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1 Introduction
As a result of the increasing complexity of robotic control systems, such as human-
centered robots [1,2] and industrial surgical machines [3], new system architectures,
especially distributed control architectures [4,5], are often being sought for communi-
cating with and controlling the numerous device subsystems. Often, these distributed
control architectures manifest themselves in a hierarchical control fashion where a
centralized controller can delegate tasks to subordinate local controllers (Fig. 1). As it
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FIG. 1

Depiction of various control architectures. Many control systems today employ one of the
control architectures above: (a) centralized control with only high-level feedback controllers
(HLCs); (b) decentralized control with only low-level feedback controllers (LLCs);
and (c) distributed control with both HLCs and LLCs, which is the focus of this chapter.

is known, communication between actuators and their low-level controllers can occur
at high rates while communication between low- and high-level controllers occurs
more slowly. The latter is further slowed down by the fact that centralized controllers
tend to implement larger computational operations, for instance, to compute system
models or coordinate transformations online.

One concern is that feedback controllers with large delays [6,7], such as the
centralized controllers mentioned earlier, are less stable than those with small delays,
such as locally embedded controllers. Without the fast servo rates of embedded
controllers, the gains in centralized controllers can only be raised to limited values,
decreasing their robustness to external disturbances [8] and unmodeled dynamics [9].

As such, why not remove centralized controllers altogether and implement all
feedback processes at the low level? Such operation might not always be possible.
For instance, consider controlling the behavior of human-centered robots (i.e., highly
articulated robots that interact with humans). Normally this operation is achieved by
specifying the goals of some task frames such as the end effector coordinates. One
established option is to create impedance controllers on those frames and transform
the resulting control references to actuator commands via operational space transfor-
mations [10]. Such a strategy requires the implementation of a centralized feedback
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controller which can utilize global sensing data, access the state of the entire system
model, and compute the necessary models and transformations for control. Because
of the aforementioned larger delays on high-level controllers, does this imply that
high gain control cannot be achieved in human-centered robot controllers due to
stability problems? It will be shown that this may not need to be the case. But for
now, this delay issue is one of the reasons why various currently existing human-
centered robots cannot achieve the same level of control accuracy that it is found
in high-performance industrial manipulators. More concretely, this study proposes
a distributed impedance controller where only proportional (i.e., stiffness) position
feedback is implemented in the high-level control process with slow servo updates.
This process will experience the long latencies found in many modern centralized
controllers of complex human-centered robots. At the same time, it contains global
information of the model and the external sensors that can be used for operational
space control. For stability reasons, our study proposes to implement the derivative
(i.e., damping) position feedback part of the controller in low-level embedded
actuator processes which can, therefore, achieve the desired high update rates.

As it will be empirically demonstrated, the benefit of the proposed split control
approach over a monolithic controller implemented at the high level is to increase
control stability due to the reduced damping feedback delay. As a direct result,
closed-loop actuator impedance may be increased beyond the levels possible with
a monolithic high-level impedance controller. This conclusion may be leveraged on
many practical systems to improve disturbance rejection by increasing gains without
compromising overall controller stability. As such, these findings are expected to be
immediately useful on many complex human-centered robotic systems.

To demonstrate the effectiveness of the proposed methods, this study implements
tests on a high-performance actuator followed by experiments on a mobile base. First,
a position step response is tested on an actuator under various combinations of stiff-
ness and damping feedback delays. The experimental results show high correlation
to their corresponding simulation results. Second, the proposed distributed controller
is applied to an implementation into an omnidirectional base. The results show a
substantial increase in closed-loop impedance capabilities, which results in higher
tracking accuracy with respect to the monolithic centralized controller counterpart
approach.

Series elastic actuators (SEAs) [11– 14], as an emerging actuation mechanism,
provide considerable advantages in compliant and safe environmental interactions,
impact absorption, energy storage, and force sensing. In the control literature,
adopting cascaded impedance control architectures for SEAs has attracted increasing
investigations over the last few years [13,15,16]. Compared to full-state feedback
control [17– 19], the cascaded control performs superior when the controlled plant
comprises slow dynamics and fast dynamics simultaneously. In this case, the inner
fast control loop isolates the outer slow control loop from nonlinear dynamics
inherent to the physical system, such as friction and stiction. Therefore, this study
focuses on the cascaded control structure to simulate the distributed control structure
for humanoid robots accompanied with a variety of delayed feedback loops [1,20].
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This class of cascaded control structures nests feedback control loops [13,15], that
is, an innertorque loop and an outer-impedance loop for the task-level control, such
as Cartesian impedance control. Recently, the works in Refs. [13,16] proposed to
embed a motor velocity loop inside the torque feedback loop. This velocity feedback
enables to use integral gains for counteracting static errors such as drivetrain friction,
while maintaining the system’s passivity. The authors in Ref. [15] extensively studied
the stability, passivity, and performance for a variety of cascaded feedback control
schemes incorporating position, velocity, and torque feedback loops.

Robustness and effects of delay have often been studied in work regarding
proportional integral derivative (PID) controller tuning. A survey of PID controllers
including system plants using phase margin techniques with linear approximations is
conducted in Ref. [21]. The works [22,23] study auto-tuning and adaption of PID
controllers while the work [24] furthers these techniques by developing optimal
design tools applied to various types of plants which include delays. The study
in Ref. [25] proposed an optimal gain-scheduling method for DC motor speed
control with a PI controller. In Ref. [26], a backstepping controller with time-delay
estimation and nonlinear damping is considered for variable PID gain tuning under
disturbances. The high volume of studies on PID tuning methods highlights the
importance of this topic for robust control under disturbances. However, none of
those studies considers the sensitivity discrepancy to latencies between the stiffness
and damping servos as separate entities nor do they consider the decoupling of those
servos into separate processes for stability purposes as it is done in this chapter.

Optimal controller design methodologies are increasingly sought within the
robotics and control community. Recent works in Ref. [27] devised a critically
damped controller gain design criterion to accomplish high impedance for rigid
actuators. However, inherent fourth-order SEA dynamics in this study make it
challenging to design optimal controllers of the cascaded feedback structure. For
the cascaded control, a common routine is to tune the inner loop gains first, followed
by an outer-loop gain tuning. Indeed, this procedure consumes substantially hand-
tuning efforts and lacks optimal performance guarantees. The majority of existing
results rely on empirical tuning [11,15]. The work in Ref. [13] designed controller
gain ranges according to a passivity criterion. However, gain parameters were highly
coupled as a set of inequalities, which leaves the controller gains undetermined.
In this chapter, a fourth-order gain design criterion is proposed by simultaneously
solving SEA optimal impedance gains and torque gains. The “optimality” is proposed
according to the phase-margin-based stability. Through this criterion, the designer
only needs to specify a natural frequency parameter, and then all the impedance and
torque gains are deterministically solved. A larger natural frequency represents larger
impedance and torque controller gains. This dimensionality reduction and automatic
solving process is not only convenient for SEA controller design but also warrants
optimal performance in terms of system closed-loop stability.

System passivity criteria have been extensively studied for coupled systems
[17,28,29], networked control systems [30], and coordination control [31]. Among
the robotics community, the authors in Ref. [13] designed passivity-based controller
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FIG. 2

Valkyrie robot equipped with series elastic actuators (SEAs). The top figure shows a set of
high-performance NASA Valkyrie SEAs, the bottom left one shows the Valkyrie robot with
SEA location annotations, and the bottom right one shows the calf and ankle structure.

gains for SEAs. However, that work only incorporates stiffness feedback, and the
ignored damping feedback indeed plays a pivotal role, which will be analyzed in this
study. Damping-type impedance control was investigated in Ref. [16]. However, it
does not analyze the effects of time delays and filtering. Although these practical
issues were tackled in Ref. [13], the time delays are so subtle that it cannot model
large time delays often existing in serial communication channels. Due to the
destabilizing effects of time delays, significant effort has been put forth to ensure
that systems are stable, by enforcing passivity criteria [32].

In light of these discussions, the contributions of this chapter are: (i) analyze, pro-
vide control system solutions, implement, and evaluate actuators and mobile robotic
systems with latency-prone distributed architectures to significantly enhance their
stability and trajectory tracking capabilities; (ii) analyzing time domain controller
stability of SEAs and proposing a critically damped gain selection criterion; and
(iii) conducting a frequency-dependent impedance analysis of SEAs affected by time
delays and filtering. We expect this study provides a promising solution of designing
optimal impedance controllers for SEA-equipped humanoid robots (see Fig. 2) to
achieve complex locomotion and manipulation tasks. The results presented in this
chapter have been published in Refs. [27,33– 35].

2 Modeling of series elastic actuators
This section models an SEA constituting two nested feedback loops, that is, an outer-
impedance loop and an innertorque loop. The SEA dynamics can be modeled as
shown in Fig. 3. The spring torque τk is

τk = k(qm − qj), (1)



28 CHAPTER 2 Robotic systems with series elastic actuation

FIG. 3

SEA model. The annotated parameters are defined in Section 2. We map the motor inertia
Im and motor damping bm to the joint coordinates by multiplying by the gear reduction
squared.

where the spring stiffness is denoted by k. qm and qj represent motor and joint
positions, respectively. As to the joint side, it is assumed that disturbance torque
τdist = 0. Namely, spring torque is equal to load torque, that is,

τk = Ijq̈j + bjq̇j, (2)

where Ij and bj are joint inertia and damping coefficients, respectively. Notably, this
model merely models the effects of viscous friction; we leave the analysis of other
types of friction for future work. Then the load plant PL(s) has

PL(s) = qj(s)

τk(s)
= 1

Ijs2 + bjs
. (3)

By Eqs. (1), (2), the following transfer function can be derived:

qj(s)

qm(s)
= k

Ijs2 + bjs + k
. (4)

We have motor torque τm = Imq̈m + bmq̇m + k(qm − qj). Combining the equation
above with Eq. (4) and defining the spring deflection as "q = qm − qj, we establish
the following mapping from the motor angle qm to "q:

r(s) = "q(s)
qm(s)

= Ijs2 + bjs

Ijs2 + bjs + k
. (5)

By Eq. (1), we can express the spring torque as

τk(s) = k"q(s) = kr(s)qm(s). (6)

Given the relationship between the motor current im and the motor torque τm
represented by τm(s)/im(s) = β = ηNkτ , with drivetrain efficiency η (constant
for simplicity, and dynamic modeling of drivetrain losses is ignored), gear speed
reduction N and motor torque constant kτ . (N represents the ratio of motor rotary
velocity to actuator linear velocity. This gear ratio is achieved by using pulley
reduction Np and ball screw, which is parameterized by ball screw lead lbs. Please
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refer to Ref. [12] for more actuator design details.) See Table 2 in Section 5 for more
parameter details, the SEA plant PF(s) is represented by

PF(s) = τk(s)
im(s)

= βr(s)k

Ims2 + bms + r(s)k
, (7)

where Im and bm are motor inertia and damping coefficients, respectively. By Fig. 4,
the closed-loop torque control plant PC is

PC(s) = τk(s)
τdes(s)

= PF(β−1 + C)

1 + PFCe−Tτ s . (8)

The torque feedback loop includes a delay term e−Tτ s and a PD compensator
C = Kτ + Bτ Qτds (see Fig. 4), where Qτd models a first-order low-pass filter for the
torque derivative signal,

Qτd = 2π fτd
s + 2π fτd

, (9)

where fτd is the filter cut-off frequency. In addition, a feedforward loop is incor-
porated to convert the desired torque τdes to the motor current im (see Fig. 4). By
Eqs. (3), (8), the following transfer function can be obtained

qj(s)

τdes(s)
= PLPC = PF(β−1 + C)

(1 + PFCe−Tτ s)(Ijs2 + bjs)
. (10)

FIG. 4

SEA controller diagram. The innertorque controller is composed of a feedforward loop
with a mapping scalar β−1 and PD torque feedback loops. The outerimpedance controller
constitutes stiffness and damping feedback loops. Time delays are modeled as e−Ts .
We apply first-order low-pass filters to both velocity and torque derivative feedback loops.
τk represents the spring torque. The motor current input is im. The embedded torque
control loop is denoted by PC , which normally has faster dynamics than the outer one.
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For the impedance feedback, we have the form as follows

τdes(s) = Kq

(
qdes − e−Tqssqj

)
− Bqe−TqdsQqdsqj, (11)

where e−Tqss and e−Tqds denote the time delays of stiffness and damping feedback
loops, separately. The joint velocity filter Qqd has the same format as that in Eq. (9)
with a cut-off frequency fqd. Alternatively, we can also send the desired joint velocity
as the input of the embedded damping loop. In that case, an extra zero will show
up in the numerator of Eq. (12). Since a zero only changes transient dynamics, it
does not affect system stability. Using PL and PC in Eqs. (3), (8), we obtain the SEA
closed-loop transfer function PCL,

PCL(s) = qj(s)

qdes(s)
= KqPCPL

1 + PCPL

(
e−TqdsBqQqds + e−TqssKq

)

= Kq(1 + βKτ + βBτ Qτds)
∑4

i=0 Disi
, (12)

with the associated coefficients defined as

D4 = ImIj/k,

D3 = (Ijbm + Imbj)/k + IjβBτ Qτde−Tτ s,

D2 = Ij

(
1 + e−Tτ sβKτ

)
+ Im + bjβBτ Qτde−Tτ s

+ βBτ Bqe−TqdsQqdQτd + bjbm/k,

D1 = bj

(
1 + e−Tτ sβKτ

)
+ bm + βBτ QτdKqe−Tqss

+ e−Tqds(1 + βKτ )BqQqd ,

D0 = e−Tqss(1 + βKτ )Kq. (13)

This closed-loop transfer function is sixth order due to the existence of low-pass
filters Qqd and Qτd. Here, we formulate it in fourth-order form for the sake of clarity.
Note that the numerator of Eq. (12) has a zero, induced by the torque derivative
term. As to the step response, this induced zero shortens the rise time but causes an
overshoot. Nevertheless, system stability is not affected since it is solely determined
by the denominator’s characteristic polynomial.

3 Gain design of series elastic actuators
The closed-loop transfer function derived in Eq. (12) is complex due to the cascaded
impedance and torque feedback loops. This complexity makes the SEA controller
design challenging. In this section, we propose a critically damped criterion to design
optimal controller gains.
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3.1 Critically damped controller gain design criterion
Impedance control gains of rigid actuators can be designed based on the well-
established critically damped criterion of second-order systems [27]. As for
high-order systems like SEAs, such a critically damped criterion is still missing.
In this study, we aim at designing feedback controller gains such that the overall
SEA closed-loop system behaves as two damped second-order systems [36]. To this
end, we represent the fourth-order system in Eq. (12) (the time delays and filtering
in Eq. (12) are ignored for problem tractability) by two second-order systems in
multiplication presented as

(s2 + 2ζ1ω1s + ω2
1)(s2 + 2ζ2ω2s + ω2

2), (14)

which has four design parameters ω1, ω2, ζ1, and ζ2. They will be used to design the
gains Kq, Bq, Kτ , and Bτ . First, we set ζ1 = ζ2 = 1 in Eq. (14) to obtain the critically
damped performance. Second, we assume ω2 = ω1 for simplicity. An optimal pole
placement design is left for future work. Let us define a natural frequency fn of
Eq. (14) as

ω1 = ω2 ! ωn = 2π fn. (15)

By comparing the denominators of Eqs. (12), (14), we obtain the nonlinear gain
design criterion equations as follows:

Ijbm + Imbj + IjβBτ k

ImIj
= 4ωn,

k(Ij(1 + βKτ ) + Im + βBτ (bj + Bq)) + bjbm

ImIj
= 6ω2

n ,

k(bj + Bq)(1 + βKτ ) + k(bm + βBτ Kq)

ImIj
= 4ω3

n ,

(1 + βKτ )kKq

ImIj
= ω4

n. (16)

These four equations with coupled gains can be solved by Matlab’s fsolve() function.
Note that, representing a fourth-order system by two multiplied second-order systems
in Eq. (14) maintains the properties of the fourth-order system. In our earlier method,
the simplification comes from the selection of ω1, ω2, ζ1, ζ2 parameters in Eq. (14).
The resulting benefit is that selecting a natural frequency uniformly determines all
the gains of torque and impedance controllers. This advantage avoids the commonly
adopted complicated yet heuristic controller tuning procedures, like the ones in
Refs. [15,36], although system dynamics in our case are restricted to specific patterns
such as the critically damped one we design. Let us show an example as follows.

Example 1. To validate this criterion, we test five natural frequencies. We select
filter cut-off frequencies fvd = 50 Hz, fτd = 100 Hz and time delays Tτ =
Tqd = 0.5 ms, Tqs = 2 ms. These filters and delays are only used in the phase-
space computation based on Eq. (12), and ignored in the critically damped selection
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Table 1 Critically damped controller gains.

Frequency (Hz)
Impedance gains
(Nm/rad, Nms/rad)

Torque gains
(A/Nm, As/Nm) Phase margin

fn = 12
Kq = 65 Kτ = 1.18

45.1 degrees
Bq = 0.46 Bτ = 0.057

fn = 14
Kq = 83 Kτ = 1.80

43.2 degrees
Bq = 0.76 Bτ = 0.067

fn = 16
Kq = 103 Kτ = 2.56

40.0 degrees
Bq = 1.02 Bτ = 0.077

fn = 18
Kq = 124 Kτ = 3.45

36.5 degrees
Bq = 1.26 Bτ = 0.087

fn = 20
Kq = 148 Kτ = 4.48

33.2 degrees
Bq = 1.49 Bτ = 0.097

criterion for problem tractability. The solved gains and phase margins are shown
in Table 1. Noteworthily, the phase margin is computed based on the open-loop
transfer function derived from PCL in Eq. (12). Increasing fn will lead to a uniform
increase of all four gains. This property meets our expectation that increasing torque
(or impedance) gains results in a torque (or impedance) bandwidth increase and a
phase margin decrease.

Note that, for simplicity, the gain design above ignores time delay, which does
affect system stability. Next, we will study the effect of time delays given this gain
design criterion. Since torque feedback is the inner loop, it normally suffers a smaller
delay than that in the outer-impedance loop. This is why we assign Tτ = 0.5 ms in
the example earlier. Notice that Tqs is chosen to be larger than Tqd since the former
belongs to the outer control loop while the latter belongs to the inner control loop.
The benefits of having damping feedback in the inner loop was extensively analyzed
in Ref. [27]. This motivates us to implement the impedance feedback loops in a
distributed pattern as shown in Fig. 4. Namely, we allocate the stiffness feedback loop
at the high level while embedding the damping feedback loop at the low level for a
fast servo rate. The same distributed control strategy was implemented for the rigid
actuators in Ref. [27] and extended lately for the Whole-Body Operational Space
Control [37,38].

3.2 Trade-off between torque and impedance control
During gain tuning of the SEA-equipped bipedal robot Hume and NASA Valkyrie
robot, which have similar SEA control architectures as the one in Fig. 5, a pivotal
phenomenon is observed: if one increases torque controller gains or decreases
impedance controller gains, the robot tends to become unstable. To reason about this
observation, we propose an SEA gain scale definition as follows.

Definition 1 (SEA gain scale). The gain scale of an SEA’s cascaded controller is
a scaling parameter GS between adjusted gains (Kia , Bia ) and nominal gains (Kin , Bin ),
i ∈ {τ , q},
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FIG. 5

SEA step response affected by time delays. These panels demonstrate that the larger delays
that impedance feedback loops have, the worse performance that the step response has.
As shown in panels (B) and (C), SEA stability has a higher sensitivity to damping delays
than the stiffness counterpart. Panel (A) reveals that larger fn leads to a larger overshoot,
which appears to be counterintuitive. However, by close inspection, we can observe that the
largest fn in the solid magenta color already shows distortion, and its 36.4-degree phase
margin is the smallest among all four cases. To study the influence of zero in Eq. (12), step
responses without this zero are also simulated and represented by dashed lines in (A).
By comparison, we can realize an overshoot induced by this extra zero.

GS = Kτa

Kτn

= Kqn

Kqa

, GS = Bτa

Bτn

= Bqn

Bqa

, (17)

where the adjusted gains denote actual gains in use while the nominal gains denote
reference ones designed by the critically damped gain design criterion.

It should be noted that if GS = 1, then the adjusted gains are the same as the
nominal gains. For example, the controller gains in Table 1 are five sets of nominal
gains. By Eq. (17), we have the following equalities:

Kτa · Kqa = Kτn · Kqn , Bτa · Bqa = Bτn · Bqn , (18)



34 CHAPTER 2 Robotic systems with series elastic actuation

FIG. 6

Optimality of the critically damped gain design criterion. Panel (A) samples a variety
of gain scales and natural frequencies. An optimal performance is achieved by using the
proposed critically damped gain design criterion. Panel (B) shows (i) a larger
overshoot but slow rise time when GS > 1 and (ii) an over-damped response with
distortions when GS < 1.

which maintains the same multiplicative value of nested proportional (or derivative)
torque and impedance gains for the normal and adjusted conditions. An overall
controller gain design procedure is shown in Algorithm 1.

Algorithm 1 Gain controller design procedure
Assign system parameters sysParam in Eq. (12).
Assign natural frequency fn (i.e., ω1 and ω2 by Eq. (15)), ζ1 = ζ2 ← 1.
procedure ControllerSolver(fn, ζ1, ζ2, sysParam)

Deterministically solve nominal controller gains Kqn ,
Bqn , Kτn , Bτn ◃ refer to Eq. (16)
if Gain scale GS = 1 then

(Kq, Bq, Kτ , Bτ ) ← (Kqn , Bqn , Kτn , Bτn )

else
(Kqa , Bqa ) ← (Kqn , Bqn )/GS
(Kτa , Bτa ) ← GS · (Kτn , Bτn ) ◃ refer to Eq. (17)
(Kq, Bq, Kτ , Bτ ) ← (Kqa , Bqa , Kτa , Bτa )

end if
return (Kq, Bq, Kτ , Bτ )

end procedure
Assign filtering parameters fvd , fτd and time delays Tτ , Tqs, Tqd .
PM = PhaseMargin(Kq, Bq, Kτ , Bτ , fvd , fτd , Tτ , Tqs, Tqd)

There is a trade-off between a large torque bandwidth for accurate torque tracking
and a low torque bandwidth for larger achievable impedance range. The work in
Ref. [29] obtained a similar observation that enlarging the inner loop controller
bandwidth reduces the range of stable impedance control gains. In their experimental
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validations, they do not decrease impedance gains when raising torque gains. As it
is known, the product of cascaded gains grows if torque gains increase, however,
this increase is not considered in their stability analysis. It is, therefore, unclear if
the reduced stable impedance range is caused by enlarging the torque gains or the
increased product gain due to the coupled effect of torque and impedance gains. To
validate the trade-off in a more realistic manner, our method maintains a constant
gain product value as shown in Eq. (18). Fig. 6A shows the sampling results
for different gain scales (GS). A larger GS indicates increased torque gains with
decreased impedance gains. When GS > 1, an increasing GS deteriorates the system
stability (i.e., phase margin) and causes a larger oscillatory step response as shown
in Fig. 6B. On the other hand, when GS < 1, a decreasing G also decreases the
system stability. For instance, GS = 0.4 corresponds to a 34-degree phase margin
as shown in panel (A), and accordingly a distortion appears in the step response of
panel (B). We ignore delays and filtering to focus on the effects of the gain scale. The
tests in Fig. 6 validate the optimal performance (i.e., maximized phase margin) of our
proposed critically damped gain design criterion (i.e., GS = 1). Although GS = 1
is the optimal value for stability, changing GS to different values allows to change
the impedance behavior without changing the natural frequency. Thus, we assign GS
as a design parameter in Algorithm 1. In the following section, we will analyze the
frequency-domain SEA impedance.

4 SEA impedance analysis
Impedance control is widely used for dynamic interaction between a robot and its
physically interacting environment [39]. In this section, we study SEA impedance
performance in the frequency domain. In particular, we first derive the SEA
impedance transfer function given the SEA controller diagram in Fig. 4, and then
analyze the effects of time delays, filtering, and load inertia.

4.1 SEA impedance transfer function
The SEA impedance transfer function is defined with a joint velocity q̇j input and
a joint torque τj output. Based on the zero desired joint position qdes, the SEA
impedance Z(s) = τj(s)/(−sqj(s)) is formulated as follows:

Z(s) = τj(s)

−sqj(s)
=

∑4
i=0 Nzisi

∑5
i=0 Dzisi

, (19)

with the numerator coefficients,

Nz4 = ImTf τ Tfvβk,

Nz3 = βk(Im(Tf τ + Tfv) + Tf τ Tfvbm),

Nz2 = Imβk + βkbm(Tf τ + Tfv) + kkτ (Tf τ

+ β(Bτ + Kτ Tf τ ))(Bqe−Tqds + KqTfve−Tqss),
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Nz1 = bmβk + Bqkkτ (1 + Kτ β)e−Tqds + Kqkkτ (Tfv

+ Tf τ + β(Bτ + Kτ (Tf τ + Tfv)))e
−Tqss,

Nz0 = Kqkkτ e−Tqss(1 + Kτ β),

and the denominator coefficients,

Dz5 = ImTf τ Tfvβ, Dz4 = Imβ(Tfv + Tf τ ) + TfvTf τ βbm,

Dz3 = βIm + βbm(Tf τ + Tfv) + Tfvkβ(Tf τ

+ kτ (Bτ + Kτ Tf τ )e−Tτ s),

Dz2 = β(bm + Tf τ k + kkτ (Bτ + Kτ Tf τ )e−Tτ s)

+ Tfvβk(1 + Kτ kτ e−Tτ s),

Dz1 = βk(1 + Kτ kτ e−Tτ s), Dz0 = 0.

Note that Z(s) in Eq. (19) does not incorporate the joint inertia Ij and damping bj since
these parameters belong to parts of the interacting environment. Eq. (19) explicitly
models time delays and filtering, which are often ignored in the literature of SEA
cascaded controller architectures with PD-type controllers. Also, the SEA transfer
function in Eq. (19) is complete without any approximations.

4.2 Effects of time delays and filtering
The SEA impedance frequency responses are demonstrated in Fig. 7. We analyze
various scenarios either with or without time delays and filtering: (i) Zi(jω) is the
ideal impedance without delays and filtering; (ii) Zf (jω) is the impedance only
with filtering; (iii) Zd(jω) is the impedance only with delays; and (iv) Zfd(jω) is
the impedance with both delays and filtering. At low-frequency range, the SEA
impedance converges to a virtual stiffness asymptote in all scenarios (when time
delays are considered, we have e−Tqsjω → 1, e−Tτ jω → 1 as ω → 0)

lim
ω→0

Zc(jω) = lim
ω→0

Nz0

jω · Dz1
= Kqkτ (β

−1 + Kτ )

jω · (1 + Kτ kτ )
,

where c ∈ {i, f , d, fd}. The denominator of the final expression has a jω term, which
indicates a −20 dB/dec decay rate. The low-frequency impedance Zc(jω) behaves as
a constant stiffness impedance Kq/jω scaled by a constant kτ (β

−1 +Kτ )/(1+Kτ kτ ).
This scaling applies to any PD-type cascaded impedance controller. Note that kτ β

−1

is normally a small value. When kτ Kτ is large enough, Zc(jω) approaches Kq/(jω),
that is, a pure virtual spring. This meets our intuition.

As to the high-frequency range, the impedance also approaches an asymptote
with a potential twist, depending on the delay and filtering conditions. First, let us
start with the ideal case (i), that is, without delays and filtering. This leads to Dz5 =
Dz4 = 0, and we have
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lim
ω→+∞ Zi(jω) = lim

ω→+∞
Nz2

jω · Dz3
= k(Im + kτ Bτ Bq)

jω · Im
,

which represents a constant stiffness-type impedance scaled from the passive spring
stiffness k/(jω). The red-dashed lines in Fig. 7 illustrate this ideal SEA impedance
feature.

Second, we derive case (iii) only with delay, that is, Tfv = Tf τ = 0. Then, Dz5 =
Dz4 = 0, and we obtain

lim
ω→+∞ Zd(jω) = lim

ω→+∞
Nz2

jω · Dz3
= k(Im + kτ Bτ Bqe−Tqds)

jω · Im
.

Since the complex number e−Tqds rotates along the unit circle, the SEA impedance
will periodically twist around the passive spring stiffness at high-frequency range.
This is visualizable in Fig. 7C.

Third, in case (ii) only with filtering, we have Tqs = Tqd = Tτ = 0, and then
obtain

lim
ω→+∞

Zf (jω) = Nz4

jωDz5
= k

jω
,

which represents a passive spring stiffness as shown in Fig. 7B. The curve does
not twist thanks to the constant limit value k/(jω). To verify the applicability of
the behaviors aforementioned to different natural frequencies, we analyze the SEA
impedance performance under varying natural frequencies in Fig. 8. By comparing
Fig. 8A and B (or Fig. 7B and C), we conclude that time delays have a larger effect
on the SEA impedance than filtering.

4.3 Effect of load inertia
This section analyzes the effect of load inertia on SEA impedance performance.
A second-order model of the output load Ijs + bj is added into Eq. (19), that is,
Zl(jω) = Z(jω)+ Ijs+bj. Since Eq. (19) becomes Z(jω) → 0 as ω → +∞, we have

lim
ω→+∞ Zl(jω) = lim

ω→+∞(Z(jω) + Ij · jω + bj) = Ij · jω + bj,

where Ij · jω represents a 20 dB/dec asymptote at high frequencies (see Fig. 9);
the damping term bj adds a constant offset. As the equation previously shows, at
high-frequency range, SEA impedance behaves as a spring-mass impedance instead
of a pure spring one. In particular, this impedance is dominated by the load inertia
as shown in Fig. 9. This figure simulates three scenarios with different load inertias.
Different than the load mass effect studied in Ref. [13], our study has a large focus
on analyzing the effect of filtering and time delays. These two factors dominate at
middle-frequency range where large spikes show up in the shaded region of Fig. 9.
The larger load inertia is, the smaller spike the response has.
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FIG. 8

SEA impedance with varying natural frequencies fn. First, these subfigures validate that a
higher natural frequency fn results in higher SEA impedance. Panels (A) and (B) show how
time delay and filtering affect SEA impedance, respectively. We use filters with fqd = 50 Hz
and fτd = 100 Hz while time delays are chosen as Tqd = Tτ = 1 ms and Tqs = 10 ms.
Second, we test the cases with both filters and delays as shown in panel (C), and compare
them with ideal cases with neither filter nor delays.

5 Experimental validation
5.1 Evaluation of the controller design
This experiment section validates the proposed methods and criterion on our SEA
testbed, parameters of which are provided in Table 2. We employ the gain design
criterion proposed in Section 3 to design controller gains. Detailed stiffness and
damping gains are accessible in Table 1. All of our tests have a 1 kHz sampling rate,
which induces 0.5 ms effective feedback delay. To obtain larger feedback delays,
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FIG. 9

SEA impedance with varying load inertias. Three different load scenarios are illustrated.
All of them use the natural frequency fn = 20 Hz, corresponding to Kq = 148 Nm/rad,
Bq = 1.49 Nms/rad, Kτ = 4.48 A/Nm, and Bτ = 0.097 As/Nm. The damping term is
bj = 0.1 Nms/rad. For all three scenarios, dashed lines are used to represent asymptote
at low and high frequencies, respectively. Since the load inertia is modeled, the SEA
impedance approaches the load inertia impedance curve Ij · jω + bj at high frequencies.

Table 2 UT SEA parameters.

Parameters Value Parameters Value
Spring stiffness k 350,000 N/m Joint pulley radius rk 0.025 m
Motor inertia Im 0.225 kg m2 Joint inertia Ij 0.014 kg m2

Motor damping bm 1.375 Nms/rad Joint damping bj 0.1 Nms/rad
Gear reduction N 8.3776 × 103 Ball screw lead lbs 0.003 m/rev
Drivetrain efficiency η 0.9 Motor torque coeff. kτ 0.0276 Nm/A
Pulley reduction Np 4 Sample rate 1 kHz
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a software buffering of sampling data is manually implemented. Thus, the total
feedback delay has two components

Td = Ts

2
+ Te, (20)

where Ts is the sampling period and Te is the extra added feedback delay. Ts is divided
by 2 since the effective delay is half of the sampling period [40]. The extra feedback
delay, Te, represents large round-trip communication delay between low- and high-
level architectures. The source code is public online: https://github.com/YeZhao/
series-elastic-actuation-impedance-control. Here is a video link of experimental
validations: https://youtu.be/biIdlcAMPyE.

In Fig. 10, a larger natural frequency produces a higher closed-loop bandwidth.
Simulations match experimental results except slight discrepancies at high frequen-
cies. To validate the trade-off between impedance gains and torque gains, we test
step responses as shown in Fig. 11. The result shows that when GS > 1, a larger
GS slows down the rise time and produces a larger overshoot. This observation
is consistent with our theoretical analysis that SEA phase margin will be reduced
by decreasing impedance gains and increasing torque gains. As for the discrepancy
between simulations and experiments, a potential reason is due to the different spring
location in the simulation model and the hardware. The simulation model assumes
the spring to be placed between the gearbox output and the load (a.k.a., force sensing
SEA) while our UT-SEA hardware places the spring between the motor housing and
the chassis ground (a.k.a., reaction force sensing SEA) for compact size design. This
discrepancy affects impedance characteristics only at the resonant frequency and high
frequency, which is also validated by the result in Fig. 10. The reason why we choose

FIG. 10

Impedance frequency responses with different fn. At low frequencies, experimental results
are matched with the simulations. Compared to simulations, the experimental data
show a larger peak at the resonant frequency and a slightly larger bandwidth. The
parameters are Tqs = Tqd = Tτ = 0.5 ms, fqd = 50 Hz, fτd = 100 Hz, and GS = 1.
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FIG. 11

Step responses with different gain scales. The overshoot in the experimental results, when
GS is increased, matches our simulation predictions. The parameters are Tqs = Tqd =
Tτ = 1 ms, fqd = 50 Hz, fτd = 100 Hz, and fn = 14 Hz.

a force sensing SEA model is due to being more general in the SEA literature, and
more suitable for force control, and simplicity in the force measurements. For more
details regarding these two mechanical designs, refer to Ref. [12]. The discrepancy
between the two models is negligible in our tests since our primary target is to
validate the trade-off between impedance and torque control.

Torque tracking under impact dynamics is important for interactive manipulation
and bipedal locomotion. By implementing an impulse test, we show the high fidelity
of our torque control under external impulse disturbances. The purpose of this test is
the performance of the controller under disturbances. The controller gains correspond
to those of fn = 14 Hz in Table 1. As shown in Fig. 12, when a ball free falls from a
20 cm height and hits the arm with an impulse force, the SEA actuator settles down
promptly and recovers after approximately 0.3 s. The recovery to the disturbance is
fast and the tracking performance of the torque controller is very accurate.

In the following section, we study in detail the implementation of the proposed
distributed control strategy in a high-performance linear actuator and an omnidirec-
tional mobile base.

5.2 Step response implementation
The proposed controller is implemented in our linear actuator shown in Fig. 13.
This actuator is equipped with a PC-104 form factor computer running Ubuntu
Linux with an RTAI-patched kernel [12]. The PC communicates with the actuator
using analog and quadrature signals through a custom signal conditioning board.
Continuous signal time derivatives are converted to discrete form using a bilinear
Tustin transform written in C. A load arm is connected to the output of the ball screw
pushrod. Small displacements enable the actuator to operate in an approximately
linear region of its load inertia. At the same time, the controller is simulated by
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FIG. 12

Impulse response of UT-SEA. A ball is dropped from a constant height (20 cm) and exerts
an impulse force on the arm end effector. The maximum angle deviation is around 2.5
degrees. The arm recovers to its initial position within 0.3 s. Joint torque tracking is
accurate. (A) Ts = 1 ms, Td = 1 ms. (B) Ts = 15 ms, Td = 1 ms. (C) Ts = 1 ms,
Td = 15 ms. (D) Ts = 15 ms, Td = 15 ms.

using the closed-loop plant. Identical parameters to the real actuator are used for
the simulation, thus allowing us to compare both side by side.

First, a test is performed on the actuator evaluating the response to a step input
on its position. The results are shown in the bottom part of Fig. 14 which shows
and compares the performance of the real actuator versus the simulated closed-
loop controller. All the experimental tests are performed with a 1 kHz servo rate.
Additional feedback delays are manually added by using a data buffer. A step input
comprising desired displacements between 0.131 and 0.135 m of physical pushrod
length is sent to the actuator. The main reason for constraining the experiment to a
small displacement is to prevent current saturation of the motor driver. With very high
stiffness, it is easy to reach the 30 A limit for step responses. If current is saturated,



44 CHAPTER 2 Robotic systems with series elastic actuation

FI
G.

13

Li
ne

ar
U

T
ac

tu
at

or
.T

hi
s

lin
ea

rp
us

hr
od

ac
tu

at
or

ha
s

an
ef

fe
ct

iv
e

ou
tp

ut
in

er
tia

of
m

=
25

6
kg

an
d

an
ap

pr
ox

im
at

e
pa

ss
iv

e
da

m
pi

ng
of

b
=

12
50

N
s/

m
.



5 Experimental validation 45

FIG. 14

Step response experiment with distributed controller. Panels (A) through (D) show various
implementations on our linear actuator. Overlapped with the data plots, simulated replicas
of the experiments are also shown to validate the proposed models. The experiments not
only confirm the higher sensitivity of the actuator to damping than to stiffness delays but
also indicate a good correlation between the real actuator and the simulations.

then the experiment will deviate from the simulation. The step response is normalized
between 0 and 1 for simplicity. Various tests are performed for the same reference
input with varying time delays. In particular, large and small delays are used for either
or both the stiffness and damping loops. The four combinations of results are shown
in the figure with delay values of 1 or 15 ms.

The first thing to notice is that there is a good correlation between the real and the
simulated results both for smooth and oscillatory behaviors. Small discrepancies are
attributed to unmodeled static friction and the effect of unmodeled dynamics. More
importantly, the experiment confirms the anticipated discrepancy in delay sensitivity
between the stiffness and damping loops. Large servo delays on the stiffness servo,
corresponding to panels (A) and (B) have small effects on the step response. On the
other hand, large servo delays on the damping servo, corresponding to panels (C) and
(D), strongly affect the stability of the controller. In fact, for panels (C) and (D), the
results corresponding to fn = 12 Hz are omitted due to the actuator quickly becoming
out of control. In contrast, the experiment in panel (B) can tolerate such high gains
despite the large stiffness delay.

5.3 Distributed operational space control of a mobile base
As a concept proof of the proposed distributed architecture on a multiaxis mobile
platform, a Cartesian space feedback operational space controller (OSC) [10] is
implemented on an omnidirectional mobile base. The original feedback controller
was implemented as a centralized process with no distributed topology at that time.
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The mobile base is equipped with a centralized PC computer running Linux with the
RTAI real-time kernel. The PC connects with three actuator processors embedded
next to the wheel drivetrains via EtherCat serial communications. The embedded
processors do not talk to each other. The high-level centralized PC on our robot has
a roundtrip latency to the actuators of 7 ms due to process and bus communications,
while the low-level embedded processors have a servo rate of 0.5 ms. Notice that
7 ms is considered too slow for stiff feedback control. To accentuate even further the
effect of feedback delay on the centralized PC, an additional 15 ms delay is artificially
introduced by using a data buffer. Thus, the high-level controller has a total of 22 ms
feedback delay.

An OSC is implemented in the mobile base using two different architectures.
First, the controller is implemented as a centralized process, which will be called
COSC, with all feedback processes taking place in the slow centralized processor and
none in the embedded processors. In this case, the maximum stiffness gains should
be severely limited due to the effect of the large latencies. Second, a distributed
controller architecture is implemented inspired by the one proposed in Fig. 4 but
adapted to a desired OSC, which will be called DOSC. In this version, the Cartesian
stiffness feedback servo is implemented in the centralized PC in the same way
than in COSC, but the Cartesian damping feedback servo is removed from the
centralized process. Instead, our study implements damping feedback in joint space
(i.e., proportional to the wheel velocities) on the embedded processors. A conceptual
drawing of these architectures is shown in Fig. 15. The metric used for performance
comparison is based on the maximum achievable Cartesian stiffness feedback gains,
and the Cartesian position and velocity tracking errors.

To implement the Cartesian stiffness feedback processes in both architectures, the
Cartesian positions and orientations of the mobile base on the ground are computed
using wheel odometry. To achieve the highest stable stiffness gains, the following
procedure is followed: (1) Cartesian stiffness gains are adjusted to zero while the
damping gains in either Cartesian space (COSC) or joint space (DOSC)—depending
on the controller architecture—are increased until the base starts vibrating; (2) the
Cartesian stiffness gains, on either architecture, are increased until the base starts
vibrating or oscillating; and (3) a desired Cartesian circular trajectory is commanded
to the base and the position and velocity tracking performance are recorded.

Based on these experiments, DOSC was able to attain a maximum Cartesian stiff-
ness gain of 140 N/(m kg) compared to 30 N/(m kg) for COSC. This result means that
the proposed distributed control architecture allowed the Cartesian feedback process
to increase the Cartesian stiffness gain (Kx in Fig. 16) by 4.7 times with respect to the
centralized controller implementation. In terms of tracking performance, the results
are shown in Fig. 15. Both Cartesian position and velocity tracking in DOSC are
significantly more accurate. The proposed distributed architecture reduces Cartesian
position root mean error between 62% and 65% while the Cartesian velocity root
mean error decreases between 45% and 67%.



5 Experimental validation 47

FI
G.

15

O
m

ni
di

re
ct

io
na

lm
ob

ile
ba

se
w

ith
di

st
rib

ut
ed

an
d

ce
nt

ra
liz

ed
O

SC
co

nt
ro

lle
rs

.A
s

a
pr

oo
fo

fc
on

ce
pt

,w
e

le
ve

ra
ge

th
e

pr
op

os
ed

di
st

rib
ut

ed
ar

ch
ite

ct
ur

es
to

ou
rr

ob
ot

ic
m

ob
ile

ba
se

de
m

on
st

ra
tin

g
si

gn
ifi

ca
nt

im
pr

ov
em

en
ts

on
tra

ck
in

g
an

d
st

ab
ili

ty
.



48 CHAPTER 2 Robotic systems with series elastic actuation

FIG. 16

Detailed distributed operational space control structure. The figure above illustrates details
of the distributed operational space controller used for the mobile base tracking
experiment. Λ∗

task and p∗
task are the operational space inertia matrix and gravity-based

forces, respectively. J∗
task is a contact consistent task Jacobin. More details about these

matrices and vectors can be found in Ref. [10]. Our main contribution for this experiment
lies in implementing operational space control in a distributed fashion and based on the
observations performed on the previously simplified distributed controller. While the
high-level operational space stiffness feedback loop suffers from large delays due to
communication latencies and artificial delays (added by a data buffer), the embedded-level
damping loop increases system stability. As a result, the proposed distributed architecture
enables to achieve higher Cartesian stiffness gains Kx for better tracking accuracy.

6 Discussions and conclusion
The motivation for this chapter has been to study the stability and performance
of distributed controllers where stiffness and damping servos are implemented in
distinct processors. These types of controllers will become important as computation
and communications become increasingly more complex in human-centered robotic
systems. The focus has been first on studying the physical performance of a simple
distributed controller. Simplifying the controller allows us to explore the physical
effects of time delays in greater detail. Based on this controller, we address the prob-
lem of impedance controller design and performance characterization of SEAs by
incorporating time delays and filtering over a wide frequency spectrum. In particular,
we proposed a critically damped controller gain selection method of the cascaded
SEA control structure. By uncovering the trade-off existing between impedance gains
and torque gains, we prove the optimality of our gain design criterion. We believe the
critically damped gain selection criterion can be applied to many types of SEAs and
robotics systems for performance analysis and optimizations.
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To confirm the observations and analytical derivations, hardware experiments
are carried out by using an actuator and a mobile base. In particular, the results
have shown that decoupling stiffness servos to slower centralized processes does
not significantly decrease system stability. As such, stiffness servo can be used to
implement OSCs which require centralized information such as robot models and
external sensors.
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