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Contact-Sensitive Trajectory Optimization

Expected Residual Minimization: Formulation and Behavior under Changes in Uncertainty

Location Uncertainty Increases Contact Distance Friction Uncertainty Shortens Sliding Phase

Discussion and Future Works
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ERM increases mean contact distance as uncertainty increases

ERM converges to non-robust 
solution as uncertainty decreases

Contact-Driven Cart Problem Uncertain Contact Point Sliding Block Problem Uncertain Friction Coefficient

ERM increases control effort and reduces sliding phase duration

Open loop simulations with ERM-based controls have less variation
at the end compared to non-ERM controls

Standard Complementarity Problem for Contact

Expected Residual Minimization (ERM) for Complementarity with 
Uncertain Parameters

Designing safe and robust locomotion behaviors for bipedal robots poses a 
challenge to the dynamic walking field. 

Contact-implicit trajectory optimization has recently gained attention for its 
ability to generate diverse locomotion behaviors [1,2].

The contact-implicit approach solves for contact forces,
configuration, and control trajectories simultaneously
but requires a model of the terrain.

Solutions are sensitive to errors in the model; errors 
in the terrain model could cause the robot to slip and fall.

Previous works generate an ensemble of trajectories
by perturbing model parameters [3].

We propose explicitly accounting for parametric uncertainty in the terrain during 
trajectory optimization. 
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Cart constrained on horizontal rail

Actuacted by 
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Ground friction is uncertain
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 Normal Distance Distribution
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Proposition: As uncertainty decreases, the ERM cost function converges to 
the complementarity residual function with the mean of the uncertain variable.
That is:  

where µ is the mean value of the uncertain constraint F(x)

Normal Distance Constraint

Friction Cone and Sliding Constraints
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Replace complementarity constraint with residual

Assume one of the variables is normally distributed. 
The Expected Residual [4]: 

Objectives
1. Model parametric uncertainty in the friction coefficient and contact
point location and develop a corresponding contact-sensitive objective.

2. Demonstrate that trajectories generated under high uncertainty 
are robust to changes in the uncertain parameters

3. Demonstrate that trajectories converge to the trajectories generated 
without the contact-sensitive objectives as the uncertainty vanishes.

We investigated the use of the ERM method [4] to model uncertainty
in the terrain parameters and generate robust trajectories.

1.  Modeled uncertainty in the friction coefficient and in the contact location.

2. Demonstrated the ERM method generates trajectories which are robust
to uncertainty in terrain parameters

3. Demonstrated that the ERM-generated trajectories approach
non-ERM trajectories as the uncertainty decreases. 

Future work could combine ERM with Bayesian inference to estimate 
terrain parameters in ERM from locomotion data.
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Increasing uncertainty leads to increasing mean uncertain variables

Decreasing uncertainty leads to the complementarity solution
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Bayesian Optimization refines terrain paramters in ERM

Trajectory Optimization with uncertain contact ERM
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Interested? 
Take a copy
of the poster!


