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Abstract— Locomotion on low-friction surfaces is one of the
most challenging problems for bipedal walking. When a stance
foot moves and slips on the ground surface, the walker tries to
determine whether it is feasible to avoid falling and continue
walking. This study uses a simplified two-mass linear inverted
pendulum model to analyze the biped dynamics under foot-slip
conditions while maintaining closed-form solutions. Using the
model, we analytically calculate safe, recoverable, and falling
sets to determine whether the walker is able to recover towards
a stable position or the fall is inevitable. We present a set of
configurations which partition state space and determine the
recoverability of the walker. A simple center-of-mass controller
is introduced to re-gain the stability by allowing the walker to
recover from fall-prone configurations. One attractive property
of the developed closed-form expressions lies in feasibility for
real-time implementation as a basis for a high-level robust slip
recovery controller.

I. INTRODUCTION

Walking on a slippery surface presents a major chal-
lenge for biped walkers as it poses a risk for foot slip
and subsequent fall. Fall-induced injuries rank the second
largest contributor for economic burden for human walkers
in the US [1] and the largest when it comes to elderly [2].
It becomes imperative to develop an effective modeling
framework and predict slipping behaviors for fall-recovery
control. Numerous clinical studies have been conducted for
locomotion on slippery surfaces (e.g., [3]). Slip often occurs
on the stance leg immediately after the heel-strike and it can
be triggered as a result of change in terrain conditions [4].
The work in [5] present the parameters contributing towards
the onset of slip and predicting fall motion. To complement
the clinical studies, several models are presented to focus
on the slip of the stance foot immediately following a heel-
strike and analyze the simplified locomotion for recovery
quantification [6]–[8]. The slip experiments also include the
studies of shoe-ground interactions and wearable sensor-
based real-time slip detection [9], [10].
Simple models prove to be effective for capturing dy-

namical behaviors of a biped walker. One well-received
model in the field is the linear inverted pendulum model
(LIPM) [11]. This model consists of a single massless
telescopic leg and a single mass at the center-of-mass (CoM)
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and maintains a constant CoM height. Variants of the LIPM
have been reported and however all of them assume the mass
concentrated in a single point as well as a stationary foot-
ground contact. To relax the stationary foot assumption, the
mass ought to be not centered in a single point. A two-mass
model is presented in [12] to allow explicit modeling of
foot slip. The linear two-mass model yields a solution in a
closed form and it however does not allow the CoM to move
vertically. In [13], a non-linear model is presented to capture
both the horizontal and the vertical motion of the CoM.
However, the work in [13] is only capable to numerically
predict the stability region under slip and it is infeasible to
be used to analyze and predict the stable regions.
One primary goal of stability analysis for a biped walker

is to determine whether regaining stability is feasible under
foot slip, and if feasible, to further design the appropriate
control law to achieve a stable locomotion. Stability of a
biped walker is defined by various measures, including the
prominent one named as capture point [14], [15]. Built on
the concept of capturability, the results in [16] have shown
that two steps are sufficient for recovery under perturbation.
In addition to foot placement, stability can also be quantified
in terms of states to avoid a fall. The work in [17] present
a set of safe states and the optimal control algorithms using
a phase space manifold concept, whilst the study in [18]
shows the effects of different models on bipel walk stability.
The work presented in this paper is built on the ideas

of capturability and recoverable sets and also the phase-
space manifold for walking locomotion. We first extend
the two-mass LIPM that was orignally discussed in [12].
The stability and recovery regions are then proposed in the
phase-space manifold and the corresponding slip-recovery
control strategies are then discussed. We mainly focus on
the stability analyses and slip-recovery control design. The
main contributions of this work are twofold. We derive
closed-form solutions of the safety and recoverability sets
for both non-slip and slip locomotion scenarios, which has
not been reported previously. Second, the work provide a
systematic design of slip-recovery strategies on how to plan
foot placements and timing of the recovery step to regain
stability under foot slip perturbation.

II. DYNAMICS MODELS AND SOLUTION MANIFOLDS

In this section, we mainly introduce a two-dimensional
(2D) two-mass LIMP, similar to the one presented in [12].
Fig. 1 shows the schematic of the revised LIPM. The large
mass m1 is located at a constant height zc above the ground
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and represents the center of mass of the biped walker, while
m2 stands for the lower leg mass and does not move on
the ground during normal walking. The 2D location of the
mass m1 is denoted by (xc, zc) in the inertial frame, and xf

denotes the position of the foot contact point. At the contact
point, the ground reaction forces are denoted by Fx and Fy

in the horizontal and vertical directions, respectively. The
model includes the ankle torque actuation, which is modeled
equivalently as a change in the center-of-pressure (CoP) of
the walker. Variable u denotes the absolute CoP position in
the inertial frame. We also define ur as a distance of u from
the foot contact point, that is, ur = xf −u. Note that in the
case of unactuated system, we have ur = 0, i.e., u = xf .
Ankle torque has an upper limit and equivalently it results in
|ur| ≤ umax

r , where umax
r is the maximum actuation bound.

Fig. 1. Left: LIP model as related to human walker. Right: Details of a
two mass LIP model.

The governing dynamics equation for the moment balance
is derived and written as [12]

ẍc − ẍf =
r2
zc

(xc − u) +
r1g

zc
ur − Fx

m2
, (1)

where Fx = m1ẍc+m2ẍf , r1 = m1+m2

m1
and r2 = m1+m2

m2
,

i.e., 1
r1

+ 1
r2

= 1. By introducing δ = xc − xf and under
the assumption of no foot slip, that is, ẋf = ẍf = 0 and
Fx = m1ẍc, we have

δ̈ = ω2
n(δ + r1ur), (2)

where ωn =
√

g
zc
. For slip case, we assume the friction

relationship as Fx = μFy , where μ is the friction coefficient,
and then Eq. (1) becomes

δ̈ = ω2
s (δ + r1ur + μzc) . (3)

where ωs =
√

r2g
zc
. We next aim to solve the above dynamic

equations and derive the phase-space manifolds on which
the solutions reside. We consider the following three distinct
cases: (i) no foot slip, (ii) a general contact where slipping
acceleration is treated as a parameter, and (iii) a Coulomb
friction is considered.

For non-slip case, the reduced-order dynamics is obtained
from (2) and we consider the solution under a constant u r =
ur0 (constant) case, namely,

δ̈ = ω2
n(δ + r1ur0).

With initial conditions δ0 and δ̇0, the solution of the
above equation is obtained as δ(t) = δ̇0

ωn
sinh(ωnt) +

δ0 cosh(ωnt)−r1ur0. The solution manifold in the δ- δ̇ space
is obtained as

Mn : σ = (δ2− δ20)ω
2
n+ δ̇20 − δ̇2+2ω2

n(δ− δ0)r1ur0. (4)

Note that σ = 0 represents the nominal system dynamics in
the δ-δ̇ state space. Non-zero σ denotes a deviation from the
manifold Mn and σ represents the Riemannian distance to
Mn [17].
To generalize the above results to foot slip case, we treat

acceleration ẍf as a parameter and no friction model is
explicitly used. In the actuation-free case (i.e., ur = 0),
Eq. (1) is rewritten as

δ̈ = ω2
nδ − ẍf ,

where we express and use force Fx = m1δ̈+(m1 +m2)ẍf

to obtain the above equation. The invariant manifold of this
system is derived as:

δ2ω2
n + δ̇20 + 2δ0ẍf = δ20ω

2
n + δ̇2 + 2δẍf (5)

The manifold in (5) represents the generalized version of
the one given by (4) since the latter can be derived from the
former by non-slip conditions.
For slip case with friction coefficient μ, we consider a

constant control input ur = ur0 and rewrite (3) as

δ̈ = ω2
s (δ + μzc + r1ur0) , (6)

Similar to the first case, we obtain an analytical solution
δ(t) = δ̇0

ωs
sinh(ωst) + (δ0 + μz) cosh(ωst) − μzc − r1ur0

with initial conditions and then the manifold

Ms : σ = (δ2−δ20)ω
2
s+δ̇20−δ̇2+2ω2

s(δ−δ0) (μzc + r1ur0) .
(7)

Similarly, manifold Ms defined by σ in (7) represents the
Riemannian distance to the estimated locomotion trajectory
under foot slip.

III. RECOVERABILITY QUANTIFICATION

In this section, we present stability and recoverability sets
by using the phase-space manifolds that are defined in the
previous section.
We first introduce and extend the phase-space manifold

plot that is developed in [17] for non-slip walking to foot
slip case. Fig. 2 illustrates the phase portrait of the relative
CoM motion dynamics in the δ-δ̇ plane. We visualize and
plot the phase-space manifolds and therefore characterize
the stability and design slip-recovery strategies. Without a
loss of generality, we assume that the walker moves in the
positive x direction, i.e., the right-side movement. At the
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Fig. 2. Invariant manifolds (ur = 0) in the δ-δ̇ space for normal walking
Mn (top) and slippingMs (bottom) gait. The manifolds can be partitioned
into safe, denoted by green and falling, denoted by red.

onset of slip, the configuration of the initial state is defined
with ẋc, ẋf > 0 and δ < 0, that is, xc < xf .
In the δ-δ̇ plane, we partition the phase-space manifold

plot (i.e., σ curves shown in Fig. 2) safe and falling mani-
folds that are characterized by δ̇ > 0 and δ̇ < 0, respectively.
The separation curve between the safe and falling manifolds
are particularly helpful to identify the stable, recoverable and
fall-prone sets in the phase-space plane that will be defined
later in this section. We denote the separation curve in the
second quadrant of the δ- δ̇ plane as B.
To clearly describe the different regions in the δ- δ̇ plane,

we introduce the different boundaries. Let us first define
points set Cs = {(δ, δ̇) : δ = 0, δ̇ ≥ 0}. To facilitate
the following presentation, we also define the safety region
Rs = {(δ, δ̇) : δ̇ ≥ 0}. We define the regions Rj

i in the
δ-δ̇ plane, where the subscribe i = sl, n stands for foot
slip and normal walking locomotion and superscript i =
s, r, f represents stable, recoverable and fall-prone regions,
respectively.
Definition 1: For the flow governed by non-slip dynam-

ics (2) (or (3) for slip case), a stable region R s
n ⊂ Rs

(Rs
sl ⊂ Rs) for normal (slip) walking is the region that there

exists time t1 ≥ 0 with ur ≡ 0, point (δ(t1), δ̇(t1)) ∈ Cs;
a recoverable region Rr

n (Rr
sl) is defined as the largest

region that there exists time t1 ≥ 0 and ur �= 0, point
(δ(t1), δ̇(t1)) ∈ Cs; a fall-prone region Rf

n (Rf
sl) is the

region that does belong to either Rs
n (Rs

sl) or Rr
n (Rr

sl) in
Rs.
Fig. 3 illustrates these regions, that is, the green, yellow,

and red areas represent Rs
n ⊂ Rs (Rs

sl ⊂ Rs), Rr
n (Rr

sl),
and Rf

n (Rf
sl), respectively. Note that fall-prone regions

Rf
n and Rf

sl do not represent the fall states. Instead, these
regions represent the states in which, without the intervention
of taking a step, the locomotion can lead towards falling,
regardless of the control input ur.
It is clear from the above definition that recoverable

region Rr
n (Rr

sl) depends on control input ur. Following the
Pontryagin’s minimum principle [19], we have the following
results.
Proposition 1: The recoverable region R r

n (Rr
sl) under

normal (slip) walking locomotion is given under the control

Fig. 3. Recoverability regions: Green: Rsi - stable, Yellow: Rri -
recoverable without taking a step, Red: Rfi - requires a walking step to
recover.

input umax
r .

We omit the proof details of Proposition 1 due to page
limit. With the above results, we define the separation
boundary lines among two adjacent regions as follow.
Definition 2: A separation line in the phase plane, de-

noted as Bj
n (Bj

sl), j = rf, rs, is defined as the boundary of
two adjacent regions Rr

n (Rr
sl) and Rf

n (Rf
sl) and Rs

n (Rs
sl),

respectively. Therefore, B rfi = Rr
i ∩Rf

i and Brsi = Rr
i ∩Rs

i,
i = n, sl.
Fig. 3 illustrates these separation lines. We are now ready

to compute the analytical forms for B j
n (Bj

sl), j = rf, rs, for
normal (foot-slip) walking locomotion.
For Brfn , considering manifold Mn in (4), by Proposi-

tion 1, we enforce ur0 = umax
r and σ = 0 and then obtain

the hyperbolic curve for the set of manifolds in the δ- δ̇ plane
as

(δ + r1u
max
r )

2 − δ̇2

ω2
n

= (δ0 + r1u
max
r )

2 − δ̇20
ω2
n

. (8)

It is straightforward to obtain that the asymptote in the
second quadrant is given by

Brfn : δ̇ + ωnδ = −ωnr1u
max
r . (9)

Similarly, by setting ur0 = 0 we calculate the asymptote for
Brsn as

Brsn : δ̇ + ωnδ = 0. (10)

To compute B rfsl and Brssl , we take the manifold Ms in (7)
and obtain the hyperbolic curve as

(δ + μzc + r1ur0)
2 − δ̇2

ω2
s

= (δ0 + μzc + r1ur0)
2 − δ̇20

ω2
s

.

(11)
By setting ur0 = umax

r and 0 in (11), we obtain them
respectively as

Brfsl : δ̇ + ωsδ = −ωs(μzc + r1u
max
r ), (12)

Brssl : δ̇ + ωsδ = −ωsμzc. (13)

Fig. 4 illustrates all boundary lines in the phase plane. It
is clear from (9)-(13) that lines B rfsl (Brfn ) are parallel each
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Fig. 4. An overlapping view of the recoverability regions for slip and
non-slip cases highlighting the relationships between boundaries Bji and
the intersection P

other with Brssl (Brsn ). Moreover, the slope ωs > ωn and these
lines intersect at four points, denoted as P1 = Brssl ∩ Brfn,
P2 = Brssl ∩ Brsn , P3 = Brfsl ∩ Brfn, and P4 = Brfsl ∩ Brsn ; see
Fig. 4. The coordinates for these four points are

P1 (−rω(μzc + r1u
max
r ), rωωn(μzc + r1u

max
r )) ,

P2 (−rωμzc, rωωnμzc) , P3 (−rωμzc − r1u
max
r , rωωnμzc) ,

P4 (−rω(μzc − r1u
max
r /

√
r2), rωωn(μzc − r1u

max
r )) ,

where rω = ωs

ωs−ωn
> 1. Since all the constants are positive

we can determine by inspection that P1, P2, and P3 always
lie above the abscissa δ̇ = 0, while point P4 can be on the
line of δ̇ = 0 when the parameters are such that μzc =
r1u

max
r .
Two pairs of parallel boundary lines indeed partitions the

second quadrant of the phase plane into nine sets, denoted as
S1, · · · ,S9 as shown in Fig. 4. Note that P4 represents the
upper limit of intersection region S8 = Rf

n ∩Rs
sl. Therefore,

when P4 lies below the line δ̇ = 0, the two regions do not
intersect, that is, region S8 does not exist. In other words,
if μzc ≤ r1u

max
r , keeping the model within Rs

sl becomes a
sufficient condition to avoid both fall-prone regions R f

sl and
Rf
n. This observation is helpful for recovery strategies in the

next section.
Depending on the location of state x(t) = [δ(t) δ̇(t)]T

in the regions in the δ-δ̇ plane at the onset of slip, the slip
recovery strategies can be different. If x(t) is within certain
regions, a torque control within the same step should be used
to maintain the balance, while in other regions, additional
recovery step must be initiated to possibly recover from slip-
induced fall risk. In the next section, we will present the
recovery control within one step and foot placement location
and time if one slip-recovery step is needed.

IV. SLIP RECOVERY CONTROL

A. Within-Step and One-Step Recovery Control

We present recovery control strategies using the regions
defined in the previous section. The advantage of the previ-
ous analysis and the simplified model with explicit solutions
helps to formulate simple controllers that do not need any
prediction horizon and can be implemented in real time. The
objective of slip-recovery control is to determine the action
to maintain balance depending on where the current state
x(t) is located in the phase plane.

1) Stable region control: In this case, the walker current
state is in one of the stable regions x ∈ Rs

n (Rs
sl) for normal

(slip) walking gaits. We here focus on actuation to keep
balance and avoid slip-induced fall, and any additional ac-
tuation for walk gait progression is not explicitly addressed.
Therefore, the controller is formulated to reach the desired
state xd = [δd δ̇d]T ∈ Rs

n (Rs
sl). The desired state can lead

to return to periodic walking, stopping or other stable gaits.
The exact choice of xd depends on the desired task and is
outside of the scope of this paper. For normal walking case,
ẋf = 0, the desired state xd is on manifold Md

n that is
defined by (4) with δ0 = δd, δ̇ = δ̇d and σ = 0, that is,

Md
n : δ̇2 − (δ̇d)2 = (δ2 − (δd)2)ω2

n + 2ω2
n(δ − δd)r1ur0.

Solving the above equation for u0r yields the (constant)
control input as

ur0 =
δ̇2 − (δ̇d)2 − (δ2 − (δd)2)ω2

n

2ω2
n(δ − δd)r1

. (14)

Similarly, for the slip case ẋf �= 0, we use (7) to obtain
the desired manifold Md

s : δ̇2 − (δ̇d)2 = (δ2 − (δd)2)ω2
s +

2ω2
s(δ − δd) (μzc + r1ur0), and control input ur0 for slip

case as

ur0 =
δ̇2 − δ̇d 2 − (δ2 − δd 2)ω2

s

2ω2
s(δ − δd)r1

− μzc
r1

. (15)

2) Recoverable region control: If the state x ∈ R r
n

(Rr
sl) for normal (slip) walking gaits, recovery is feasible

without taking an additional recovery step. However, without
actuation the gait leads to a fall and therefore, the control
goal in this case is to leave the recoverable regions R r

n or
Rr
sl as quick as possible. Note that to reach the safe regions

Rs
n or Rs

sl, the walker must get in B rsn (Brssl ) for normal
(foot-slip) walk gaits. Therefore, the design objective is to
minimize the Reimanian distance σ from B rsn or Brssl given
by (4) or (7) for normal or slip walking gaits, respectively,
with x0 ∈ Brsn (Brssl ).
We obtain the minimum required control actuation to

return from the recoverable to the stable regions in normal
walking case by using (14) with xd = 0 ∈ Brsn

ur0 =
δ̇2 − δ2ω2

n

2ω2
nδr1

.

Since the above ur0 represents the minimum admissible
control input for recovery, we assume that ur0 ≤ umax

r and
under such control, it takes longer time to reach stable region
and is also vulnerable to any perturbations. To increase ro-
bustness and guarantee the recovery in the shortest time, we
propose the use of bang-bang control to allowthe maximum
control effort

ur0 = umax
r .

By the results in Proposition 1, the above control guarantees
that the walker recovers from any possible state within
Rr
n(Rr

sl).

774



3) Fall-prone region control: A walker in the fall prone
regions x ∈ Rf

n (Rf
sl) for ẋf = 0 (ẋf �= 0) cannot maintain

balance with any possible ur(t) and therefore, additional
recovery steps must be taken. To use the additional recovery
step, we need to determine foot placement location and
timing to avoid a fall.
In this work, a step is treated as an instantaneous change

in stance foot location, while velocities ẋc, ẋf and δ̇ are
assumed to be continuous before and after taking the step,
that is, δ̇n(tf ) = δ̇n+1(0), where n and n + 1 denote the
nth and (n + 1)th steps, respectively, and tf is the final
time of the nth step. Therefore, taking a step results in an
instantaneous change in δ, namely, δn+1(0) = δn(tf ) + xst,
where xst is the displacement of the foot placement behind
the current stance at the nth step. By the above treatment,
taking a step is represented by an horizontal jump from one
point to another in the δ-δ̇ phase plane.
For x ∈ Rf

n(Rf
sl), the goal of the recovery step is to

bring the states back into safe regions Rs
n(Rs

sl). The step xst
should result in a walker reaching a desired state xd. Since
any xd ∈ Rs

n(Rs
sl) enables the walker into a safe region,

we look for the minimal recovery step size and consider
an xd ∈ Brsn (Brssl). Furthermore, considering δ̇d = δ̇ by the
above step treatment and for a normal walking case, δ d can
be obtained from (10), the foot placement is calculated as
xst = δd − δ and this yields

xst = − δ̇

ωn
− δ.

For foot-slip case, Eq. (13) is used to obtain δ d and that
yields

xst = −μzc − δ̇

ωs
− δ.

To determine the optimal time to take the recovery step
under slip gait, we consider two manifoldsMn

s and Mn+1
s

that correspond the nth and (n + 1)th steps, respectively.
The initial condition for Mn

s is denoted by x0 = [δ0 δ̇0]
T

and for Mn+1
s , x0 + Δx0 = [δ0 + Δδ0 δ̇0]

T . It is clear
that a transition step between the two manifolds at t = 0
has step length xst = Δδ0 (with no instantaneous velocity
change). We consider the step length property for t ≥ 0 with
the above initial conditions.
The progression difference, denoted by Δδ(t), represents

the horizontal distance between manifoldsMn
s and Mn+1

s .
We use (11) to compute Δδ(t) under initial conditions x0

and x0 +Δx0, respectively. Under these two sets of initial
conditions, the expressions for δ are denoted as δx0 and
δx0+Δx0 , respectively, and therefore, we obtain

Δδ(t) =δx0 − δx0+Δx0 =

√
(δ0 + μzc + r1ur0)2 +

δ̇2 − δ̇20
ω2
s

−
√
(δ0 +Δδ0 + μzc + r1ur0)2 +

δ̇2 − δ̇20
ω2
s

.

It is clear that Δδ(t) is a function of velocity δ̇ for a
given initial condition value and constant control u r0. Fig. 5

illustrates Δδ as a function of velocity δ̇. Clearly, Δδ is
a monotonically decreasing function of δ̇. Indeed, we can
show this by the fact that

dΔδ

dδ̇
=

δ̇

ω2
s

[
1√

(δ0 + μz + r1ur0)2 + (δ̇2 − δ̇20)/ω
2
s

−

1√
(δ0 +Δδ0 + μzc + r1ur0)2 + (δ̇2 − δ̇20)/ω

2
s

]
< 0.

The last inequality in the above equation is obtained by
the observation as follows. In the second quadrant of the
δ-δ̇ plane, δ, δ0 < 0 and δ̇ > 0. For any x ∈ Rf

sl,
δ + μzc + r1ur0 < 0. Because of Δδ0 > 0, the second
term in the above equation is always greater than the first
one and therefore, dΔδ/dδ̇ < 0. From (6), for x ∈ Rf

sl,
δ̈(t) < 0 and by the chain rule, we obtain

dΔδ

dt
=

dΔδ

dδ̇
δ̈(t) > 0.

The above results imply that the progression difference
required for transition between two manifolds increases with
time, namely, Δδ(t) > Δδ0 for t > 0. Therefore, the ideal
timing to take the recovery step is at t = 0, namely, as soon
as possible once the slip is detected. Same conclusion can
be obtained for normal walk manifold Mn.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.06

0.07

0.08

0.09

0.1

0.11

0.12

Fig. 5. Distance between two manifolds with different initial conditions.

B. Illustrative Example

We demonstrate the above controller design through a
simulation example. Fig. 6 shows a series of snapshot of a
simulated walking gaits under slip. While the bipedal walker
is model and visualized as a five-link structure, its CoM
movement is governed by a two-mass LIPM presented in
Section II. The values of the model parameters are chosen
as m1 = 65 kg, m2 = 5 kg, and zc = 1 m. The
movement starts as periodic walking gaits and the standing
foot is in stationary contact with the ground (Fig. 6 (a)).
During the continuous phase no actuation is applied, that is,
ur = 0. At the moment of heel strike, the model experiences
instantaneous change in δ and thus a horizontal jump in the
δ-δ̇ phase plane (Fig. 6 (b)). During periodic walking, the
model never enters the Rf

n region and due to the frictional
condition changes, foot slip might occur at any time. When
the slip occurs, the position of the state variables of the
model remains unchanged, but the relevant boundary regions
changes and thus, the walker states lie in the fall-prone
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Fig. 6. Snapshot of a simulation sample: (a) Periodic walking swing phase. (b) A step during periodic walking. Steps are represented as horizontal
jumps in the δ-δ̇ phase plane. (c) Slip onset at the moment of heel-strike. δ and δ̇ remain unchanged and however the region limits Brfi and Brsi change
from i = n to i = sl. (d) Slipping on the standing foot. The controlled action umax

r is applied. However, since the model is within the fall-prone set, a
fall would occur unless a recovery step is taken. (e) Swing foot touches on the ground and that brings the model into the stable region. (f) The model
continues slipping but remains within the stable region.

region Rf
sl (Fig. 6 (c)). By definition, u

max
r is insufficient

for recovery so the model continues the progression on a
fall prone manifold in Rf

sl (Fig. 6 (d)) until a recovery step
is taken (Fig. 6 (e)). The step results in an instantaneous
change of δ bringing the model to the safe region x ∈ R s

sl
(Fig. 6 (e)). The walker then continues the progression safely
despite its foot still slipping on the floor (Fig. 6 (f)).

V. CONCLUSION

This paper extended the linear two-mass inverted pendu-
lum model for normal walking to the foot-slip case. Ana-
lytical state-space manifolds have been derived to quantify
various stability sets for controller design. It was shown that
by using only the relative position and velocity between
the foot and the CoM, the recovery feasibility sets was
quantified. Depending on the set of current parameters, the
walker’s movement was characterized as safe, fall-prone or
recoverable. We have shown that in the cases with large
enough actuation capability, the safe region under slipping
condition was sufficient for recovery under foot slip. Under
certain fall-prone situations, a recovery step had to be taken
such that the state moved back to a recoverable region. It
was shown that such a step should be taken immediately and
foot placement location was designed by using the model.
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