
High-Level Planner Synthesis for Whole-Body Locomotion in
Unstructured Environments

Ye Zhao, Ufuk Topcu and Luis Sentis

Abstract— Contact-based decision and planning methods are
increasingly being sought for task execution in humanoid
robots. However, formal methods from the verification and
synthesis communities have not been yet incorporated into the
motion planning sequence for complex mobility behaviors in
humanoid robots. This study takes a step toward formally
synthesizing high-level reactive task planners for whole-body
locomotion in unstructured environments. We formulate a two-
player temporal logic game between the contact planner and its
possibly adversarial environment. The resulting discrete plan-
ner satisfies the given task specifications expressed in a fragment
of temporal logic. The resulting commands are executed by
a low-level 3D phase-space motion planner algorithm. We
devise various low-level locomotion modes based on centroidal
momentum dynamics. Provable correctness of the low-level
execution of the synthesized discrete task planner is guaran-
teed through the so-called simulation relations. Simulations of
dynamic locomotion in unstructured environments support the
effectiveness of the hierarchical planner protocol.

I. INTRODUCTION

Many planning methods for mobility in humanoid robots
are designed and implemented in ad-hoc manners. In contrast
with existing techniques, we investigate formal-methods for
high-level task planner synthesis of humanoid robot be-
haviors. Although widely used in the mobile robot motion
planning community [1], [2], [3], formal verification and
synthesis methods are still an underexploited area within
the locomotion community. A possible reason is that legged
robots are high dimensional and possess under-actuated dy-
namics. To circumvent this difficulty, we propose a planning
strategy that leverages low-dimensional phase-space planning
models for locomotion [4]. In particular, locomotion trajec-
tories in the phase space are sequentially composed based
on determining keyframes states. An example scenario is
shown in Fig. 1. These type of dynamic behaviors need to
satisfy given task specifications in a provably correct manner.
We achieve this correctness by devising a hierarchical loco-
motion planner protocol to guarantee the correct low-level
execution of the high-level reactive planner.

Our objective is to synthesize a correct high-level reactive
task planner for the unified locomotion problem by using
formal methods. The main contribution of this work is to
devise a high-level planner switching strategy by solving
a two-player game between the contact planner and its

Ye Zhao and Luis Sentis are with the Human Centered Robotics
Laboratory, the Department of Mechanical Engineering, at The
University of Texas at Austin, USA (yezhao@utexas.edu,
lsentis@austin.utexas.edu)

Ufuk Topcu is with the Department of Aerospace Engineering and
Engineering Mechanics, at The University of Texas at Austin, USA
(utopcu@utexas.edu)

Fig. 1: A scenario of maneuvering in an unstructured environment via multi-contact
whole-body locomotion.

possibly adversarial unstructured environment. We employ
linear temporal logic [5] to specify whole-body locomotion
(WBL) behaviors. Different from abstraction-based methods
applied to continuous dynamical systems [6], locomotion
inherently exhibits hybrid dynamics prompting us to focus
on discrete planning synthesis. We rely on a discretization
of the phase space into keyframe states while we treat the
choice of transitions as adversaries in a two-player game.
We focus on the communication between the high level
task planner and the low level motion planner via switching
signals and the correctness of the interplay. We define various
low-level locomotion modes from a centroidal-momentum
model that specify the basic WBL behaviors. As an extension
from rough terrain locomotion [7], [4], we focus not only
on the whole-body locomotion but also on its response to
various unforeseen environmental events such as stair crack
and sudden appearance of a human in the scene. To the best
of our knowledge, this study is the first attempt to use formal
methods for WBL behaviors and task planner synthesis with
guarantee of correctness.

II. RELATED WORK

Formal methods for motion and task planning have been
widely investigated for mobile navigation [8], [9], [10].
The authors in [2] proposed an automated computational
framework for decentralized communications and control of
a team of mobile robots from global task specifications.
This work suffers from high computational complexity and
does not address reactive response to environmental changes.
To alleviate the computation burden, the work in [1] pro-
posed a receding-horizon-based hierarchical framework that
reduced a complex synthesis problem to a set of significantly

smaller problems of shorter horizon. The approach proposed
in [11] allows mobile robots to react to the environment
in real time. Deviating from the discretization approaches
aforementioned, Signal Temporal Logic (STL) [9] allows
to reason about dense-time, real-valued signals. Correspond-
ingly, quantitative semantics are admitted to define the extent
to which the specifications are satisfied or violated. This
property makes STL especially suitable to quantify robust-
ness measures [12]. Recently, the result of [8] extended the
STL to a probabilistic framework such that machine learning
methods can be used for safety control under uncertainty
and predictions. However, these mobile robots have simple
dynamics unlike humanoid robots.

More recently, formal methods have started to be used
in humanoid robotics, such as in robotic manipulation by
[13], [14]. However, formal methods are yet to be explored
for legged locomotion, or for more complex WBL tasks. An
abstraction based controller was proposed in [15] for bipedal
hybrid systems, but this work lacks provable correctness
guarantees, and the robot behavior is limited to level-ground
bipedal walking. Recently, the work in [16] proposed an end-
to-end approach to automatically implement a synthesized
LTL-based planner on an Atlas humanoid robot. Reaction
to low-level failures is formally incorporated by simply
terminating the execution. Nevertheless, the robot behaviors
are centered on manipulation and grasping tasks, and the
locomotion problem is briefly discussed. Differently from the
works above, our study focuses on the locomotion behaviors
within highly unstructured terrains and emphasizes the need
of using WBL responsive behaviors. Our interest focuses on
the decision policies for effective WBL behaviors.

On controller synthesis, a recent focus has been on prov-
able correctness of controllers [2], [11]. The work of [6]
extended the controller synthesis with guaranteed-correctness
to nonlinear switched systems and reacted to an adversarial
environment at runtime. Our approach follows this work
and designs suitable discrete abstractions by approxima-
tion techniques. Recently, The authors in [17] proposed a
multi-layered synergistic framework such that the low-level
sampling-based planner communicates with the high-level
discrete planner through a middle synergetic layer. This
hierarchy facilitates the interaction between high-level and
low-level planners. However their work is not geared towards
responding to sudden changes in the environment like we do.

Humanoid multi-contact planning and control are gaining
increasing attention [18], [19], [20]. A seminal work [18]
identified the rough terrain multi-contact locomotion as a
hybrid control problem while the work in [19] phrased
the multi-contact planning problem as a hierarchy that first
reasons about contacts, and then interpolates these contacts
by trajectories computed from a probabilistic planner. The
recent study in [21] uses internal force feedback control in
the framework of Whole-Body Operational Space Control to
achieve balancing on a challenging disjointed terrain. How-
ever, all these works focused on either static or quasi-static
mobility behaviors. Instead, our planning strategy is geared
towards highly dynamic behaviors, i.e., non-periodic multi-

Fig. 2: Logic-based planner structure. Each mode, indexed by a switching signal p,
corresponds to a locomotion model. Four modes are modeled for the maneuvering in
unstructured dynamic environments. The stair height is represented by the variable e
while the control action is represented by s describing the limb contact configuration.
The discretized phase-space keyframe is q = (pcontact, ẋapex).

contact dynamic locomotion over unstructured environments.

III. PRELIMINARIES AND PROBLEM FORMULATION

We formulate the locomotion planning problem as a
switched system, discuss temporal logic preliminaries and
propose a discrete task planner synthesis problem.

A. Switched Systems and Phase-Space Planning

The dynamics of an WBL process can be defined as

ξ̇(ζ) = fp
(
ξ(ζ),u(ζ)

)
, p ∈ P, (1)

where ξ(ζ) denotes the system state vector at ζ ∈ R≥0. The
phase progression variable ζ, analogous to time, represents
the current progression on a trajectory. u(ζ) denotes the
control input. The switching signal p indexes a specific
locomotion mode [22] and belongs to the set P . fp(·) denotes
a vector field associated with mode p. A logic-based switched
system is shown in Fig. 2. Given a sequence of switching
signals, the low-level motion planner evolves continuously
and computes the contact transitions as defined below.

Definition 1 (Phase-Space Contact Switch): A phase-
space contact switch, i.e., a contact transition, is defined by
the intersection of two adjacent phase-space trajectories [4].

Our contact-based switching strategy is especially suit-
able for non-periodic locomotion. Non-periodic stability is
defined as a progression map Φ between keyframe states,
that is, driving the robot’s center-of-mass from one de-
sired keyframe to the next one via the control input u,
i.e. (pcontactk+1

, ẋapexk+1
) = Φ(pcontactk , ẋapexk

,u), where
pcontactk and ẋapexk

denote the kth-step CoM sagittal po-
sition and velocity at the contact apex, respectively. To
accomplish unified locomotion behaviors, we will compose a
sequence of locomotion modes with planned keyframes. This
can be achieved by synthesizing a high-level task planner
protocol which makes proper contact decisions like the ones
shown in Fig. 3 and determines the switching strategy of the
low-level motion planner.

B. Preliminaries

We now define an open finite transition system and its ex-
ecution, describe temporal logic preliminaries and introduce
a specific linear temporal logic (LTL) formula.

Definition 2 (Open Finite Transition System): An open
finite transition system (OFTS) T S is a tuple,

T S := (Q,P, E ,S, T , I, AP,L), (2)

Fig. 3: Contact planning strategies according to rough terrains. We discretize the terrain height of the next walking step, and design it as the environment action. Given a moderate
upward or downward terrain height variation, there can be multiple nondeterministic contact actions. Two unexpected events, i.e., stair crack and human appearance, are treated
as emergent scenarios, and incorporated into the allowable environment. Detailed definitions of environment and system actions are provided in Section IV-A.

where Q is a finite set of states, P is a set of system
modes defined in Eq. (1), E is a finite set of uncontrollable
environmental actions, S is a finite set of controllable robot
contact actions, T ⊆ (Q × P) × E × S × (Q × P) is a
transition, I = Q0 × P0 ⊆ Q × P is a set of initial states,
AP is a set of atomic propositions, L : (Q×P)→ 2AP is a
labeling function mapping the state to an atomic proposition.
T S is finite if Q,P, E ,S and AP are finite.
The T S defined above is “open” because it has uncontrol-
lable actions E . Without loss of generality, it is assumed that
for every pair (q, p) ∈ Q × P , there exists at least one pair
(q′, p′) such that (q, p)

T−→ (q′, p′). The OFTS considered in
this study has non-deterministic transitions.

Definition 3 (Execution and word of an OFTS): An exe-
cution γ of an OFTS T S is an infinite path sequence
γ = (q0, p0, e0, s0)(q1, p1, e1, s1)(q2, p2, e2, s2) . . ., with
γi = (qi, pi, ei, si) ∈ Q × P × E × S and γi

T−→ γi+1.
The word generated from γ is wγ = wγ(0)wγ(1)wγ(2) . . .,
with wγ(i) = L(γi), ∀i ≥ 0.
The word wγ is said to satisfy a LTL formula ϕ, if and only
if the execution γ satisfies ϕ. If all executions of T S satisfy
ϕ, we say that T S satisfies ϕ, i.e., T S |= ϕ.

Linear temporal logic is an extension of propositional logic
that incorporate temporal operators. An LTL formula ϕ is
composed of atomic propositions π ∈ AP . The generic form
of a LTL formula has the following grammar,

ϕ ::= π
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ ϕ1 ∨ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1Uϕ2,

where the Boolean constants true and false are expressed
by false = ¬true and true = ϕ ∨ ¬ϕ, and we have the
temporal operators © (“next”), U (“until”), ¬ (“negation”)
and ∧ (“conjunction”). We can also define ∨ (“disjunction”),
⇒ (“implication”), ⇔ (“equivalence”). Another two key
operators in LTL are 3 (“Eventually”) and 2 (“Always”).
We can interpret them 3ϕ := true Uϕ for “Eventually” and
2ϕ := ¬3¬ϕ for “Always”.

LTL formulae are interpreted over an infinite
sequence of states (q,p). We define (qi,pi) =
(qi, pi)(qi+1, pi+1)(qi+2, pi+2) . . . as a run from ith

position. It is said that a LTL formula ϕ holds at ith

position of (q,p), represented as (qi, pi) |= ϕ, if and only
if ϕ holds for the remaining sequence of (q,p) starting at
ith position. As to more detailed LTL semantics, we refer
readers to the previous works [1], [11] and a brief summary
in the supplementary material1.

C. Discrete Task Planner Synthesis Formulation

Given the preliminaries above, we formulate a discrete task
planner synthesis problem and introduce a specific fragment
of the temporal logic for the task specifications.
Discrete Contact Planner Switching Synthesis: Given a
transition system T S and a LTL specification ϕ following
the assume-guarantee form,

ϕ :=
(
(ϕq ∧ ϕe)⇒ ϕs

)
, (3)

where ϕq represents the liveness assumption incorporating
the transience property to enforce the continuous trajectory
starting from a discretized region to eventually leave that
region [6] (in our study, ϕq represents that the phase-space
trajectory can not always use the same keyframe state);
ϕe and ϕs are the propositions for admissible environment
actions and correct overall system behaviors, respectively; we
synthesize a contact planner switching strategy γ that gener-
ates only correct executions (q, p, e, s), i.e., (q, p, e, s) |= ϕ.

To make the computation tractable, we employ a fragment
of LTL formulae with favorable polynomial complexity,
named as the Generalized Reactivity (1) (GR (1)) formulae
[23]. This class of formulae is expressed as, for v ∈ {e, s},

ϕv = ϕvinit
∧

i∈Isafety

2ϕvtrans,i
∧

i∈Igoal

23ϕvgoal,i, (4)

1https://drive.google.com/open?id=0B_
7VcYBOhr8uWlpGb3FqcGpMeWs

https://drive.google.com/open?id=0B_7VcYBOhr8uWlpGb3FqcGpMeWs
https://drive.google.com/open?id=0B_7VcYBOhr8uWlpGb3FqcGpMeWs

where ϕvinit are the propositional formulae defining initial
conditions. ϕvtrans,i refer to the transitional propositional for-
mulae (i.e., safety conditions) incorporating the state at next
step. ϕvgoal,i are the propositional formulae describing the
goals to be reached infinitely often (i.e., liveness conditions).

IV. UNIFIED LOCOMOTION TASK SPECIFICATIONS AND
PLANNER SYNTHESIS

We now introduce the model and the temporal logic
specifications for the high-level planner tasks in response
of the possibly adversarial environment actions.

A. Specifications for Environment and System Actions

This subsection defines an environment action set E and
a system action set S. Then we propose the corresponding
specifications for these actions. First, the environment action
is denoted by the set of the variation levels in the stair height

E := {emd, ehd, emu, ehu, esc, eha}, (5)

where the first four actions denote different compositions of
downward and upward stairs with moderate and huge height
variations, respectively. For instance, emd denotes moder-
ateDownward. The last two actions esc and eha represent
unexpected events: stairCrack and humanAppear.

Given these environment actions, the system actions of the
robot are denoted by a contact configuration set

S := {ali-aj , ∀(i, j) ∈ Aindex}, (6)

where the indices ‘l’ and ‘a’ are short for leg and arm,
respectively. (i, j) corresponds to the contact limb. We have
Aindex = {(h, n), (h, h), (h, f), (n, f), (d, h), (d, f)}, where
the letters ‘h’, ‘f ’, ‘d’ and ‘n’ represent hind, fore, dual and
no contacts, respectively. For instance, alh-af denotes the
legHindArmFore contact configuration.

We now design environment and system action specifica-
tions. The environment actions are assumed not to occur at
the initial time, and therefore ϕeinit = ¬esc ∧ ¬eha. Accord-
ingly, the robot can initially not take the actions designated
for these unexpected events, i.e., ϕsinit = ¬aln-af∧¬(ald-ah∨
ald-af). Transitional and goal specifications are defined next
• (S0) None of the huge terrain height variations (i.e.,

hugeDownward or hugeUpward), humanAppear and
stairCrack occur in two consecutive steps,

2(ehd ⇒©¬ehd)
∧

2(ehu ⇒©¬ehu)∧
2(eha ⇒©¬eha)

∧
2(esc ⇒©¬esc).

• (S1) In normal scenarios, the mappings between envi-
ronment and system actions, as illustrated in Fig. 3, are
specified by

2(emd ⇒ (alh-an ∨ alh-ah ∨ alh-af))∧
2
(
emu ⇒ (alh-an ∨ alh-ah ∨ alh-af)

)∧
2(ehu ⇒ alh-ah)

∧
2(ehd ⇒ alh-af),

where moderate terrain variations allow more non-
deterministic contact actions than those allowed by

Fig. 4: Phase-space discretization for the next walking step. We choose a rational
phase-space region based on robot kinematics, and uniformly discretize this region. The
keyframe state (pcontact, ẋapex) is determined according to environment actions.

huge terrain variations. For instance, if e = ehu, i.e.,
hugeUpward, the robot has only one action option,
which makes its hind arm in contact such that its CoM
gains a larger acceleration to step up as shown in Fig. 3.

• (S2) If a stair crack occurs, the robot will grab a handle
on the ceiling wall (i.e., aln-af). On the contrary, when
the stair is not cracked, we obviously have a 6= aln-af :

2(esc ⇒ aln-af)
∧

2(¬esc ⇒ ¬aln-af).

• (S3) If a human appears in front of the robot, the robot
comes to a stop with the action ald-af . Contrarily, when
the human disappears, the robot starts to walk from
where it stops:

2
(
eha ⇒ (ald-ah ∨ ald-af)

)∧
2
(
¬eha ⇒ ¬(ald-ah ∨ ald-af)

)
.

• (S4) Neither unexpected events (i.e., humanAppear and
stairCrack) occur infinitely often:

23¬eha
∧

23¬esc.

Among these specifications, we have (S0) representing
ϕetrans, (S1)-(S3) representing ϕstrans and (S4) representing
ϕegoal, where ϕetrans, ϕ

s
trans and ϕegoal are defined in Eq. (4).

Currently, the contact action specifications above are de-
signed in a heuristic manner. We leave the optimal LTL
design of contact actions for future work.

B. Specifications for Keyframe States

Our discrete phase-space motion planner has a keyframe
state vector q = {pcontact, ẋapex} as defined in Section III-A.
Since we always focus on the keyframe state for next walking
step, the discretization of a particularly selected phase-space
region is shown in Fig. 4. Then the keyframe states are
represented by

Q := {qi-j , ∀(i, j) ∈ Qindex}
⋃
{qswing, qstop}, (7)

where the apex velocity index i and the step length index j
are assigned to three different “levels of degree” (LOD): s
(Small), n (Normal) and l (Large). For instance, qs-l repre-
sents velSmallstepLarge, a keyframe with a small apex veloc-
ity and a large step length. The index set Qindex comprises

9 elements in total. Additionally, two more keyframe states
qswing (velSwingstepSwing) and qstop (velStopstepStop) are
designed as unexpected events. A future work is to propose
a phase-space partition refinement for the keyframe state.

Remark 1: While we use a fixed discretization over the
range of CoM apex velocity and step length, finer or varying
discretization may enhance the flexibility of the method at
the expense of increase computation cost.

Given environment actions, the propositions for the
keyframe states are designed as follows.

• (S5) If ©e = ©emd (i.e., moderateDownward), the
LOD for the next keyframe state ©q remains constant
or increases by one either from step length or apex
velocity:

2
(
(qs-s ∧©emd)⇒©(qs-s ∨ qs-n ∨ qn-s)

)∧
2
(
(qs-n ∧©emd)⇒©(qs-n ∨ qs-l ∨ qn-n)

)
. . .∧

2
(
(ql-n ∧©emd)⇒©(ql-n ∨ ql-l)

)∧
2
(
(qn-l

∧©emd)⇒©(qn-l ∨ ql-l)
)∧

2
(
(ql-l ∧©emd)

⇒©ql-l
)∧

2

((
(qswing ∨ qstop) ∧©emd

)
⇒©(qs-n ∨ qn-n ∨ ql-n)

)
,

where, if q = qs-s,©q can be qs-s (remaining constant),
qs-n (step length increases one degree) or qn-s (apex
velocity increases one degree). All the other keyframes
in normal scenarios follow the same pattern. There are
three special cases: (i) when q = ql-n, there are only
two choices for ©q, i.e., ql-n and ql-l; (ii) the same
situation applies to qn-l; (iii) when q = ql-l, the only
choice is ©q =©ql-l. In unexpected cases, we assign
©q as one of qs-n, qn-n and ql-n.

• (S6) If e = esc (i.e., stairCrack), then q = qswing

regardless of the previous q:

2(esc ⇒ qswing).

Note that qswing is excluded from the previous state q
since we specify that a stair crack can not appear two
steps consecutively as shown in (S0).

• (S7) If e = eha (i.e., humanAppear), then q = qstop
regardless of the previous q:

2(esc ⇒ qstop).

The remaining eight normal scenarios involving different
environment and system action compositions are defined
in a similar pattern and they are omitted here for brevity.
The aforementioned supplementary material illustrates one
scenario when e = ehd (i.e., hugeDownward). All the speci-
fications in (S5)-(S7) represent ϕetrans. The goal specification
ϕsgoal in our scenario is trivial, that is, repeatedly selecting
contact configurations among S. Now all the specifications
have been proposed, and ϕ =

(
(ϕq ∧ ϕe)⇒ ϕs

)
holds.

Fig. 5: A fragment of the synthesized automaton for the WBL contact planner. Nonde-
terministic transitions are encoded in this automaton. The blue transitions represent a
specific execution. For illustration convenience, we index both the environment action
E in Eq. (5) and the system action S in Eq. (6) as {0, . . . , 5} in order, respectively.
The system keyframe state Q is indexed as {0, . . . , 10} in order. For instance, when
the automaton state is at number 25, we have environment state e = 0 and keyframe
q = 4. The winning strategy assigns system action s = 2 and system switching mode
p = 4.

C. High-Level Reactive Task Planner Synthesis

Given the task specifications, we now synthesize a reac-
tive planner by formulating the high-level WBL planning
problem as a game between the robot and its environment.

Definition 4 (Game of the WBL Task Planner): A game
for the whole-body locomotion task planner is a tuple

G := 〈V,X ,Y, θi, θo, ρi, ρo, φwin〉,

where X := E × Q is a set of input variables for player
1; Y := S × P is a set of output variables for player 2;
V = X ×Y is a finite set of proposition state variables over
finite domains in the game; θi and θo are atomic propositions
characterizing initial states of the input and output variables,
respectively; ρi(V,X ′) and ρo(V,X ′,Y ′) are the transition
relation for the input and output variables at next step,
respectively; φwin is the winning condition given by an LTL
formula.
A winning strategy of the switched system for
the pair (T S, ϕ) is defined as a partial function
(γ0γ1 · · · γi−1, (qi, ei)) 7→ (si, pi), where a switching
mode and a contact configuration are chosen according
to the state sequence history and the current keyframe
state and environment action in order to satisfy Eq. (3).
All the specifications are satisfied whatever admissible yet
uncontrollable environment actions are.

Proposition 1 (Existence of A Winning WBL Strategy):
A winning WBL strategy exists for the game G in
Definition 4 if and only if (T S, ϕ) is realizable.

Fig. 5 shows an automaton fragment of the WBL contact
planner. Self-transition exists in moderateUpward states (e.g.,
state 16) and moderateDownward states (e.g., state 12 and 25)
while hugeDownward states (e.g., state 15) do not have a self-
transition according to proposition (S1). There is no transi-
tion between states 12 and 16 due to infeasible keyframe
state transition. States 18 and 19 in red nodes represent
humanAppear and stairCrack scenarios, respectively.

Fig. 6: Sagittal CoM phase-space trajectories and mode switchings for a 20-step WBL
maneuver. The top four figures illustrate phase-space manifolds of the four locomotion
modes. The mode switching is governed by the synthesized high-level contact planner.
Among these steps, two stair crack and one human appearance are taken into account.

Remark 2: The synthesized automaton incorporates non-
deterministic transitions, caused by the following reasons:
(i) Environment actions are non-deterministic. (ii) Given
an environment action, several non-deterministic keyframe
states can be chosen. (iii) Even when both an environment
action and a keyframe state are given, non-deterministic
system contact actions exist in certain transitions.

V. LOW-LEVEL LOCOMOTION MODES

Given the high-level discrete task planner, let us design a
three-dimensional phase-space motion planner that consists
of a set of locomotion modes and composes them sequen-
tially to guarantee the correctness of overall implementation.
To begin with, we introduce centroidal momentum dynamics
in a general sense. Dynamics of mechanical systems can
be represented by their rate of linear and angular momenta,
which are affected by external wrenches (force/torque) ex-
erted on the system. We characterize this class of dynamical
systems via the balance of moments around the system’s
centroid.

l̇ = mp̈com =

Nc∑
i

f i +mg, (8)

k̇ =

Nc∑
i

(pi − pcom)× f i + τ i, (9)

where l ∈ R3 and k ∈ R3 represent the centroidal
linear and angular momenta, respectively. f i ∈ R3 is
the ith ground reaction force, m is the total mass of the
robot, g = (0, 0,−g)T corresponds to the gravity field,
f com = mp̈com = m(ẍ, ÿ, z̈)T is the vector of center-of-
mass inertial forces. Eq. (8) represents the rate of spatial
linear momentum is equal to the total linear external forces.
pi = (pi,x, pi,y, pi,z)

T is the position of the ith limb
contact position. τ i ∈ R3 is the ith contact torque. Eq. (9)
reveals that the rate of angular momentum is equal to the
sum of the torques generated by contact wrenches at the
CoM. Given this general model, certain assumptions are

commonly imposed to make the problem tractable [24]. In
our case, four specific locomotion modes, under different
mild assumptions, are proposed according to specific WBL
contact configurations.
Mode (a): Prismatic Inverted Pendulum Model. For single
foot contact, Eq. (9) is simplified to (pcom−pfoot)×(f com+
m g) = −τ com. Given a piece-wise linear CoM path surface
to follow, the system dynamics are expressed as(

l̇x
l̇y

)
= m · ω2

PIPM

(
x− xfoot − τy

mg

y − yfoot − τx
mg

)
,

where lx and ly are linear momenta aligned with sagittal
and lateral directions as defined in Eq. (8). The PIPM
phase-space asymptotic slope [4] is defined as ωPIPM =√
g/zapexPIPM, z

apex
PIPM = (a · xfoot + b − zfoot), where a and

b are the slope and constant scalars for the piecewise linear
CoM path surface ψCoM(x, y, z) = z − ax − b = 0. Thus,
dynamics in vertical direction are represented by l̇z = al̇x
and not explicitly shown here. The control input is u =
(xfoot, yfoot, ωPIPM, τx, τy)T . For more details, please refer
to the result in [4].
Mode (b): Pendulum Model. When the robot grasps the
hook on the ceiling wall to swing over an unsafe region, the
system dynamics can be approximated as a pendulum model
(PM). For a single arm contact, we have(

l̇x
l̇y

)
= −m · ω2

PM

(
x− xarm − τy

mg

y − yarm − τx
mg

)
,

where similarly we can define ωPM =
√
g/zapexPM , zapexPM =

(zarm−a ·xarm−b), with the same parameter definitions and
CoM path surface in Mode (a). A difference between Modes
(a) and (b) lies in that PM dynamics are stable since the
CoM is always attracted to move towards the apex position
while the PIPM dynamics are not.
Mode (c): Stop-Launch Model. When a human appears, the
robot has to come to a stop and wait until human disappears.
The task in this mode consists on decelerating the CoM
motion to zero and accelerating it from zero again. We name
this model as a stop-launch model (SLM).

l̇x = max, l̇y = may, l̇z = maz,

where the control input u = (ax, ay, az)
T are CoM accel-

erations. For simplicity, constant accelerations are used and
the resulting phase-space trajectory is a parabolic manifold.
More elegant acceleration profiles can be designed as needed.
Mode (d): Modified Multi-Contact Model. In this mode,
a new multi-contact model is proposed built upon the cen-
troidal momentum, and we name it the modified multi-
contact model (MMCM). To make the dynamics tractable,
we assume a known constant vertical acceleration az in each
step and neglection of the angular momentum kz around z-
axis [24]. Therefore, we have a constant resultant vertical
external force, i.e.,

∑Nc

i fi,z = m(az − g). Since our robot
has point contacts, τ i = 0,∀i ≤ Nc, and the dynamics are

Fig. 7: Environment actions, system actions and keyframe states of 50 walking
steps according to the synthesized automaton. Actions and states are indexed by
numbers. Unexpected events, i.e, human appearance and stair crack, are highlighted
in the shaded regions. In the second subfigure, the numbers 0-4 on the vertical
axis correspond to {0, 0.4, 0.6, 0.8, 1.7} m/s for next step apex velocity and
{0.15, 0.5, 0.6, 0.7, 0.6} m for next step step length.

derived as

l̇x

l̇y

k̇x

k̇y

 =

∑Nc

i fi,x∑Nc

i fi,y

−m(az − g)y + z
∑Nc

i fi,y −
∑Nc

i pi,zfi,x

+
∑Nc

i pi,zfi,z

m(az − g)x− z
∑Nc

i fi,x +
∑Nc

i pi,zfi,x

−
∑Nc

i pi,yfi,y

,

where kx and ky are angular momenta aligned with
x and y directions as defined in Eq. (9). State vec-
tor ξ = (x, y, lx, ly, kx, ky)T and control input u =
(f1,x, f1,y, f1,z . . . fNc,x, fNc,y, fNc,z)

T . The control inputs
in this mode are the contact forces. These contact forces need
to satisfy friction cone constraints while maximizing CoM
accelerations. For the four modes above, time synchroniza-
tion between sagittal and lateral dynamics is guaranteed by
a Newton-Raphson foot placement searching algorithm [4].
Via these modes, the switching mode set is defined as

Definition 5 (Switching Mode Set): A phase-space plan-
ner switching mode set P is defined as

P := {PIPM,PM,SLM,MMCM}.
Given a switching signal commanded from the high-level
task planner, the low-level phase-space motion planner gen-
erates the continuous CoM trajectory and computes the mode
switching event, i.e., walking step transition.

VI. CORRECTNESS OF THE WBL TASK PLANNER

In this section, we prove the correctness of the low-level
motion planner implementations in Section V for the discrete
contact planner in Section IV-C. To begin with, we define
the low-level trajectory as δ = (ξ, ρ, η, σ). The high-level
execution is defined as γ = (q, e, s, p) in Definition 3.

Definition 6: The low-level trajectory δ is a continuous
implementation of the high-level execution γ, if there exists
a sequence of non-overlapping phase intervals H = H1 ∪
H2 ∪H3 . . . and ∪∞i=1Hi = R+ such that ∀ζ ∈ Hk,∀k ≥ 1,
the following mappings hold

ξ(ζ) ∈ T−1(qk), ρ(ζ) = ek, η(ζ) = sk, σ(ζ) = pk,

where T represents an abstraction mapping, which maps a
certain continuous state ξ region into a discrete state q [6].
By this definition and stutter-equivalence [5], we can con-
clude δ |= ϕ if and only if γ |= ϕ. Additionally, if the left
boundary point of Hk approaches to infinity as k →∞, the
continuous implementation guarantees the Zeno behavior to
be ruled out. For detailed explanations, reader can refer to
[6] and the reference therein. Given these preliminaries, we
have the following theorem:

Theorem 1 (Correctness of The WBL Task Planner):
Given an over-approximation model and assuming Zeno
phenomenon already ruled out, a winning WBL strategy
synthesized from the two-player game is guaranteed to
be correctly implemented by the underlying low-level
phase-space motion planner.

Proof: The theorem above can be proved as follows.
From the previous proposition in Section 1, a winning WBL
strategy synthesized from the WBL task planner game solves
the discrete locomotion planning problem. To study the cor-
rectness, we start by elaborating an over-approximated model
of our locomotion motion planner. Initially, all the possible
transitions in a given keyframe discretization (as shown in
Fig. 4) are modeled in the finite transition system. According
to environment actions and the LOD principle defined in
proposition (S5) of Section IV-B, we remove unnecessary
transitions and obtain a more accurate over-approximation
model. Given this model, a winning switching strategy, repre-
sented as an automaton AWBL, is synthesized by solving the
two-player game. According to AWBL, a sequence of system
actions s and switching modes p are derived from a certain
sequence of environment actions e and discretized keyframe
states q. To verify the correct implementation of a certain
execution γ, we use the switching strategy semantics: given
an initial state ξ(0) and an initial environment action ρ(0) =
e0, we assign η(0) = s0 and σ(0) = p0 according to AWBL.
Then the continuous dynamics ξ(ζ) evolve by following a
specific mode ξ̇ = fp0(ξ,u). Once a new environment action
e′ is detected and this action satisfies all the environment
assumptions, the switching mode p is updated immediately
based on AWBL. Given this new switching mode, the same
procedure is repeated as above. Therefore, it is proved that
the low-level trajectory correctly implements one discrete
execution of the synthesized automaton.

VII. IMPLEMENTATION RESULTS

In this section, we demonstrate our WBL results by
combining the task planner and the low-level motion planner
via switched modes. Keyframe state Q is decomposed into
two states: apex velocity and step length. For either state,
Small, Normal and Large labels are assigned to {1, 2, 3} in

Fig. 8: Snapshots of WBL motions and continuous CoM vertical kinematic trajectories.
The snapshots show a sequence of primary behaviors including swinging motion over
the cracked stair and stopping motion when a human appears unexpectedly. The figure
at the bottom shows the CoM vertical position trajectory (orange thick line), hand and
feet trajectories (thin interlaced lines).

order while Stop and Swing labels are assigned to {0, 4}.
The Temporal Logic Planning (TuLiP) toolbox, a python-
based embedded control software [1], is used to synthesize
the discrete contact planner. Realizability of this planner
is checked by an off-the-shelf function. If the specifica-
tions are realizable, the synthesized planner is guaranteed
by construction to satisfy all the proposed specifications.
Our resulting discrete task planner is represented by a
finite state automaton with 27 states and 148 transitions.
Fig. 7 illustrates discrete environment and system actions,
and their corresponding keyframe states. For the low-level
implementation, four modes are alternated according to the
high-level switching protocol. Fig. 6 shows the synthesized
CoM sagittal phase-space trajectory of a 20-step walking.
Fig. 8 illustrates dynamic motion snapshots and continuous
kinematic trajectories of the vertical CoM, feet and hands. An
accompanying video about the WBL behaviors is available at
https://youtu.be/urp7xu8vx3s. Currently, we are
leveraging the proposed planner synthesis to more general-
ized locomotion behaviors, such as locomotion with steering
directions and maneuvering in cluttered environments.

VIII. CONCLUSIONS

This work employs temporal-logic-based formal meth-
ods to synthesize high-level reactive task planners for the
complex locomotion behaviors in unstructured environments.
Contact decisions are determined according to the synthe-
sized switching protocol. A particular focus has been given
to the correctness of the overall implementation from the
high-level task planner to the low-level motion planner. We
proposed new locomotion models at the low-level to deal
with complex dynamic motions. The proposed hierarchical
planning framework is validated through simulations of WBL
maneuvers in an unstructured environment. We expect that
this line of work acts as an entry point for the humanoid
robotics community to employ formal methods to verify and
synthesize planners and controllers.

REFERENCES

[1] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Autom. Control, vol. 57, no. 11,
pp. 2817–2830, 2012.

[2] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[3] J. Fu and U. Topcu, “Synthesis of joint control and active sensing
strategies under temporal logic constraints,” IEEE Transactions on
Automatic Control, 2016.

[4] Y. Zhao, B. Fernandez, and L. Sentis, “Robust phase-space planning
for agile legged locomotion over various terrain topologies,” Robotics:
Science and System, 2016.

[5] C. Baier, J.-P. Katoen et al., Principles of model checking. MIT press
Cambridge, 2008.

[6] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans.
Autom. Control, vol. 58, no. 7, pp. 1771–1785, 2013.

[7] J. Englsberger, C. Ott, and A. Albu-Schaffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
IEEE Transactions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[8] D. Sadigh and A. Kapoor, “Safe control under uncertainty with prob-
abilistic signal temporal logic,” in Proceedings of Robotics: Science
and Systems, AnnArbor, Michigan, June 2016.

[9] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control. ACM, 2015, pp. 239–248.

[10] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-
Gazit, “Collision-free reactive mission and motion planning for multi-
robot systems,” in International Symposium on Robotics Research,
September 2015.

[11] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[12] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, 2015.

[13] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in IEEE-
RAS International Conference on Robotics and Automation, 2015, pp.
346–352.

[14] S. Chinchali, S. C. Livingston, U. Topcu, J. W. Burdick, and R. M.
Murray, “Towards formal synthesis of reactive controllers for dexter-
ous robotic manipulation,” in IEEE-RAS International Conference on
Robotics and Automation, 2012, pp. 5183–5189.

[15] A. D. Ames, P. Tabuada, B. Schürmann, W.-L. Ma, S. Kolathaya,
M. Rungger, and J. W. Grizzle, “First steps toward formal controller
synthesis for bipedal robots,” in International Conference on Hybrid
Systems: Computation and Control, 2015, pp. 209–218.

[16] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit, “Reactive high-level behavior synthesis for an atlas humanoid
robot,” in IEEE-RAS International Conference on Robotics and Au-
tomation, 2016, pp. 4192–4199.

[17] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
hybrid dynamics and temporal goals,” in IEEE Conference on Decision
and Control, 2010, pp. 1108–1115.

[18] T. Bretl, “Motion planning of multi-limbed robots subject to equilib-
rium constraints: The free-climbing robot problem,” The International
Journal of Robotics Research, vol. 25, no. 4, pp. 317–342, 2006.

[19] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-
comotion planning,” in IEEE-RAS International Conference on Hu-
manoid Robots, 2005, pp. 7–12.

[20] G. C. Thomas and L. Sentis, “Towards computationally efficient plan-
ning of dynamic multi-contact locomotion,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016.

[21] D. Kim, Y. Zhao, G. Thomas, B. Fernandez, and L. Sentis, “Stabilizing
series-elastic point-foot bipeds using whole-body operational space
control,” IEEE Transactions on Robotics, In Press, 2016.

[22] D. Liberzon, Switching in systems and control. Springer Science &
Business Media, 2012.

[23] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar,
“Synthesis of reactive (1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911–938, 2012.

[24] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko,
and E. Yoshida, “Model preview control in multi-contact motion-
application to a humanoid robot,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2014, pp. 4030–4035.

https://youtu.be/urp7xu8vx3s

	INTRODUCTION
	Related Work
	Preliminaries and Problem Formulation
	Switched Systems and Phase-Space Planning
	Preliminaries
	Discrete Task Planner Synthesis Formulation

	Unified Locomotion Task Specifications and Planner Synthesis
	Specifications for Environment and System Actions
	Specifications for Keyframe States
	High-Level Reactive Task Planner Synthesis

	Low-level Locomotion Modes
	Correctness of The WBL Task Planner
	Implementation Results
	Conclusions
	References

