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Abstract— This paper describes a hierarchical solution con-
sisting of a multi-phase planner and a low-level safe controller to
jointly solve the safe navigation problem in crowded, dynamic,
and uncertain environments. The planner employs dynamic
gap analysis and trajectory optimization to achieve collision
avoidance with respect to the predicted trajectories of dynamic
agents within the sensing and planning horizon and with
robustness to agent uncertainty. To address uncertainty over
the planning horizon and real-time safety, a fast reactive safe
set algorithm (SSA) is adopted, which monitors and modifies the
unsafe control during trajectory tracking. Compared to other
existing methods, our approach offers theoretical guarantees
of safety and achieves collision-free navigation with higher
probability in uncertain environments, as demonstrated in
scenarios with 20 and 50 dynamic agents.

I. INTRODUCTION

Deploying mobile robots ubiquitously requires that they
can safely and reliably accomplish navigation tasks in
crowded, dynamic, and uncertain real world settings.
Traversing such environments can be challenging as the robot
system is expected to plan online, handle the uncertainty, and
establish the safe action to avoid multiple moving agents
[1]. Current methods have made progress towards this goal,
drawing from hierarchical navigation, control theory, deep
learning, and optimization. This paper leverages progress on
these fronts to establish an online, hierarchical approach to
trajectory synthesis in crowded, dynamic environments.

A hierarchical navigation coordinates multiple approaches
operating at different temporal and spatial scales [2–5],
so as to exploit the advantages of the chosen approaches
while offsetting their limitations. Gap-based planners detect
passable free-space in local environments while relying on an
approximate global path planner. However, current methods,
like potential gap (PGap), are designed for static environ-
ments without dynamic agents [5–8]. Optimization-based
planning methods generate collision-free optimal trajectories
as long as the objective function and constraints are well
defined. The challenge lies in real time computation require-
ment and designing the optimization problem [9]. Reactive
algorithms, like potential field method (PFM) [10], control
barrier function (CBF) [11], and safe set algorithm (SSA)
[12], only consider one-step safe control calculation and can
get stuck in local minima [13]. Learning-based planning and
navigation in crowded environments lack safety guarantees,
even if there is an extensive training phase [14–16].

We design a hierarchical navigation solution consisting of
a high-level planner for long-term safety and robustness, and
a low-level controller for online short-term safety guarantee.
The planner layer itself is hierarchical and consists of three
components. First, dynamic agents gap analysis (DAGap) is

proposed to handle spatio-temporally evolving gaps and to
synthesize trajectories for detected gaps. While the DAGap-
generated trajectory considers specific pairwise agent group-
ings, the top two candidates warm start the convex feasible
set (CFS) optimizer, which enforces hard safety constraints
for all sensed agents while minimizing a trajectory optimiz-
ing objective function. To improve robustness, an uncertainty
analysis module is proposed to estimate high-confidence
bounds on the prediction errors of agents’ positions for
influencing a safety distance parameter. At the controller
layer, adopting the fast reactive safe set algorithm (SSA)
monitors and online modifies any unsafe actions to reduce
collisions caused by computation delay or trajectory tracking
errors. The key contributions are summarized below:

• Dynamic agent gap analysis for simplifying the can-
didate spatio-temporally evolving solution space and
synthesizing candidate trajectories.

• Hierarchical use of DAGap multi-trajectory synthesis
followed by CFS trajectory optimization for scaling the
agents under consideration.

• High-confidence error bound estimation for use within
the safety components of DAGap planning and CFS
optimization, with provably high probability safety in
uncertain environments.

• Analysis and benchmarking of the proposed solution
relative to two hierarchical navigation methods ARENA
[17] and DRRT-ProbLP [18], and empirically shown to
be safer.

II. RELATED WORK

A. Path Planning in Dynamic Environments

Robotic path planning in static environments is a thor-
oughly studied problem that can typically be solved very
efficiently. However, planning in the dynamic environment,
especially in crowded dynamic environment, is still challeng-
ing because time is added as an additional dimension to
the search-space and requires real-time replanning to deal
with unprecedented situations in the future. To overcome
the online computation challenges, dynamic A* and other
incremental variants of classical planning are proposed which
can correct previous solutions when updated information is
received, so that the ego vehicle can safely interact with
several dynamic agents [19][20][21]. However, they assume
the agents to be static and rely on repeatedly replanning to
generate collision-free paths, which may cause suboptimality.
Restricting the search space by filtering out unsafe subspace
is also very common. For example, SIPP eliminates collision
intervals and searches in contiguous safe intervals [22] and



ICS filters out the inevitable collision states when searching
the waypoints [23]. Besides, sampling-based planning is
a classic concept and various strategies are proposed to
handle moving agents, including sampling the control from
robot’s state × time space [24] and sampling the robot
movement based on the distribution of target goal and agents
[18]. Optimization-based algorithms are used to compute
smooth and collision-free paths in dynamic environments
by setting proper cost functions and constraints [9][25][26].
The downside is that the optimization problem is highly
nonconvex which comes from the highly nonlinear inequality
constraints, and is computationally expensive.

B. Reactive Collision Avoidance

Reactive approaches are extensively studied to compute an
immediate action that would avoid collisions with obstacles.
Energy-based reactive methods, include CBF [27], SSA [12]
and sliding mode algorithm [28], usually design a scalar en-
ergy function to achieve set-invariant control. The underlying
assumption is that the dynamics of the system should be
known. With the dynamic information, they can correctly and
quickly solve an optimization problem to drive the energy
function in the negative direction whenever the system state
is outside of the safe set. Different from energy-based
methods, gradient-based reactive methods like potential field
method and its variants don’t need the knowledge about
system dynamics and offer simple computations [5][29][30].
However, they lack of consideration for robot kinematics and
dynamics and do not have sound safety guarantees. Optimal
reciprocal collision avoidance [31] and reciprocal velocity
obstacles [32] derive the collision-free motion based on the
definition of velocity obstacles. But they assume all agents’
movements follow certain policies while this assumption is
not always valid in the real world. Besides, reinforcement
learning methods are becoming popular for safe navigation
in crowded environments, however, purely learning based
methods lack the safety guarantee even after long time
training [14][15][16]. Recent safe learning algorithms use
CBF or SSA as action monitor to keep modifying actions
generated from the policy and achieve a low collision rate for
safety-critical tasks [13][33]. When these reactive methods
are tested in challenging environments which require long-
term planning, however, they may stuck in local minimal or
lead to oscillations and cause collision because of their my-
opic property. To offset these limitations, some studies build
hierarchical path planning consisting a low-level collision
avoidance controller and a high-level planner [4][17].

C. Gap-based Navigation

Local planners using the representations of perception
space can gain computational advantages by minimally pro-
cessing the sensor data and recasting local navigation as an
egocentric decision process [34][8]. Following this idea, gap-
based approaches aim at detecting passable free-space, which
is defined as a set of “gaps” comprised of beginning and
ending points, from 1D laser scan measurements. Because
of the detected collision-free regions, gap-based methods

are compatible with other hierarchical navigation strategies
to improve the safety of the synthesized trajectories [6][7].
For example, egoTEB combines the representation of gap re-
gions with the trajectory optimization method timed-elastic-
bands (TEB) [35], which produces and optimizes multiple
trajectories with distinct topologies [8]. As a soft-constraint
optimization approach, however, egoTEB cannot guarantee
that optimized trajectory will fully satisfy all constraints
and the poses of a trajectory may jump over an obstacle.
Besides, the potential gap approach considers the integration
of gap-based navigation with artificial potential field (APF)
methods to derive a local planning module that has provable
collision-free properties [5]. However, all previous gap-based
navigation methods are designed for static environments
without dynamic agents. The intent of this study is to explore
more deeply the gap representations in environment with
crowded dynamic agents.

III. METHODOLOGY

We first give an overview of PGap pipeline and our solu-
tion Hierarchical DAGap (H-DAGap) to show the difference
between them in fig. 1. PGap pipeline detects the gaps,
synthesizes the trajectories for each gap by following the
gradient field and pick the one with highest score. The
PGap navigation is designed to find out the affordance free
space in static environment, while DAGap aims to search
feasible trajectories in spatio-temporal space. Moreover, a
computational efficient trajectory optimization method CFS
and uncertainty analysis are exploited in the planner to
improve the safety and robustness of trajectories. The high-
level planning happens in child thread while the agent state
estimation and low-level safe controller are executed in the
main thread, see fig. 2. We will explain the details in the
following subsections.

A. Dynamic Agent Gap Analysis

1) Inflated Agent Gap Detection: When a new laser scan-
like measurement L (360◦)–consisting of n measurements of
dynamic agents within the maximum sensing range dmax–
is available, we first pass the measurement into a Kalman
filter module to estimate the agents’ positions and velocities.
Then we use L in our dynamic agent gap (DAGap) analy-
sis module, containing two components: inflated agent gap
detection which leads to a set of gap GS and dynamic gap
analysis which synthesizes a trajectory for each gap G ∈ GS.

Inflated agent gap detection inflates the range measure-
ment L of agents by expanding the radii of the agents
(to rins) to allow the robot to be treated as a point [8].
To guarantee the distance between any points inside the
gap region and the agents is larger than rins when passing
through the gap, we calculate the tangent points from the
robot to the inflated circle as gap endpoints, see fig. 4. Each
agent’s inflation radius is adjusted based on its Kalman filter
estimation covariance to ensure safety with higher probability
(refer to section III-C). Let i be a circular index of the inflated
measurement Linf , we perform a clockwise pass through
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Fig. 1: Comparison between potential gap (PGap) in [5] (left) and our proposed Hierarchical DAGap (H-DAGap) (right).
The goal is given from a globally scaled problem, DAGap operates on locally scaled problems using paired agents, CFS
enlarges the problem to all sensed agents, and SSA operates at every step with the unsafe agents.
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Fig. 2: Parallel computation architecture. The Kalman filter
and SSA controller are run in one thread while the high-level
planner is executed in another thread.

Linf and look for candidate gaps satisfying the following
two requirements:

1) Large range difference: |Linf
l (i+1)−Linf

r (i)| > 2rins
2) Large angle difference: |θl(i+ 1)− θr(i)| > θthre,

l, r means the left or right tangent point, θ(i) is the scan angle
associated to index i and θthre is a user defined parameter.
The candidate gap is paired up by right tangent point of
previous agent and left tangent point of next agent. When
there is a wide open gap between two agents, for example
agent1 and agent2 in fig. 3a, we split it into multiple passable
gaps by putting static fake agents at a user defined interval.
If there is only one or no agent detected, we simply use
the straight-line local planner that travels in a straight line
towards the target goal.

2) Dynamic Gap Analysis: Two problems need to be
answered here: first, how to synthesize the trajectory to
accommodate to the spatio-temporal dynamics of an open
gap? For this question, we predict the agents’ positions
based on the Kalman filter, construct a predicted scan L,
and recover predicted gaps and gap regions for N steps
into the future. Each gap defines a local gap goal. When
all gap goals are connected to the robot, they define a star-
like graph. N repeated single-step iterations following the
PGap gradient field [5] using the predicted gaps synthesizes
a set of candidate trajectories. This reactive approach is
computationally fast.

The predicted future gaps states might result in a new

gap or have a previously-open gap close. These birth/death
events need to be resolved. If a new gap is detected due
to agents moving away from each other, for example the
agent4 and agent5 in fig. 3b, we will create a trajectory for
this newly-open gap at algorithm 1 line 9-10. Among all
existing trajectories, we pick the one that is closest to the
new gap as the path to expand from. This new trajectory
will diverge from the old trajectory and drive towards to the
new gap. In fig. 3b, the green trajectory to gap6 is copied
from the trajectory to a previously-open but now closed gap5.
The previously-open but now closed gap will be labelled as
closed and trajectory updating will be halted. After planning
finishes, we get all trajectories targeting to open gaps.

Algorithm 1 DAGap Planning

1: TS ← TrajectorySet
2: GS ← GapSet
3: for planHorizon = 1, 2, . . . , N do
4: GS ← gapDection(Linf )
5: if planHorizon == 1 then
6: initialize T for G ∈ GS and add into TS
7: end if
8: for G ∈ GS do
9: if T of G doesn’t exist in TS then

10: create new trajectory T for gap G
11: end if
12: move T one step forward towards G using PFM
13: end for
14: Update the agents’ Linf with Kalman filter estima-

tion
15: end for
16: return TS

B. Trajectory optimization and scoring

A set of trajectories TS is generated from the algorithm 1,
and each trajectory considers the specific pairwise agents
forming its gap, which is acceptable in static environment.
But for dynamic agents, they can drive towards the ego robot
outside the gap region. It’s risky if the ego robot doesn’t



(a) DAGap synthesizes multiple trajectories
(red, dashed lines) based on detected gaps.

(b) DAGap trajectory updates for newly-
opened (green) and closed gaps (red x).

Fig. 3: DAGap synthesizes and updates trajectories.

Fig. 4: Inflated agent gap detec-
tion. Black and red circles are
the initial and expanded inflated
circles. Red and blue arrows are
the estimated and true agent’s ve-
locity. Ltp and rtp mean left and
right tangent point, respectively.

do planning in advance, especially when the large agent
moves fast. Thus the next challenge is to ensure the safety
constraints for all agents during the planning horizon. The
CFS optimizer, which can efficiently find optimal solutions
that are strictly safe, is adopted to further modify these
reference trajectories TS. Compared to other optimization
methods like sequential quadratic programming (SQP), CFS
incorporates the geometry information of the problem to
improve the computational efficiency while solving the op-
timization, which is critical for online planning [9].

For each trajectory, robot with initial pose x0 at time
t is suppose to reach a local goal position xlgoal at time
t + T . Let T = N∆t , where N is the planning horizon
and ∆t is the discrete time interval. The robot trajectory is
denoted as s = [x[0]; ...;x[i]; ...;x[N−1]], where x[0] = x0

, and x[N−1] = xgoal. The trajectory of agent j is denoted
as sjO = [o

[0]
j ; ...;o

[i]
j ; ...;o

[N−1]
j ], where j ∈ {1, 2, ...,M}

and M means the number of agents. Therefore, the robot
should plan the trajectory that can reach the local goal while
keeping the safety distance rins from all agents for every time
step. Mathematically, the discretized optimization problem is
formulated as:

min
s
∥s− sr∥2Qr

+ ∥s∥2Qs
, (1a)

s.t. D(x[i],o
[i]
j ) ≥ rins,∀i,∀j, (1b)

x[1] = x0,x
[M ] = xlgoal (1c)

where ∥s − sr∥2Qr
penalizes the deviation from the new

trajectory to the reference trajectory, and ∥s∥2Qs
penalizes the

properties of the new trajectory itself which ensures low ve-
locity and acceleration magnitude. Constraint D(x[i],o

[i]
j ) ≥

rins requires that the robot should keep safe at each planning
step, where D(. , .) computes the Euclidean distance between
two points. The trajectory scoring eq. (2) combines global
target goal efficiency and optimization cost. The trajectory

with highest score will be selected to follow:

J(T ) = D(target,x[M ])− ∥s− sr∥2Qr
− ∥s∥2Qs

(2)

C. Uncertainty Analysis and Replanning

In the above discussion, we set the safety distance to a
fixed value rins which will work with perfect prediction
about agents’ trajectories. In uncertain world, however, the
estimations of agents’ positions and velocities from Kalman
filter have errors that will propagate as planning horizon
increases. Simply using the fixed safety distance rins may
quickly drive the system into collision. To mitigate this prob-
lem, we estimate the high-confidence bound of prediction
errors and enlarge the safety distance accordingly during
planning. Assume the agent has constant velocity, we denote
the current estimated agent state as z[0] =

[
o[0];v

]
, including

position o[0] and velocity v, and its estimated covariance
matrix as Σ0. The ground truth state is labeled as z

[0]
∗ .

The future agent state at step i can be predicted as z[i] =
F iz[0], where F represents the transfer matrix. Suppose
z[0] ∼ N (z

[0]
∗ , Σ0), the prediction for z[i] should follow the

distribution: z[i] ∼ N (z
[i]
∗ , Σi), where Σi is the covariance

matrix propagated forward for i steps Σi = (FT )iΣ0F
i. We

pick out the submatrix of Σi corresponding to the position
o[i] and denote the position covariance matrix as Σi,o. Then
the error ∆o[i] = o[0] − o

[0]
∗ should follow the chi-square

distribution χ2
N as eq. (3), N is the dimension of o[i].

(∆o[i])T Σ−1
i,o ∆o[i] ∼ χ2

N (3)

and we can obtain the following probability support on
confidence bound value kϵ:

P ((∆o[i])T Σ−1
i,o ∆o[i] ≤ kϵ) > 1− ϵ (4)

with the lemma 4 in [36], the following bound on the error
∆o[i] holds with probability 1− ϵ:

−
√

kϵλn ≤ vT
n∆o[i] ≤

√
kϵλn,∀n (5)



where {λn}′s and {vn}′s are the eigenvalues and eigen-
vectors of Σi,o, n ∈ {1, 2, ..., N}. Since the {vn}′s are
perpendicular basis, ∆o[i] can be represented as

∑
n anvn,

where an is the coefficient.

vT
n∆o[i] = vT

n

∑
k

akvk = an∥vn∥ (6a)

−
√
kϵλn

∥vn∥
≤ an ≤

√
kϵλn

∥vn∥
(6b)

∥∆o[i]∥ = ∥
∑
n

anvn∥ ≤
∑
n

√
kϵλn (6c)

Theorem 1. Using the bounds eq. (6c), we can expand the
safety distance by

∑
n

√
kϵλn to guarantees robust safety

with probability at least 1− ϵ in uncertain environment.

Proof: Since the prediction of the ground truth agent’s
position o

[i]
∗ is unbounded, we ensure a probability safety

constraint between x[i] and o
[i]
∗ for ∀i,

P (∥x[i] − o
[i]
∗ ∥ ≥ rins) < 1− ϵ (7)

At worst case, ∥x[i] − o
[i]
∗ ∥ = ∥x[i] − o[i] + o[i] − o

[i]
∗ ∥ =

|∥x[i] − o[i]∥ − ∥o[i] − o
[i]
∗ ∥|. From eq. (6c), we know the

bound on the uncertainty ∥o[i]−o
[i]
∗ ∥ holds with probability

1 − ϵ. By expanding the safety distance dsafe between
ego robot and estimated agent position ∥x[i] − o[i]∥ to
rins + r, where r =

∑
n

√
kϵλn, we can guarantee safety

with probability at least 1− ϵ.
From theorem 1, we can estimate the robust safety distance

dsafe for every agent and replace the fixed rins used in
DAGap and CFS (see fig. 2). If dsafe becomes too large,
the planner will behave overly conservative and reject the
path that is passable. To avoid this problem, we set an upper
bound of the dsafe and record the first time step k this upper
bound is reached. Replanning will be evoked after k steps
execution as the systems have less safety guarantee after that.

D. Safe Controller

Even though DAGap and CFS are efficient planning meth-
ods, their longer horizon mean that they are more computa-
tionally expensive compared to one-step reactive safe control
methods. Moreover, challenging crowded environments mean
that CFS may not have converged within a few iterations.
Due to the real-time planning requirement, we don’t run CFS
for all synthesized trajectories until they converge. Instead we
select the top two trajectories based on the efficiency score
D(target,x[M ]) as we notice the optimization cost doesn’t
change the rank ordering of top two candidates in most cases,
and run CFS for only one iteration. Moreover, we adopt fast
SSA in the low-level controller layer to further compensate
the long planning time, and monitor the control at every
step. Compared to other reactive algorithms like CBF which
enforces constraints everywhere, SSA achieves better safety-
efficiency trade-off in complex environment [13].

The key of SSA is to define a valid safety index ϕ such
that 1) there always exists a feasible control input in control
space that satisfies ϕ̇ ≤ −ηϕ when ϕ ≥ 0 and 2) any control

sequences that satisfy ϕ̇ ≤ −ηϕ when ϕ ≥ 0 ensures forward
invariance and asymptotic convergence to the safe set XS ,
η is a positive constant that adjusts the convergence rate.
In our problem, XS = {x|ϕ0(x) ≤ 0}, where ϕ0 is defined
as d2min − d2, dmin is the user defined minimal distance
and d is the distance from the robot to the agent. Since the
robot we adopt in testing is a second-order system, we add
higher order term of ϕ0 to ensure that relative degree one
from safety index ϕ to the control input, and ϕ is defined as
follows:

ϕ = d2min − d2 − k · ḋ. (8)

where ḋ is the relative velocity from the robot to the agent
and k is a constant factor. As proved in [12][37], safety index
ϕ will ensure forward invariance of the set ϕ ≤ 0∩ϕ0 ≤ 0 as
well as global attractiveness to that set. With safety index ϕ,
we project the reference control ur to the set of safe controls
that satisfy ϕ̇ ≤ −η ϕ when ϕ ≥ 0, and ϕ̇ is expressed as

ϕ̇ =
∂ϕ

∂x
f +

∂ϕ

∂x
g u = Lfϕ+ Lgϕ u. (9)

In crowded environment, we compute ϕj for every agent
and add safety constraint whenever ϕj is positive. With
the safety and dynamics constraints, SSA will solve the
following one-step optimization problem through quadratic
programming (QP) when triggered:

min
u∈U
||u− ur||2 = min

u∈U
uT

[
1 0
0 1

]
u− 2uT

[
1 0
0 1

]
ur

(10a)
s.t.Lfϕj + Lgϕj u ≤ −η ϕj , j ∈ {1, 2...M}. (10b)

IV. EXPERIMENTS

In this section, we will present the experiments, results
and comparison of our H-DAGap relative to ARENA [17]
and DRRT-ProbLP [18].

A. Benchmark Results

Experiments are conducted in a 2 × 2 empty world ,
see fig. 5, with two different test scenarios of increas-
ing difficulty: 20 and 50 dynamic agents whose radius is
0.05 and velocity is sampled from a uniform distribution[
5e−3, 2e−2

]
. Agents can move randomly in any direction

in the map and collisions between them are not considered.
The robot adopts the second order unicycle model and its
speed range is

[
0, 2e−2

]
. The overall scenario settings used

in ours and two baseline papers are similar, including the
relatively agent size to world size and the relatively agent
velocity to robot velocity. But we don’t assume the perfect
lidar measurement is available, instead, the 360◦ field of
view (FoV) measurement has errors following the Gaussian
distribution N (0, 0.012). We use Kalman filter to track the
position and velocity of each agent inside the 0.2 sensing
range. Compare to the environment used in our previous safe
learning work [13], we enlarge the agent size, speedup its
velocity and add measurement uncertainty, which makes the
task more challenging. H-DAGap is run in Python on Ubuntu



Fig. 5: Testing environment with 50 dynamic agents. The
green square is the target goal, the gray circles are agents’
positions at last time step and the red path is the entire robot
trajectory from the start to the goal.

20.04 of 3.7 GHz using Intel Core i7. We conduct 100 test
runs in each scenario and use collision rate and success rate
as evaluation metrics. A success trial means the robot reaches
the goal within 3500 steps without any collision. The robot
is allowed to continue driving after collision in benchmark
papers, and we follow this rule but don’t observe multiple
collisions in one trial in H-DAGap experiments.

ARENA and DRRT-ProbLP are used for safe navigation
in crowded dynamic environments and tested in environment
with 20 dynamic agents in their papers. While our model
can achieve 97% success and only 3% collision rate in
50 dynamic agents environment in table I, which is better
than theirs performances in only 20 agents environment.
For DRRT-ProbLP planner, the DRRT module only consid-
ers static obstacles and the avoidance of dynamic agents
is entirely handled by ProbLP. ProbLP samples the robot
movement direction based on the distribution of target goal
and agents, then synthesizes and scores the trajectories.
However, usually there are large number of possible safe
trajectories in open continuous space and sampling-based
method can’t enumerate all of them and inevitably become
suboptimal. For ARENA, it combines the traditional global
planner A* and the Deep Reinforcement Learning based
(DRL) local planner. But vanilla A* doesn’t consider the
dynamic agent and DRL doesn’t consistently ensure safety
constraint throughout execution. On the other hand, our H-
DAGap considers and guarantee safety in both layers and
in multi-modules. We leave the detailed analysis in the next
section.

B. Discussion

In this part, we look into the contribution of different
modules and each experiment is repeated for 100 times. Here,

4Note: The success criteria in ARENA is goal attainment with less than
two collisions.

TABLE I: Comparison between the H-DAGap and bench-
mark algorithms in empty world with 20 and 50 dynamic
agents.

20 agents 50 agents
Model Success Collision Success Collision

H-DAGap 100% 0% 97% 3%

DRRT-ProbLP N/A 4% N/A N/A

ARENA ≤ 92.7% 4 23.7% N/A N/A

the test run will stop once the robot collides.
DAGap trajectory synthesis result: We compare the

results of DAGap only and static gap detection (SGap),
which synthesize trajectories for the gaps detected at current
time step. CFS optimization or SSA modification are not
applied, which will change the original trajectory. Compared
to SGap, our DAGap method reduces the collision rate by
13% and 7% in 20 and 50 agents environments respectively,
see table II. The reason is that DAGap considers the spatio-
temporal dynamics of open gaps and filters out the trajec-
tories towards gradually closing gaps. SGap guarantees safe
passage in static environments, however, the originally open
gap may become closed and can lead to collision in dynamic
environments. Besides, the improvement of incorporating
spatio-temporally evolving information is more significant in
easy scenario because DAGap is less affected by the agents
outside the gap region due to the lower agents density.

TABLE II: Experimental results of each module.

20 agents 50 agents
Model Collision Success Collision Success

SGap 49% 51% 76% 24%
DAGap 36% 64% 69% 31%

DAGap+CFS 8% 92% 29% 71%
DAGap+CFS+SSA 0% 100% 3% 97%

CFS trajectory optimization result: The collision rate
drops from 69% to 29% in 50 agents scenario after CFS
optimization and safety distance adjustment with uncertainty
analysis. Compared to using CFS directly, DAGap pro-
vides good initial trajectories that can improve the safety
of optimized trajectory. To better explain it, we need to
define the feasibility of a trajectory: a feasible trajectory
requires the distances between all neighbouring waypoints
are smaller than a threshold value related to the ego robot’s
maximal velocity. An infeasible trajectory increases the risk
of collision and is hard to be tracked by ego robot due to the
large jump between waypoints. The feasibility rate of CFS
optimized trajectory is around 87.4% when using DAGap to
generate initial reference trajectory that drives towards the
affordance free space, but is only 66.9% without DAGap.

SSA safe controller result: By replacing the feedback
controller with the SSA safe controller, the collision rate
drops to 3%. There are two main reasons behind: first of
all, as we discussed above, CFS may generate dynamically
infeasible trajectory due to the limited number of optimiza-
tion iterations we can run in real-time and the challenging



(a) Trapping collision (b) Overtaking collision

Fig. 6: Trapping collision and overtaking collision. Robot and
agents are shown as colored triangle and circles respectively
which are dark at their initial positions and lighten as time
progresses.

crowded dynamic environment. Tracking infeasible trajectory
can cause collision. SSA can monitor and modify these
unreasonable tracking controls online. Secondly, DAGap and
CFS are long-term planners considering N steps safety. But
the predicted error of trajectories of agents will compound as
time goes, making the planned trajectory risky in the long-
term future even we expand the safety distance. On the other
hand, because of its fast and cheap computation property,
SSA always uses the latest information to calculate one-step
safe control and to reduce collision caused by uncertainty.

Collision analysis: Even applying all these techniques,
we still have 3% collision rate in challenging scenario. The
collisions can be categorized into two main cases: multi-
agent traps and a fast, overtaking agent. In the first case,
when the robot is trapped by multiple agents, see fig. 6a,
SSA cannot find a control to meet all safety constraints
because the robot will get closer to one of the agents no
matter which direction it drives to. Instead, SSA will pick
the “best” control which is staying at the current position.
These occur due to the limited sensing radius of H-DAGap
search space relative to the globaly search space and the
greedy nature of SSA. The second case happens when a fast
agent driving behind the robot and in collision overtakes it.
The robot will follow the safest one-step control generated by
SSA, which moves in the direction aligning with the agent’s
velocity. Even if the DAGap trajectory points in another
direction, SSA modifies the original control to the safest
single-step one based on the safety index. This escape-and-
pursue situation usually continues for several steps until the
robot meets another agent and needs to take a new control
to avoid both. Then the fast agent behind will quickly catch
up and is hard to bypass within one or two steps due to its
big size. From the perspective of SSA, no control exists to
satisfy the constraints in eq. (10b), however, we can avoid
these collisions in two ways. First of all, we can improve
the high-level planner design to check if we will drive into
the trapping situation and detour in advance. Besides, we
need better coordination between the high-level planner layer
and low-level SSA layer to avoid their conflicts happened in
second case. We leave these as our future works.

V. CONCLUSION

In this work, H-DAGap, a hierarchical navigation solu-
tion containing a multi-phase planner and a low-level safe
controller, is presented to solve the safe navigation problem
in crowded, dynamic, and uncertain environments. A high-
confidence error bound is estimated and used in the planner
to achieve provably high probability safety in uncertain en-
vironments. Moreover, experimental benchmark and analysis
are conducted in the simulation to show the effectiveness of
H-DAGap. The implementation of H-DAGap is available at
https://github.com/hychen-naza/H-DAGap.
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