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ABSTRACT2

As robots move from the laboratory into the real world, motion planning will need to account3
for model uncertainty and risk. For robot motions involving intermittent contact, planning for4
uncertainty in contact is especially important, as failure to successfully make and maintain contact5
can be catastrophic. Here, we model uncertainty in terrain geometry and friction characteristics,6
and combine a risk-sensitive objective with chance constraints to provide a trade-off between7
robustness to uncertainty and constraint satisfaction with an arbitrarily high feasibility guarantee.8
We evaluate our approach in two simple examples: a push-block system for benchmarking and a9
single-legged hopper. We demonstrate that chance constraints alone produce trajectories similar10
to those produced using strict complementarity constraints; however, when equipped with a11
robust objective, we show the chance constraints can mediate a trade-off between robustness to12
uncertainty and strict constraint satisfaction. Thus, our study may represent an important step13
towards reasoning about contact uncertainty in motion planning.14

Keywords: chance constraints, complementarity constraints, planning with contact, robust motion planning, trajectory optimization15

1 INTRODUCTION

As robots move into the real world, accounting for model uncertainty and risk in motion planning will16
become increasingly important. While model-based planning and control has demonstrated success in17
designing and executing dynamic motion plans for robots in a variety of tasks in the laboratory (Dai18
et al., 2014; Mordatch et al., 2012; Winkler et al., 2018; Patel et al., 2019), real world environments are19
difficult or intractable to precisely model, and as such the resulting motion plans could be prone to failure20
due to modeling errors. Planning for uncertainty and risk is especially important when the task involves21
intermittent contact, as incorrectly modeling friction can cause robots to drop and break objects or slip and22
fall, and incorrectly modeling contact geometry can cause mobile robots to trip and fall or collide with23
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obstacles. While decent controller design can mitigate the effects of small modeling errors and disturbances24
(Toussaint et al., 2014; Gazar et al., 2020), incorporating uncertainty and risk into planning can help25
improve performance by generating reference trajectories that have a high success rate for execution.26

Trajectory optimization is powerful for planning continuous dynamic motions that obey constraints27
such as actuation limits, obstacle avoidance, and contact dynamics (Posa et al., 2014; Dai and Tedrake,28
2012; Dai et al., 2014; Carius et al., 2018; Gazar et al., 2020; Kuindersma et al., 2016; Mordatch et al.,29
2015; Yeganegi et al., 2019). While the optimal strategies produced by trajectory optimization typically30
lie on the boundary of the feasible region, recent works have begun to incorporate risk and uncertainty to31
improve the robustness of the planned motion. Uncertainty about the state or dynamics can be accounted32
for by an expected exponential transformation of the cost, resulting in risk-sensitive trajectory optimization33
(Ponton et al., 2018; Farshidian and Buchli, 2015). Alternatively, uncertainty about the constraints has34
been approached by defining failure probabilities and optimizing for motion plans that do not exceed35
some user-defined total failure probability (Hackett et al., 2020; Shirai et al., 2020). Planning under36
contact uncertainty, however, has only recently begun to be investigated. One recent work developed a37
risk-sensitive cost term to plan for uncertainty in the contact model for systems with intermittent contact38
(Drnach and Zhao, 2021). However, while the robust cost formulation for uncertainty in contact produced39
robust trajectories, it also produced infeasible motion plans at high uncertainty, including setting friction40
forces to zero during sliding and allowing for positive contact reactions at nonzero contact distance.41

In this work, we explicitly investigate uncertainty resulting from the terrain contact parameters and42
develop a method for trading off between motion feasibility and robustness. In contrast to the previous43
work (Drnach and Zhao, 2021), which controlled robustness only by varying the uncertainty, we aim to44
achieve a tradeoff at fixed uncertainty by introducing tunable risk parameters. Specifically, we:45

• Design chance constraints for contact with uncertainty in contact distance and friction coefficient.46

• Provide a risk-bounded interpretation to the relaxed chance complementarity constraints.47

• Demonstrate that chance constraints, combined with a contact-sensitive objective, can control the48
trade-off between robustness to contact uncertainty and contact constraint satisfaction at fixed values49
of uncertainty.50

2 RELATED WORK

2.1 Contact-Robust Trajectory Optimization51

Planning motions for robots with intermittent contact can be achieved through either hybrid (Dai et al.,52
2014; Dai and Tedrake, 2012) or contact-implicit trajectory optimization (Mordatch et al., 2012; Patel53
et al., 2019; Posa et al., 2014). In the hybrid case, contact is modeled by specifying end-effector location54
at contact and defining constrained dynamics for each mode. Robustness to contact uncertainty has been55
studied by sampling contact locations and minimizing an expected cost (Dai and Tedrake, 2012; Seyde56
et al., 2019), by using Bayesian optimization to learn a robust cost function (Yeganegi et al., 2019), and by57
constraining the risk of slipping (Shirai et al., 2020). However, developing general methods for contact58
uncertainty is difficult within the hybrid optimization framework as contact conditions are specified in the59
dynamical modes.60

In contrast, contact-implicit methods specify contact through a complementarity model which includes61
the nearest contact distance and friction coefficient (Stewart and Trinkle, 1996; Posa et al., 2014), and62
thus may provide a natural avenue for representing and planning for uncertainty in contact. Despite this63
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potential, there have been few works exploring contact uncertainty within the contact-implicit framework.64
In (Mordatch et al., 2015), contact point locations were sampled and an expected cost was minimized65
to produce robust motions. Recently, uncertainty in contact was modeled using probabilistic residual66
functions, and the expected residual was added to the cost to produce contact-sensitive trajectories (Drnach67
and Zhao, 2021), at the expense of producing potentially infeasible trajectories as uncertainty increased.68

2.2 Chance Constraints69

To trade-off between robustness and constraint satisfaction, chance constraints can be added to an70
optimization problem to enforce a probabilistic version of the uncertain constraints (Celik et al., 2019;71
Paulson et al., 2020; Mesbah, 2016). Chance constraints model uncertainty by defining a probability of72
constraint satisfaction, which can be tuned to enforce a conservative constraint or to relax the constraint.73
Previous works have achieved robust vehicle trajectory planning under obstacle (Blackmore et al., 2011)74
and agent (Wang et al., 2020) uncertainty using chance constraints. Chance constraints have also been75
applied to robot locomotion to increase the likelihood of avoiding collision with obstacles in uncertain76
locations (Gazar et al., 2020), or to model slipping risk due to errors in the friction model (Shirai et al.,77
2020; Brandão et al., 2016). In contrast to collision avoidance, intermittent contact with the environment78
is required for robot locomotion, and while chance constraints have been applied to parts of the contact79
problem, they have yet to be applied to the full complementarity constraints for contact. Here, we investigate80
if chance constraints can trade-off between constraint satisfaction and robustness under contact uncertainty81
by combining them with our previously developed robust objectives (Drnach and Zhao, 2021).82

3 PROBLEM FORMULATION

In this section, we present a robust contact-implicit trajectory optimization with both contact-robust costs83
and chance constraints to provide robustness to contact uncertainties while maintaining the feasibility of84
physical contact models.85

3.1 Contact-Implicit Trajectory Optimization86

Planning robot motions that are subject to contact reaction forces can be achieved through contact-implicit87
trajectory optimization (Posa et al., 2014). The traditional problem solves for generalized positions q,88
velocities v, controls u, and contact forces λ through a discretized optimal control problem:89

min
h,q,v,u,λ,γ

K−1∑
k=0

hkL(xk, uk, λk) (1a)

s.t.



x0 = x(0), xK = x(Tf ) (1b)

M(vk+1 − vk) + C = Buk+1 + J>c λk+1 (1c)

0 ≤ λN,k+1 ⊥ φ(qk+1) ≥ 0 (1d)

0 ≤ λT,k+1 ⊥ γk+1 + JT vk+1 ≥ 0 (1e)

0 ≤ γk+1 ⊥ µλN,k+1 − e>λT,k+1 ≥ 0 (1f)

∀k ∈ {0, ..., K − 1}

where L is the running cost, hk is the timestep, x = (q, v) is the state, Eq. (1b) are boundary constraints,90
M is the generalized mass matrix, C contains Coriolis and conservative force effects, B is the control91
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selection matrix, Jc is the contact Jacobian, λN and λT are the normal and tangential contact reaction92
forces, φ is the contact distance, γ is a slack variable corresponding to the magnitude of the sliding velocity,93
µ is the coefficient of friction, and e is a matrix of 1s and 0s.94

The contact Jacobian can be decomposed into normal and tangential components, J>c = [J>N , J
>
T ]. The95

normal component J>N maps the normal reaction force at the contact point to the generalized joint torques96
and is derived by projecting the contact point Jacobian onto the surface normal at the nearest contact point.97
The tangential component J>T maps the frictional forces at the contact point to generalized torques, and98
is the projection of the contact point Jacobian onto the plane tangent to the contact surface at the nearest99
point of contact.100

Equations (1d)-(1f) are complementarity constraints governing intermittent contact with the environment,101
where the notation 0 ≤ a ⊥ b ≥ 0 represents the complementarity constraints a ≥ 0, b ≥ 0, ab = 0.102
Equation (1d) enforces that normal contact reaction forces are only imposed when the distance between103
the two objects is zero. Likewise, (1e) and (1f) govern the sticking and sliding phases of friction; when104
in sliding, (1f) forces the friction forces to the edge of the friction cone and (1e) requires γ and the105
corresponding relative tangential velocities to be nonzero. In sticking, however, (1f) forces the variable γ to106
zero and (1e) requires the corresponding relative tangential velocity to also be zero. We replaced the friction107
cone with a polyhedral approximation (Stewart and Trinkle, 1996), denoted by the use of the e in (1f),108
which contains only 1s and 0s, instead of the use of the 2-norm, and we consider λT to be the non-negative109
components of the friction force projected onto the polyhedron. The polyhedral approximation presented110
here can readily extend to the full three-dimensional case, although we do not study three-dimensional111
contact in this work.112

In general, the running cost is a function of all the decision variables, including the timesteps, states,
controls, and reaction forces. However, in this work, we use a quadratic function of only the states and
controls:

L(xk, uk, λk) =(xk − x(Tf ))>Q(xk − x(Tf )) + u>k Ruk.

where R is the weight matrix on the control effort and Q is the weight matrix on the deviation from the113
final state. Our initial cost design does not depend on the reaction forces λ, although this is purely a design114
choice. Quadratic costs are common in the optimal control literature (Posa et al., 2014; Kuindersma et al.,115
2016; Patel et al., 2019), although other cost functions can be used, such as the cost of transport (Posa et al.,116
2014).117

Problem (1) is a mathematical program with equilibrium constraints, a type of nonlinear program (NLP)118
that can be difficult to solve. Two approaches to solve the problem numerically using standard NLP solvers119
like SNOPT (Gill et al., 2005) include relaxing the complementarity constraints ab ≤ ε (Figure 1D) and120
solving the problem from progressively smaller values of ε (Scholtes, 2001; Posa et al., 2014; Manchester121
et al., 2019), and replacing the constraints with an exact penalty term ρab in the cost, where ρ is chosen122
sufficiently large to drive the term ab to zero (Baumrucker and Biegler, 2009; Patel et al., 2019). In this123
work, we found that the choice to use either the ε-relaxation method or the exact penalty method was124
problem dependent. We also note that the robust cost we use is a probabilistic variant of the penalty method.125

3.2 Expected Residual Minimization126

The complementarity constraints in (1) assume that perfect information about the contact model127
is available. However, if any of the model parameters are uncertain, the problem has stochastic128
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complementarity constraints (SCP) (Luo and Lu, 2013) 0 ≤ z ⊥ F (z, ω) ≥ 0, ω ∈ Ω where ω129
represents a random variable on probability space (Ω,F ,P), z is a deterministic variable, and F (·) is a130
vector-valued stochastic function.131

Prior works on SCPs (Chen et al., 2009; Tassa and Todorov, 2010; Luo and Lu, 2013) commonly replace132
the complementarity constraint with a residual function ψ that attains its roots when the complementarity133
constraints are satisfied: ψ(z, F ) = 0⇐⇒ z ≥ 0, F ≥ 0, zF = 0. Although this formulation is for scalars134
z and F , it generalizes to the case when z and F are vectors by applying the complementarity constraints135
and/or the residual function elementwise. In the Expected Residual Minimization (ERM) approach (Tassa136
and Todorov, 2010; Chen et al., 2009), the expected squared residual is minimized:137

min
z

E[‖ψ(z, F (z, ω))‖2] (2)

One advantage of the ERM is that its solutions have minimum sensitivity to random variations in the138
parameters (Chen et al., 2009).139

Prior work using an ERM cost to plan for uncertainty in contact resulted in solutions that were robust to140
variations in the contact parameters (Drnach and Zhao, 2021). However, while the ERM method produced141
robust trajectories, as contact uncertainty increased, it also produced trajectories which were infeasible with142
respect to the expected values of the constraints. In this work, we use an ERM cost for Gaussian-distributed143
friction coefficient and normal distance (Tassa and Todorov, 2010; Drnach and Zhao, 2021), and we add144
the ERM to the running cost as:145

min
z={x,u,λ}

K−1∑
k=0

(
L(xk, uk, λk) + αE[‖ψ(zk), F (zk, ω))‖2]

)
(3)

where α is a penalty weighting factor selected to keep the ERM cost a few orders of magnitude higher146
than the other cost terms, as in the penalty method. In (3), the variable zk and the function F are generic147
decision variables and constraint functions, respectively. In our work, we consider uncertainty in the terrain148
geometry and in the friction coefficient separately. In the case of uncertain terrain geometry, F is the149
normal distance function φ(q) and z includes the normal forces λN . Likewise, in the case of uncertainty in150
friction, F is the linearized friction cone in (1f) and z includes the sliding velocity slack variable γ.151

3.3 Chance Complementarity Constraints152

Chance constraints are another general method for encoding uncertainty into constraints. Optimization153
with chance constraints enforces that the constraint is satisfied to within some user-specified probability,154
Pr(z ∈ Z) ≥ 1− θ, where Z is the constraint set and θ is the specified probability of violation (Figure 1c).155
In this as in other works, we assume that z is Gaussian, z ∼ N (µz,Σ), and that the constraint is linear,156
Z = {z|c>z ≤ b} (Blackmore et al., 2011). In this case, we can write the chance constraint using the error157
function erf(Celik et al., 2019):158

Pr(cT z ≤ b) =
1

2

(
1 + erf

(
b− cTmz√

2cTΣc

))
≥ 1− θ =⇒ cTmz ≤ b−

√
2cTΣc erf−1(1− 2θ)

As erf−1 takes values in (−1, 1), Eq. (4) can represent either a relaxed (θ > 0.5) or a conservative (θ < 0.5)159
constraint.160
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Figure 1. (a),(b) Contact geometry of the hopper and block examples, respectively, with uncertainty in (a)
terrain height and (b) friction coefficient. (c) Gaussian distribution with mean m and standard deviation
σ, where p(Z < z) = θ. (d) Relaxed complementarity constraint region for comparison with (e) chance
complementarity constraint feasible regions for different risk bounds. (f) Overlap between ERM cost map
and chance relaxed feasible region at σ = 10. At high uncertainty, low ERM values approach the positive
mF axis and the chance constraint region widens around the non-negative z axis.

To complement the robust ERM approach, in this work we investigate contact uncertainty by converting161
the stochastic complementarity constraints to deterministic, chance complementarity constraints. As with162
the Gaussian ERM, we assume the complementarity function is normally distributed F ∼ N (mF , σ

2),163
and we place probabilistic requirements on the components of the complementarity constraints Pr(F ≥164
0) ≥ 1− β and Pr(zF ≤ 0) ≥ 1− θ. Assuming that z is a deterministic variable, by Eq. (4) we have the165
following chance-complementarity constraints:166

z ≥ 0, mF ≥ −
√

2σ erf−1(2β − 1), zmF ≤ −
√

2zσ erf−1(1− 2θ)

Remark 1. If either σ = 0 or β = θ = 0.5, then the chance constraints recover the strict complementarity167
constraints.168

Remark 2. If β = 0.5 and θ > 0.5, we recover a relaxed version of the complementarity constraints (Figure169
1e): z ≥ 0, mF ≥ 0, zmF ≤ ε where ε = −

√
2zσ erf−1(1− 2θ) > 0.170

Remark 3. If β ≥ 1− θ, z > 0, the chance constraints relax the complementarity constraints into a tube
around the mean:

−
√

2σ erf−1(2β − 1) ≤ mF ≤ −
√

2σ erf−1(1− 2θ)

Note that, in this case, the chance constraints provide potentially asymmetric upper and lower bounds on171
the constraint violation, as by assumption z > 0. For example, if mF and z represent the normal distance172
and normal force, the chance constraints provide upper and lower bounds for the distance at which a173
non-zero normal force can be applied.174

We also note that chance constraints cannot provide robustness by making the complementarity constraints175
more conservative, as the original constraints have an empty interior. In contrast, previous works have used176
chance constraints to achieve robustness to uncertainty by removing part of the interior of the constraint set,177
making the constraint more conservative (Shirai et al., 2020; Gazar et al., 2020). Chance complementarity178
constraints, however, always provide a relaxation of the original constraints, and give a probabilistic179
interpretation to previous methods using relaxed constraints (Manchester et al., 2019; Patel et al., 2019).180
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The chance complementarity constraints presented here possess nonempty solution sets only when181
β > 1− θ; however, we note that not every choice of β and θ is recommended, as choosing θ > 0.5 and182
β < 0.5 requires the mean value mF to be strictly positive, whereas choosing θ < 0.5 forces the mean183
mF to be strictly negative, both of which induce a bias into the complementarity problem. Therefore, we184
recommend further restricting the choice of parameter values to β, θ ≥ 0.5, as this choice ensures the mean185
mF can be zero, but still allows mF to take on positive and negative values.186

In this work, we apply the chance constraints to relax the friction cone constraint (Eq. (1f)) and the187
normal distance constraint (Eq. (1d)), assuming normal distributions over the friction coefficient and the188
normal distance. We also include the corresponding ERM cost to examine the effects of chance constraints189
on the robustness of ERM solutions. We note that the failure probabilities β, θ can also be interpreted as risk190
bounds (Shirai et al., 2020). By varying these risk bounds, we examine the tradeoff between strict feasibility191
under the expected value of the constraint when β, θ = 0.5 and robustness to parameter variations under192
the ERM cost when β, θ > 0.5.193

3.4 Quantifying Feasibility194

To quantify the feasibility of our solutions, we adopt a modified merit functionM(z) (Seyde et al., 2019):195

M(z) =
1

K

K−1∑
k=0

(
gEC,k(z)2 + min(0, gIC,k(z))2

)
(4)

where gEC are the equality constraints, gIC are the inequality constraints, and z are the decision variables.196
Here, the merit score only penalizes constraint violation, and provides a quantification of the feasibility of197
the solutions. For the purposes of this study, we focus solely on contact feasibility under the expected value198
of the uncertain contact parameters, and apply the merit score to the friction cone constraint (Eq. (1f)) for199
frictional uncertainty and to the normal distance constraint (Eq. (1d)) for contact distance uncertainty.200

4 SIMULATION EXPERIMENTS

We compared the chance-constrained risk-sensitive optimization approach to the ERM-only risk-sensitive201
approach (Drnach and Zhao, 2021) and the traditional non-robust optimization approach in two experiments:202
a block sliding over a surface with uncertain friction and a single-legged hopper robot hopping over a flat203
terrain with uncertain height. All our examples were implemented in Python 3 using Drake (Tedrake and204
the Drake Development Team, 2019) and solved using SNOPT (Gill et al., 2005) to major optimality and205
feasibility tolerances of 10−6. Unless otherwise noted, all of our robust and chance-constrained problems206
were initialized with the reference, non-robust solution, and we used the same value for uncertainty σ207
in the ERM objective as in the chance-constraints. Our code is available at https://github.com/208
GTLIDAR/ChanceConstrainedRobustCITO.209

4.1 Sliding Block with Uncertain Friction210

Our first example is a planar 1m, 1kg cube sliding over a surface with nonzero friction (Figure 1B).211
The state of the system x = [pCoM, vCoM] includes the planar position and velocity of the center of212
mass of the block, pCoM and vCoM respectively, and the control u is a horizontal force applied at the213
center of mass. We optimized for a 1s trajectory, discretized with 101 knot points, to travel between the214
initial state x0 = [0, 0.5, 0, 0]> and final state xN = [5, 0.5, 0, 0]>. The running cost had weight matrices215
R = 10 and Q = diag([1, 1, 1, 1]). We first solved the optimization to a tolerance of 10−6 and then to216
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10−8; in this example, solving to the tighter tolerance improves the visual quality of the solutions. In the217
reference trajectory, we used friction coefficient µ = 0.5. For the uncertain cases, we assumed a mean218
friction of µ̄ = 0.5 and tested under 5 uncertainties σ ∈ {0.01, 0.05, 0.10, 0.30, 1.00}. When including219
chance constraints, we tested several combinations of the risk bounds θ, β ∈ {0.51, 0.6, 0.7, 0.8, 0.9} For220
completeness, we also tested the chance constraints without the ERM cost for uncertainties σ ∈ {0.1, 1.0}.221
We quantified the feasibility of our motion plans using the merit score (Eq. (4)) with the expected friction222
cone constraint (Eq. (1f)), and we quantified the robustness using the maximum sliding velocity, as a higher223
velocity indicates less time in sliding.224

We evaluated the performance of the non-robust reference controls, the ERM controls, and the ERM225
with chance constraints controls in open-loop time-stepping simulations (Stewart and Trinkle, 1996). To226
evaluate the robustness, we perturbed friction with 4 values uniformly spaced between µ = 0.3 and µ = 0.7227
and evaluated the control performance as the difference between the block position at 1s and the target228
position. We quantified robustness as the range of final position errors under all friction perturbations.229
We further evaluated the effect of the risk bounds on performance by first testing the chance constraints230
across a range of friction uncertainties with θ, β = 0.7. We also evaluated the performance of the chance231
constraints at high uncertainty (σ = 1.0) by testing 9 combinations of β, θ ∈ {0.51, 0.7, 0.9}.232

4.2 Single-Legged Hopper over an Uncertain Terrain233

Our second example is a 2D single-legged hopper with collision points at the toe and heel. The234
configuration q includes the planar position (horizontal and vertical) of the base pCoM and the angles of the235
hip θH , knee θK , and ankle θA; that is, q = [pCoM, θH , θK , θA]. Thus, the state vector is x = [q, q̇], and the236
controls are the torques on the hip, knee, and ankle joints. In this example, the hopper travels 4m in 3s237
starting and ending at rest with the base 1.5m above the heel. We used 101 knot points and cost weights238
R = diag([0.01, 0.01, 0.01]) and Q = diag([1, 10, 10, 100, 100, 1, 1, 1, 1, 1]).239

We first solved for the reference trajectory using the exact penalty cost method to enforce the240
complementarity constraints for contact (Baumrucker and Biegler, 2009; Patel et al., 2019), and we241
initialized the reference optimization by linearly interpolating between the start and goal states. In our242
experiments with uncertainty, we assumed known friction coefficient µ = 0.5 and uncertain terrain height243
with expected distance between initial hopper base height and terrain of 1.5m. We tested the ERM and244
ERM with chance constraints approaches under 6 uncertainties roughly logarithmically spaced between245
σ = 0.001 and σ = 0.5 m. To more effectively utilize the ERM cost at high uncertainty, we scaled the246
normal distance by 10 during optimization, expressing the distance and its uncertainty in decimeters. At247
each uncertainty level, we tested 5 values of the chance parameters, θ ∈ {0.51, 0.60, 0.70, 0.80, 0.90}, with248
β = 0.5 in all cases to ensure no ground penetration. Note that when we apply chance constraints, we249
do not apply any other relaxation to the complementarity constraints. Instead, we use the strictly feasible250
solution from our progressive tightening procedure to warm-start the optimization with chance constraints.251
We quantified the feasibility of the hopping motion plans using the merit score (Eq. (4)) and the distance252
constraint (Eq. (1d)). We used average foot height to quantify robustness, as higher foot heights indicate253
the hopper is less likely to trip over unexpected variations in ground height.254
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Figure 2. Effects of including chance constraints on contact-robust optimization at different uncertainty
levels, for different risk bounds. (a, b) Including chance constraints without a robust cost, such as the ERM,
does not have much effect on the optimized open-loop control, but can allow the friction force to vary
under high uncertainty. (c, d) Including chance constraints with a contact robust cost has little effect on
the robust solution at low uncertainty, but tightening the risk bounds θ and β increases the friction force
magnitude at high uncertainty.

5 RESULTS

5.1 Chance Constraints Improve Friction Feasibility under High Uncertainty255

In the sliding block example, optimizing under moderate uncertainty (σ = 0.1) using chance constraints256
without the ERM cost produced trajectories that were nearly identical to the reference trajectory (Figure257
2A). When σ = 1.0, however, the friction forces varied both above and below the reference value of -4.9N,258
demonstrating that chance constraints relax the friction cone around both sides of the mean. However,259
the optimized control was still nearly identical to the reference control (Figure 2B), indicating chance260
constraints alone may not offer any robustness to uncertainty in contact.261

In our optimizations combining the ERM with chance constraints, when the friction uncertainty was262
σ < 0.1, the ERM with chance constraints method produced friction forces around 4.9N during sliding,263
similar to those produced by the ERM method alone (Figure 2C). However, when the uncertainty was large264
(σ = 1.0), the ERM produced friction forces at 0N during the entire motion, which is infeasible for all265
friction coefficients except µ = 0. In contrast, the ERM with chance constraints produced nonzero friction266
forces, and the magnitude of the friction forces increased as the risk bounds decreased and converged267
towards the expected value for friction at 4.9N (Figure 2D), indicating a solution with improved feasibility268
under the expected friction coefficient.269

Across all uncertainties, the solutions of the ERM and ERM with chance constraints tended to improve in270
friction cone feasibility as the uncertainty decreased, as indicated by a decrease in the merit score (Figure271
3A). Moreover, at any fixed uncertainty, the friction merit score decreased as the risk parameters decreased,272
with the ERM-only solution and reference solution acting as upper and lower bounds, respectively. Similarly,273
the maximum sliding velocity of the block increased with increasing uncertainty, indicating less sliding274
time under uncertainty, but decreased with decreasing the risk parameters (Figure 3B), except in the highest275
uncertainty case. The range of maximum velocity across chance parameters also increased with increasing276
uncertainty, from 0.02m/s at σ = 0.01 to 1.73m/s at σ = 0.3. However, at the highest uncertainty, the277
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Figure 3. Chance constraint mediated trade-off between expected friction cone feasibility and robustness
to friction uncertainty (signified by maximum sliding velocity). (a) Merit scores across uncertainty and risk
tolerances, quantifying violation of the expected friction cone constraint. (b) Maximum sliding velocity
across uncertainty and risk tolerances, signifying robustness as larger velocities indicate shorter sliding
times. Both constraint violation and maximum velocity increase with increasing uncertainty and with
increasing risk bounds. Missing data points indicate the optimization was not solved successfully.

sliding velocity for the ERM and chance constraints were all identical and less than that of the reference. In278
the σ = 1 case, the ERM failed to provide robustness to friction uncertainty; in this case, the ERM does279
not model the friction cone constraint well, and allows the optimization to set the friction forces to zero.280
Without friction, the optimal control is an impulsive, bang-bang controller (Figure 2D) and the resulting281
trajectory has almost constant velocity at 5m/s. However, the addition of chance constraints did improve282
the feasibility of the final motion plans with respect to the friction cone constraint, but did not alter the283
sliding velocity. Taken together, these results indicate that the chance constraints can mediate a trade-off284
between the robustness to friction uncertainty provided by the ERM and the strict feasibility provided by285
the reference solution.286

5.2 Chance constraints improve average performance against friction perturbations in287
simulation288

In our open loop simulations with the block example, the controls generated under ERM with chance289
constraints performed similarly to those generated under only the ERM for uncertainties kess than 0.1290
(mean position error 0.04 and error range 0.44 for ERM only, mean -0.03 and range 0.61 for ERM with291
chance constraints at σ = 0.1) (Figure 4). However, at high uncertainty σ = 1.0, the ERM with chance292
constraint simulation achieved a lower average position error compared to the ERM alone (0.26 for chance293
constraints, 2.41 for ERM only), although both had a similar range of position errors (Figure 5A). By294
varying the chance parameters during optimization, we found that changing β had little effect on simulation295
results, while increasing θ resulted in a slight increase in the final position error, from an average error296
of 0.01 at θ = 0.51 to 0.65 at θ = 0.9, for all values of β (Figure 5B). Moreover, changing θ and β at297
high uncertainty had no effect on the range of final positions achieved, indicating again that the chance298
constraints modulate the feasibility of the motion plan, while the robustness is provided by the ERM cost.299
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Figure 4. Example block simulations demonstrating chance constraints retain robustness at moderate
uncertainty and improve feasibility performance at high uncertainty, compared to the (a) simulations using
the reference controls, for four different values of the friction coefficient. Simulations using controls
generated under only the contact-robust ERM cost result in a low spread around the desired position for
moderate uncertainty (b), but can result in a large average position error when the friction uncertainty is
large (c). Simulations using controls generated using ERM with chance constraints maintain a low spread
at moderate uncertainty (e), and have a low final position error at high uncertainty (f). (d) Illustration of the
motion of the block for the reference, ERM, and ERM with chance constraint controls under high friction
uncertainty.

5.3 Chance constraints mediate the distance at which contact forces are applied300

In the hopping example with contact distance uncertainty, the ERM alone produced higher average foot301
height with increasing uncertainty, up to an average of 0.46m at our highest value of uncertainty (σ = 0.5302
m). Introducing chance constraints, however, reduced the foot height and reduced the distance at which303
the contact normal forces were nonzero, and the decrease in foot height trended with decreasing the risk304
parameters θ, β (Figure 6B,C). Across all uncertainties and risk parameters, the chance constraints tended305
to reduce foot height as the risk parameters decreased, and the range of foot heights generated by the risk306
parameters tended to increase with increasing uncertainty (Figure 7B), although there are exceptions which307
could be due to the highly nonlinear and nonconvex nature of the problem. However, we note that neither308
the ERM nor the chance constraints had much effect on the optimized reaction forces; in this example, the309
effects were limited mainly to the contact distance. By using the merit score, we also observed that the310
contact distance infeasibility decreased with both decreasing uncertainty and decreasing the risk parameters311
(Figure 7A). While the reference case provides a lower bound for the infeasibility, as it did in the block312
example, in this example the ERM only trajectory was not strictly the upper bound for all uncertainties,313
although this may be due to the presence of multiple local minima in the optimization.314

6 DISCUSSION AND CONCLUSIONS

In this work we proposed a novel framework for accounting for contact uncertainty in trajectory315
optimization. As previously explored, the ERM cost represents a robust contact-averse objective but316
also results in infeasible trajectories as the contact uncertainty grows (Drnach and Zhao, 2021). Here317
we developed chance complementarity constraints to convert the stochastic constraints into deterministic318
constraints and showed that the chance constraints can mediate a trade-off between feasibility and robustness319
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Figure 5. Effects of chance constraints on robustness of sliding block controls in open loop simulations.
(a) Mean and range of final position errors for the ERM with and without chance constraints planned under
different uncertainties, compared to those of the reference. The addition of chance constraints maintains
the low range of final position errors produced by the ERM, but at high uncertainty the chance constraints
reduce the average final position error. (b) Mean and range of final position error of simulated chance
constraint controls under different risk tolerances compared to the mean and range for the ERM under
the highest friction uncertainty case (σ = 1.0). Increasing the upper risk bound β has little effect, while
increasing the lower risk bound θ can increase the average final position error.

Figure 6. Effect of including chance constraints on hopping under distance uncertainty. (a) Selected
frames of the hopper trajectory comparing the reference, non-robust trajectory, the ERM only trajectory,
and the ERM with chance constraints trajectory. Only the θ = 0.6 case is illustrated for brevity. (b) Planned
foot heights for the hopper under high distance uncertainty (σ = 0.5 m) for different risk bounds, compared
to the ERM and reference trajectories, and (c) the associated normal ground reaction forces. The ERM
cost allows for contact forces to be applied at nonzero distances; however, as the risk bounds decrease, the
distance at which forces are applied also decreases.

by changing the risk bounds θ and β. The improved feasibility is achieved because the chance constraints320
limit the region of allowable solutions to the ERM to those near the non-negative mF and z axes, i.e. the321
solution set of the non-stochastic complementarity constraints; moreover, as the risk bounds are decreased,322
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Figure 7. Chance constraint mediated trade-off between contact distance feasibility and average foot height
for robustness. (a) Merit scores across distance uncertainty and risk bounds, quantifying the violation of
the expected contact distance constraint. (b) Average foot height across uncertainty and risk bounds, where
higher average height indicates more contact-robust hopping. Both constraint violation and maximum foot
height increase with increasing uncertainty and with increasing risk bounds. Missing data points indicate
the optimization was not solved successfully.

the allowable set approaches the complementarity solution under the mean values of the constraints,323
representing the limit of perfect feasibility under the mean but no robustness.324

Our work with chance-constraints is similar to previous works which have applied chance-constraints325
to obstacle avoidance (Gazar et al., 2020) or to modeling frictional uncertainty (Shirai et al., 2020) for326
locomotion. These works claim that the chance constraints provide a measure of robustness by using risk327
bounds to make the constraints more conservative, which can be thought of as making an obstacle larger328
or by making the friction cone narrower. This type of robustness is similar to worst-case robustness; the329
generated plan accounts for the worst possible constraint violations, but may still be sensitive to variations in330
the constraint parameters (Drnach and Zhao, 2021). In this work, we applied chance constraints to problems331
which require intermittent contact, and we noted that the complementarity constraints cannot be made more332
conservative as their solution sets have an empty interior. Instead, we demonstrated that chance constraints333
relaxed the contact constraints and improved the physical feasibility of trajectories generated with a robust334
cost; lower risk bounds produced trajectories which were feasible under the expected constraints but were335
potentially sensitive to variations, while higher risk bounds allowed trajectories to violate the expected336
constraints to achieve robustness.337

Here we considered solely the problem of accounting for uncertainty in contact during motion planning;338
we specifically have not investigated handling uncertainty in contact with control. Future work could339
convert our technique into a feedback control policy by re-planning in a receding horizon fashion; however,340
current methods for solving contact-implicit problems are too slow to be used reactively in real-time.341
Thus, advancements in efficient solvers for contact-implicit problems are necessary before our work can342
be used in a receding horizon control fashion, such as those used in hybrid optimization to generate gait343
libraries (Hereid et al., 2019). Apart from replanning, other methods for controlling through contact have344
already been developed, including contact mode-invariant stabilizing control using Lyapunov analysis345
(Posa et al., 2016) and a risk-sensitive impedance optimization for handing control through uncertain346
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contact (Hammoud et al., 2021). Although these approaches show promise for stabilizing and controlling347
locomotion through contact, the former has yet to be demonstrated on terrain with variations and the latter348
requires a reference trajectory with a contact schedule. The overarching goal of our work is to complement349
these approaches by generating a reference trajectory, including the contact sequence, which is robust350
to terrain variations. By planning trajectories which are robust to contact uncertainty - for example, by351
avoiding areas of the terrain with large variations - we aim to alleviate some of the burden on the controller352
and improve the overall performance of the system.353

In this work, we parameterized uncertainty in the distance to the terrain and in the friction coefficient354
using Gaussian distributions, as this distribution provides analytical formulas for the ERM cost and for the355
chance constraints. Having access to analytical formulas means we only needed to generate one robust356
trajectory, instead of generating multiple samples to achieve robustness (Mordatch et al., 2015; Seyde et al.,357
2019). Given that generating a single trajectory using the contact-implicit approach requires substantial358
computation time, the analytical formulas saved us considerable computation time by avoiding solving the359
problem for multiple samples of the terrain geometry or friction coefficient. However, using the Gaussian360
distribution has distinct disadvantages in theory, as it places non-zero probability mass over regions which361
are physically impossible, such as over negative friction coefficients or over terrain heights which result362
in interpenetration (e.g. terrain heights that are above the current contact point location). Such physically363
impossible regions could be avoided in future works by using distributions over a subset of the reals,364
such as the truncated Gaussian distribution or the Gamma distribution. However, using such distributions365
might require considerable effort to evaluate the ERM cost and chance constraints, which have so far been366
developed largely for Gaussian distributed variables.367

The main advantage of our chance-constrained ERM approach is that we can generate trajectories with368
varying degrees of robustness to contact uncertainty without changing the uncertainty. Thus, when faced369
with uncertain terrain, we can choose between being robust to terrain variations or being optimal with370
respect to our original objective without artificially changing the uncertainty in the model. Our work here371
focused on investigating these behaviors in simple systems on 2-dimensional terrain. In future works we372
could scale up our approach to full-scale robots traversing 3-dimensional terrain. We expect the complexity373
of solving the ERM and chance constraints to scale only with the number of contacts and not with the374
state dimension of the robot, as the number of complementarity constraints, and therefore the number of375
ERM costs and chance constraints, is linear in the number of contact points and not dependent on the state376
dimension - for example, adding several contact points to the sliding block and putting obstacles in the377
environment would make the contact problem more challenging, even though the state dimension is the378
same. Once we have scaled up to three dimensions, we could also evaluate our methods experimentally on379
full-scale robots, such as a quadruped, and compare the performance of our robust motion plans against the380
traditional approach using a simple controller, and against other risk-sensitive control approaches such as381
(Hammoud et al., 2021).382
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