (ii) quadratic
costs to regularize torques and a final posture of the robot,
(iii) soft constraints for foot trajectories. For the centroidal
sub-block, contact forces and CoM velocities are regularized.
More sophisticated terms can be incorporated within each
sub-block as needed.

2) Flat terrain walking: We study a scenario of multiple
locomotion steps on flat ground. The ADMM optimization
is solved in a model-predictive-control fashion with one
walking step horizon. Time step is 0.01s and the horizon
has T = 50 time steps. We incorporate all six constraints
in Eq. (11) where the knee joint ranges from [0, π] and
the friction cone constraint has a friction coefficient 1. The
augmented Lagrangian parameters are: ρc = 104, ρh =
10−2, ρλ = 10−2, ρj = 10, ρt = 0.1 and ρf = 10−2. Fig. 4
(a) demonstrates residuals for all the coupling constraints.
The maximum ADMM iteration is set as 50. After around
15 iterations for each walking step, all the residuals and
local penalty costs converge to an acceptable accuracy. In
this example, an evaluation on torque-limit constraint for
different methods is shown in Fig. 4 (b), where our SWA-
ADMM method outperforms other ADMM variants. The
varying-penalty parameters are set as µ = 10, τ incr =
τdecr = 5 and the stage-wise iteration number ksw = 9.
The computation cost per ADMM iteration mainly comes
from the DDP solver for whole-body model. After the first
2-3 ADMM iterations, the number of DDP iterations within
each ADMM iteration only requires fewer than 10 to reach
a cost reduction on the order of magnitude of 10−5.

3) Rough terrain walking: We study a multiple-step lo-
comotion behavior over rough terrain. The augmented La-
grangian parameters and stopping criteria are set to be the
same as the ones for the flat terrain case. To illustrate the
consensus process, the CoM trajectories of centroidal and

Fig. 3. Walking sequence snapshot for rough terrain generated by the
proposed SWA-ADMM solver.

whole-body models at 2nd, 10th and 30th ADMM iterations
are shown in Fig. 4 (c). It is observed that after the first 2-3
ADMM iterations, the walker falls down, and the swing foot
hits stairs. We realize that although the residuals decrease
significantly, similar to the flat terrain case, the local penalty
costs are still large, indicating motion infeasibility. After
around 30 ADMM iterations for each walking step, the
constraint violation and local cost reduction are all within the
tolerances. A walking sequence on rough terrains is shown
in Fig. 3. Note that fewer ADMM iterations are required
if a better warm-start is applied. However, finding better
warm-start sometimes is not straightforward, especially for
locomotion over complex terrains.

One limitation of our SWA-ADMM method is that the
acceleration performance depends on the selection of the
initial augmented Lagrangian parameter ρ for each projection
consistency constraint. When the initial ρ is less than 1,
the SWA-ADMM method accelerates effectively. Overall,
our SWA-ADMM algorithm is less sensitive to the initial
parameter ρ compared to the non-accelerated version.

VI. CONCLUSIONS

This study proposes a distributed, high-accuracy trajec-
tory optimization for whole-body dynamic locomotion over
rough terrain. We propose a general and efficient framework
based on multi-block ADMM which splits the locomotion
trajectory optimization problem into three sub-blocks. Each
sub-block of centroidal and whole-body models solves an
unconstrained optimization using DDP, while a third pro-
jection block handles box and cone constraints. To improve
the convergence rate, a Stage-wise Accelerated ADMM is
proposed via over-relaxation and varying-penalty schemes.
A decent stopping criterion is designed to generate feasible
whole-body motions. In our experiments, we validate the
proposed splitting methods over flat and rough terrains.
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