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Abstract—Force modulation of robotic manipulators has been
extensively studied for several decades. However, it is not yet com-
monly used in safety-critical applications due to a lack of accurate
interaction contact modeling and weak performance guarantees
- a large proportion of them concerning the modulation of
interaction forces. This study presents a high-level framework
for simultaneous trajectory optimization and force control of
the interaction between the manipulator and soft environments,
which is prone to external disturbances. Sliding friction and
normal contact force are taken into account. The dynamics
of the soft contact model and the manipulator dynamics are
simultaneously incorporated in a trajectory optimizer to generate
desired motion and force profiles. A constrained optimization
framework based on Differential Dynamic Programming and
Alternative Direction Method of Multipliers has been employed
to efficiently generate real-time optimal control inputs and high-
dimensional state trajectories in a Model Predictive Control
Fashion. Experimental validation of the model performance is
conducted on a soft substrate with known material properties
using a cartesian space force control mode. Results show a
comparison of ground truth and real-time model-based contact
force and motion tracking for multiple Cartesian motions in the
valid range of the friction model. It is shown that a contact model-
based motion planner can compensate for frictional forces and
motion disturbances satisfactorily and improve the overall motion
and force tracking accuracy. The proposed high-level planning
has the potential to be leveraged for medical tasks involving the
manipulation of compliant, delicate, and deformable tissues in
the task space.

I. INTRODUCTION

Robotics applications in the medical domain have gained
increasing attention over the past few decades [1]], [2]. Within
the medical domain, planning and control of the interaction
forces between a robot and its environment are essential to
various safety-critical tasks. For instance, the interaction force
should be modulated accurately in compliant environments,
such as surgical settings, micro-assembly, or biological tissue
manipulation. Furthermore, force control based on identifiable
physical models is essential to identify instability modes (e.g.,
those caused by the bandwidth and system structure) and
maintain reliable force interaction to guarantee safety. Thus, a
model-based trajectory planning method with a high-fidelity
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Fig. 1: KUKA manipulator experimentation setup. A manipulator performing
a force controlled motion task on a soft surface.

contact model is essential for successful deployment with
satisfactory motion and contact force tracking performance.

Unlike rigid contact models, soft contact models are subject
to challenges posed by non-linear material properties and
non-uniformity as well as intensive computation burden due
to numerical computation for solutions. Numerous contact
models have been presented in the literature to model inter-
actions involving elastic deformation [3]], [4]]. These models
have broad applications and are essential in many engineering
areas such as machine design, robotics, multi-body analysis,
to name a few. For contact problems that involve elasticity,
Hertz adhesive contact theory has been well established [5]].
In this study, we focus on robotic tasks interacting with soft
tissues, the contact behavior of which is determined by not
only external and viscous forces, contact geometry, but also
material properties (see Figure [I). Soft contact mechanics are
crucial in physical model identification for motion planning
applications in surgical robots.

Many robotic tasks require motion planning in the pres-
ence of contact in a constrained environment. Simultaneous
trajectory generation and force control enable sophisticated
manipulation tasks while interacting with complex objects. As
a promising approach along this direction, trajectory optimiza-
tion with contact models has been extensively investigated in
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the robotics community [|6]—[/13]]. By incorporating the contact
dynamics into the optimization, contact-dynamics-consistent
motions can be planned for complex robot behaviors, such
as dynamic locomotion or dexterous object manipulation. In
this study, we propose a distributed optimization algorithm
inspired by the locomotion community [14], [15]], which
efficiently solves a constrained trajectory optimization with
a high-fidelity soft contact model [[16]]. Our previous work
[16] demonstrated offline trajectory generation with contact
and experimental validation. The algorithm used provides a
general optimization framework to iteratively solve rigid body
dynamics, soft contact interactions, articulated robot kinemat-
ics, and inequality constraints in a computationally efficient
manner. In the current work, we extend it with modifications
to the algorithm structure and demonstrate real-time execution
in model predictive control (MPC) fashion.

Manipulator contact models are naturally framed and exe-
cuted in the task space. In safety-critical tasks such as soft
material manipulation and medical applications, force-torque
control plays a significant role. These include interaction
with humans in proximity or with direct physical contact.
In approaching the contact interaction problem, data-driven
techniques have been explored to learn the interaction between
robotic manipulators and the environment [17], [18] or object
[19], [20]. Unlike rigid contacts, the soft environment is prone
to uncertainties spatially as well as with time. Thus, it is
challenging to learn the contact model and robot dynamics
simultaneously through data. In this study, we present a
model for contact interaction and embed it into the high-level
trajectory planning via enforced constraints.

Contact-rich environments tend to be prone to disturbances
which are difficult to model or predict. In such cases, to
maintain the contact and stability, an additional control layer
will need to be deployed on top of the high level planner.
In this work, we add a low-level admittance force controller
[16] to handle uncertainites arising from the model as well as
from disturbances in the environment. Finally, we implement
the proposed algorithm in a MPC fashion to demonstrate the
capability of real-time tracking.

The main contributions of this work are listed below:

« Presentation of a dynamic interaction model based on soft
contact mechanics for a predefined geometry with Hertz
visco-static theory.

« Incorporation of the interaction model into a constrained
trajectory optimization to generate the desired cartesian
path and force profile in an efficient, distributed fashion.

o Experimental validation of the derived contact dynamical
model and real-time implementation of the proposed
trajectory optimization algorithm with model predictive
control (MPC).

A conference version of the work presented in this paper
was published in [21]. The work presented here extends the
previous work in three respects. We introduce a trajectory op-
timization from a distributed contact-aware distributed frame-
work that splits the main problem into subproblems and solves
them independently to find a consensus solution. In brief, the
newly introduced inverse kinematics (IK) block is in charge
of joint trajectory generation and the differential dynamic

programming (DDP) block is for contact dynamics. Yet, the
other block is for constraint handling. We also implement a
low-level controller to aid the high-level controller in motion
and force trajectory tracking. Furthermore, our experimental
demonstrations are real-time executed in an MPC fashion.
Finally, we experimentally demonstrate the efficacy of this
framework on motion/force tracking tasks on a static and
dynamic disturbance-induced platform.

II. RELATED WORK

Contact Models. Elastic contact mechanics [5] have
been extensively studied in various research fields where
contact modeling is imperative for safety and performance
requirements. Existing works in [4], [22]-[24] have used soft
contact models for both modelling and control. These works
include quasi-static assumptions and studies of [25[, [26]]
explore cases where high-velocity impacts on soft material are
considered. In the impact cases, visco-elastic models have been
widely investigated. For instance, studies in [4]], [25] compared
various visco-elastic models with experimental validations. A
majority of these works show that the Hertzian-based Hunt-
Crossey model is the one most suitable for visco-elastic cases.
Furthermore, fundamentals of frictional sliding motion are
established in the works of [27]], [28|], where the main focus is
on rigid body contacts but generalizable to soft contacts. More
recent works in [29], [30] propose contact-area-based models.

Trajectory Optimization. Trajectory optimization (TO) is
a powerful tool to generate reliable and intelligent robot
motions. Various numerical methods have been proposed to
solve a TO [31]-[33]. Among them, Differential Dynamic
Programming (DDP) and iterative Linear Quadratic Regulator
(iLQR) have aroused much attention in solving TO in the
context of unconstrained problems, where only dynamics
constraint is enforced in the forward-pass. The Ricatti-like
backward pass in DDP or iLQR effectively reduces the com-
plexity of solving an approximated LQR problem over the
entire horizon, and the optimization is solved in an iterative
fashion. In [34]], DDP is used in a balancing task of a
humanoid robot with high degrees of freedom (DoFs). A more
recent work [35]], demonstrates a Model Predictive Control
(MPC) implementation based on DDP. However, standard
DDP algorithms are not capable of addressing constraints.
In [36], [37], DDP-type variants are proposed to cope with
state and control constraints. Instead, our approach employs an
augmented Lagrangian method named as Alternating Direction
Methods of Multipliers (ADMM) [15]], [38]-[41] to address
various constraints. The ADMM framework is capable of tack-
ling more constraints by introducing additional optimization
blocks, making the algorithm suitable for parallel computing
and utilizing the most efficient solver for each sub-problem.

Trajectory Optimization with Soft Contact. Contact-
aware TO are often built upon the conservative assumption
of rigid point contact dynamics [6]-[10] — an assumption
present in the majority of robot control and planning lit-
erature. This assumption largely overlooks underlying patch
contact dynamics such as surface deformation and elasticity
[42]. Although there are some exceptions such as [[11]-[13]



that directly integrate a soft contact model into the system
dynamics, and implicitly optimize both contact force and other
control inputs, the contact models are still relatively simple.
In [43]], a soft contact model was taken into account in the
optimization formulation for whole-body locomotion control.
However, most of the works above assumed spring-damper
type soft contact models, which still largely mismatched the
contact surface deformation or elasticity in reality. Therefore,
advanced planning algorithms that accurately model complex
contact dynamics are imperative to enable maneuvering over
complex terrain or grasping irregular objects. To date, TO in-
corporating a high-fidelity deformable contact model remains
under-explored in the field.

Model Predictive Control (MPC). The generation of tra-
jectories for a given model and fixed horizon is computation-
ally prohibitive in nature, making it difficult to deploy in real-
time contact-rich applications, where model uncertainties and
environmental disturbances are ubiquitous. Model Predictive
Control (MPC) is a powerful strategy widely used to generate
motion plans in real time and be adaptive to state changes
due to environmental disturbances [44], [45]]. Recent advances
in fast automatic differentiation (AutoDiff) [46] and AutoDiff
compatible rigid body models has enabled real time optimal
control. The study in [47] showed a hardware implementation
of MPC with a DDP optimizer framework at an update rate of
1000 Hz on a 7-DOF robot for a vision based point-to-point
trajectory planning.

Admittance Control. To cope with un-modeled modalities
of the contact, we use a low-level force controller based on
admittance control [16]] which has a fast control update rate
compared to the high-level planner. It can compensate for
the uncertainties that arise spatially over the surface (e.g.,
stiffness, slipperiness, and damping). Admittance control has
been long studied and proven to work efficiently in compliant
environments [48]]. Furthermore, low-level controller mitigates
instabilities [49] arises from the contact caused by the control
update rate, stiffness mismatch, and high gains.

III. DEFORMABLE CONTACT MODELING
A. Contact modeling via Hertz’s theory

In this section, we model the interaction dynamics between
an application tool mounted on a manipulator and a soft
tissue in terms of contact geometry and mechanics. In the
example shown in this study, the contact part of manipulation
is assumed to be a spherical indentation (for simplicity, but not
limited to). Further, we assume that the application tool used is
rigid and has a high stiffness compared to the contact surface.
Along with these assumptions, we derive a dynamic model
based on the contact friction theory and pressure distribution
based contact modelling. According to Hertz’s theory, the
largest static indentation is achieved at the central point of
the circle (see Figure 2) and can be expressed as:

F2 %
) } (1)
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where E is the reduced Young’s modulus of tool and surface,
R is the radius of the tool end, F' is the force imparted on
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Fig. 2: A graphical illustration of the soft contact model between surface and
the end-effector tool

the surface by manipulator end-effector. Combined Young’s
modulus of the tool and the soft contact surface material can
be lumped to one term as:
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where E;, Fs and vy, v, are Young’s moduli and Poisson
ratios of the end-effector and contact surface material, re-
spectively. In our scenario, we assume the contact part as a
rigid object and thus the Young’s modulus of the spherical
cap E5 is approximated as infinity. Accordingly, we have
E = E;/(1 — v?). The deformation and stress distributions
on the surface are approximated by the universal Hooke’s
law and Hertz’s theory. Details of normal, radical, and hoop
(i.e., moving direction) stress distributions within the contact
area in the cylindrical coordinate system are provided in the
Appendix.

Accordingly, the deformation distribution is derived from
the stress distribution equations as follows:

= [17;"2]%(2&2 —r?), (r<a)
Uz = % {FE”Q]pm [(2@2 —7r?) sin~? (%)
+a(r? — aQ)%}, (r=>a)

where p,, = F/(ma?) is the average stress applied in contact
part by manipulation and @ = v/Rd is the radius of contact
area (see Figure [2). The dynamic contact model for a contact
spherical cap (i.e., spherical geometry) is applied with a force
vector F' at an angle A to the perpendicular and moves in
a circular path of radius R with a uniform velocity v, in
frame {sphere}. It represents the scenario of manipulating an
application tool to work with soft tissues. For simplicity, our
model focuses on sliding friction and ignores other frictional
sources such as adhesion and rolling induced by deformation.
Due to the symmetry of our contact scenario, gy represents
the principal stress within the contact circle. Thus, we can
represent the stress tensor of any contact point (r,6,z) in



cylindrical coordinates relative to frame {sphere} via the
Cauchy stress theory [5].

or 0 o
o= 0 o9 O (2
o 0 o,

Since the task is defined in the Cartesian frame, we convert pa-
rameters to Cartesian coordinates from cylindrical coordinates.
The stress tensor in Cartesian coordinate is o, = T7oT,
where the transformation matrix 7" is defined in the Appendix
X-Al

At an arbitrary point on contact surface (2, ¥, ) {sphere}» the
normal vector from this point to centroid of spherical cap is
n = [s0 0 cO"[] Then, the normal stress of the contact
surface is o,, = n” o.n with

On = 01020520 + 0950 + 0,620 + 20,5020

Given this stress expression, the overall friction force of the
contact surface is represented as

df = po,dS = po, x QWTﬁ 3)
ct
f= /dfce = 27w/ oprdr 4)
0

where, df, dr, dS are the differential elements of the friction, r
and contact area. In the surface normal direction, it is assumed
that the surface is in contact with the end point of the tool. As
a result, Eq. (I) always holds. The derivative form of Eq. (I)
is

L ]F 5)
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where z represents the position along the surface normal
direction of the contact point and force along the normal
direction is defined as F, = F cos 0. In the moving direction,
Eq. and pF, give the frictional force caused by the normal
force F,, which is:

2

10R2 n, + kdve (6)

where k; is a damping coefficient in the moving direction.
By substituting a = v/Rd and Eq. (6), we have the derivative
form of Eq. (6). n, is the unit vector of the velocity and v,
is the end-effector velocity at the contact point.

3u(2v — 1)
10R
The overall model with the frictional and normal force

components of the contact model can be written in a compact
form as:

Fp=f=uF. + (de - Fz) n, + kave (7)

¥, = ((6E2RF.,)? d)n.
((
3u(2v —1)

+ (ub.+ == (Fud + Fd) )y kv (®)

'we denote cos @ = cf and sin 6 = s6.

n, is unit vector and d is the deformation at central point of
contact circle and is calculated from Eq. , andd = i,. F, is
the vertical force (the surface normal direction) applied on the
surface by the manipulator and v, = ||J%;/|| is the moving
velocity of the tool contact point.

B. Contact Constraint Modeling

The motion studied in this paper is primarily in the sliding
mode, which an equality constraint can describe. Since the
sliding is embedded in the contact model, additional con-
straints for sliding are not required. However, a constraint is
added to make sure the robot is only sliding in the desired
path where the path is curved. Figure ] shows the two
components of the force acting on the tool, namely, frictional
and centripetal forces along the path of curvature R, as shown
in Figure [3| The contact model provides the sliding friction,
and the centripetal force constraint is added as a constraint .

J-TM(q)3 [T
R.

F. € R3 is the force vector at the end effector and J is the
contact jacobian. J=TM(q)J~! is the effective mass at the
contact point of the robot with a mass matrix of M(q) and
Jxjs is the moving velocity of the contact point. N is the
surface average normal vector (as precept by the force-torque
sensor). In this study, we use N = [0 0 1]T, which is
only in the 2 directiorﬂ The constraint represented by Eq. E]
keeps the robot in contact when the cartesian tracking path has
a curvature, and the robot is operated in a lower impedance
mode. It is an effect of the resulting centripetal force on the
effective mass at the contact. For instance, if the velocity at
a curve is high, it would slip in the orthogonal direction of
the moving direction unless high positional gains are used to
compensate for it.

< uNTF.N 9)

IV. PROBLEM FORMULATION

The optimization problem is to solve a control trajectory
that would result in a desired cartesian trajectory along a
desired force profile. The state for our trajectory optimiza-
tion is represented as: xp; = [ql Q2 93 G4 Q5 Q6 q7],x =
[xar Xar Fe]T,u = 7,. The overall problem is formulated in
Formulation [Tl as shown below.

where 0x[i] = (x[i] — x4[i]) and 0F[i] = (F.[i] — Fy4li])
are the position error and normal force error with respect to
reference x4[i] and Fy[i]. Q € R™™™ and R € R™*™ are
the state and control weighting matrices, F/C € R*** is the
forward kinematics function of the manipulator and W, €
R*X4 is the state weighting matrix for the forward function.
For simplicity, we use ¢ = (x[0,...,N],u[0,...,N —1]) to
represent the sequence of state-control pairs.

The manipulator model dynamics are expressed below.

v =M(q) (7w — Claq,d)q — G(a) - JTF.) (11

where q is the joint state vector, M(q) is the joint space mass
matrix, C(q, q) is the Coriolis term, G(q) is the gravity term,

2N varies with the surface deformation which is stochastic and can
estimated through an external force-torque sensor attached to the end-effector



Formulation 1 Simultaneous trajectory and force optimization

force tracking

QF 5F[Z] +u

N
(Tracking Task) m1n Z OF[i]
=0

i Ruli]

pose tracking

+ Wy || FIC (x5, [4]) — 2]
x[4]

(Decision Variables) — ¢[i] = [[xar[i] Xar[i] Fe[i]]”, ufi]T]"
Vi=1,....N—1 (10a)
(Dynamics) s.t. x[i + 1] = F(x[é],u[i]) (10b)
(Initial Condition) x[0] = xo (10c)
(Joint Limits) Xy <xp < X (10d)
(Torque Limits) u<u<au (10e)
(Contact Constraint) J_TM(q); 3%l < uNTF.N
) (10f)

T, 18 the torque applied at joints, J is the contact Jacobian and
F. is the external Cartesian wrench at the end-effector.

V. CONSTRAINED TRAJECTORY OPTIMIZATION WITH
CONTACT DYNAMICS

Given the manipulator and the contact dynamic models,
Differential Dynamic Programming (DDP) is used to generate
desired joint and Cartesian motion as well as force profiles
obeying dynamic constraints. DDP is well received for ef-
fectively solving unconstrained trajectory optimization [36]. It
represents an indirect method which only optimizes control
inputs, and the dynamics constraint is implicitly satisfied
during the forward trajectory rollout. Given an initial guess
of control inputs, an updated state trajectory is generated
by forward propagating the differential equation of system
dynamics. Then a quadratic approximation is constructed for
the cost function and dynamics around the current trajectory,
so that a Riccati recursion can be used to derive the optimal
feedback control law. By iteratively updating the state and con-
trol trajectories, the optimization will converge to an optimal
solution.

One limitation of DDP stems from its difficulty in address-
ing constraints other than the dynamics constraint enforced
during the forward pass rollout. Since our contact model
enforces state, control, frictional constraints, it is desired to
incorporate these contact constraints along with the state and
control constraints. Our previous work in [50] proposed an
iterative and distributed method based on Alternating Direction
Method of Multipliers (ADMM) to incorporate the contact
dynamics and constraints. In this work, we introduce an
inverse kinematics sub-problem and extend the entire ADMM
framework to be a consensus variant to further improve the
computational efficiency. Note that a sequential variant can
also be established. Details are demonstrated in Sec[X] and we
benchmark multiple variants in Sec[VII]

Formulation 2 Distributed constrained optimization (consen-
sus)

min Z SF[i)T Qr 6F[i] + ufi]" Ruli]

b.6.¢
+Wp|\f/c<xM[ 1) ==l

+ L7 u,7(Xa[i], uli], Afi])
x[1]

(Tracking Task)

(Variables-DDP)  ¢[i] = [[xas[i] %ar[i] Feli]]T, u[i]]"
(Variables-IK) pli] = %ps[i]”
(Variables-Proj)  ¢[i] = [xas[i]7, afi]”, Ai]T]"
Vi=0,1,....N—1 (12a)
(Dynamics) s.t. x[i+ 1] = F(x[i],ufi]) (12b)
(Initial Condition) x[0] = x¢ (12c¢)
XM = XM
(Consistency Constraints) M N M (12d)
u=1a
A=A

The ADMM algorithm decomposes a large-scale, holistic
optimization problem into sub-problems and solves each sub-
problem iteratively. In each iteration, the primal and dual
variables are updated sequentially. Under mild conditions, both
primal and dual variables converge to the optimal solutions.
More details about ADMM algorithm are referred to [S1]].
To apply this algorithm for our soft-contact manipulation
problem, we define various sets of copies and the correspond-
ing consistency constraints. Therefore, the original Formula-
tion [I] is transcribed into a distributed version as shown in
Formulatlon I For simplicity, we define )\ = (x{/[,F
and ¢ = (Xp[0,...,N],ql0,...,N — 1] )Ito
express the concatenated copies of states and controls that
are required to be projected. Meanwhile, the variable set
¢ = (%[0, ..., N]) denotes a copy of joint position x,, and
handles the end-effector tracking, i.e., the inverse kinematics
(IK). The closed and convex sets 7, U and JF stand for joint
limit (I0d), control limit and contact constraint (T0f)),
respectively.

By utilizing indicator functions, the above constraints are
encoded inside the new cost function in Formulation [5l In
general, a compact indicator function regarding sets A, B is
defined as

0, x,ye A B

. (13)
400, otherwise

IA,B(Xv y) = {

Given the transcribed optimization problem, an augmented
Lagrangian (AL) can be derived (See [X]for a complete expres-
sion). Then based on ADMM, the original problem is divided
into three sub-problems which are also known as sub-blocks.

3The decision variables x; and A are subsets of the full state x



Each sub-block only requires part of the aforementioned AL
as the local cost function:

Contact dynamics sub-block:

N
Lea =) (6F[(]"Qp 0F[i] + uli] Ruli]) (14a)
=0
& 5 |IxXar — X + k|3 + 2 5 lu—u+ vall3
p
gnx =X+l
Inverse kinematics sub-block:
N
Lix = W[ FKGarlil) — %2l (14b)
i=0
+ S 1%ar — %ar + VA1
Projection sub-block:
Lproj Z Iy .7 (Rarli], uli], Ali]) (14¢)

+ %an — %ar + vEIE + Zlxar —%ar + V33
P ~ k p X k
+ G = v+ SIA = A v

where p;, p,, py are step-size parameters corresponding to
each constraint. Note that since the first two consistency
constraints possess the same projection goal X;;, parameter
p; is adopted in both cases. Then for each ADMM iteration
k, the updating sequence in a scaled form is

¢! = argmin Lo s.t. Eq. 1) (15a)
]

¢ = argmin Ly (15b)
bix

¢! = arg min Lproj (15¢)
@

Vit = Vlkk +x5 - =y (15d)

VIt = vE X - =G (15¢)

k-‘rl _ Vu + uk+1 _ ﬁk-‘rl (15f)

?-"1 V‘I}J_ + Ak“rl _ Xk‘“rl (15g)

where ¢, qf) and é are primal variables. vy, v;, v, and v are
dual variables related to each consistency constraints defined
in 21d).

To efficiently solve the constrained optimization problem
in (T5a), DDP is deployed and the state trajectory is always
dynamically feasible by performing the forward pass. For
Eq. (I5¢), this minimization problem reduces to a projection
operator on convex sets J, U, and F

@1 —argmin GG — xar + VS
(IS
+ 2l — =+ VI
+ %nu’“*l — a3+ LA - X v

C ={(xy, 0, )Xy €T, 0EU,XE F}

Algorithm 3 ADMM trajectory optimization
R R

2 v v?,vik — VLV VY vy V(}
3. repeat
4 ¢+ DDP (¢, %y — v;,0—v,, A —vy) {Eq.[14d}
5: ¢E +— IK ()_(]\/[ — Vik) {Eq }
6: ¢ « Projection (%(f{M +Vik +Xp V), U+ vy, A+
vr) {Eq.
Vik < Vik + Xy — Xr
Vi Vi + Xy — Xy
D Vyé&—vVvy,+u—u
10: Vi vitA—A
11: until stopping criterion is satisfied
12: return ¢

R

Then a saturation function can be used to efficiently project
the infeasible values onto the boundaries induced by different
constraints:

. 1
Pt = Hjtu,;b( MR G v,

(16)
uk+1+vk )\k+1—|—Vf

The whole process of our ADMM algorithm is shown in
Algorithm 1. The selection of ¢ and dual variables v are
arbitrary, and we initialized to be zero. The initial trajectory
of ¢ is generated by running forward dynamics with an initial
guess of controls. In each ADMM iteration, the controls from
last ADMM iteration will be sent to the current DDP solver
as a warm-start, which makes the DDP solver converge faster
within around ten iterations in each ADMM iteration after the
initial one. Then the trajectories are solved iteratively until a
stopping criterion with regard to primal residuals (see [S1],
Sec. 3.3) is satisfied(residuals of magnitude 1072).

VI. MODEL PREDICTIVE CONTROL

We implement the ADMM planner in a Model Predictive
Control (MPC) fashion in the real-time deployment. At each
MPC cycle, the optimization in Eq. (I0) is solved with a
horizon H = Ngepsdt and its solution is used as the warm-
start for the next MPC cycle, i.e. (xg,ug) « (x[i]*,u[i]*)
where X is replaced by some initial state x[¢]*.
=ufi]" + PD(x[i]",%)

If fd fe

— ——
=u[i]* + K(xy — xp[i]*) + dupc(Fli]", Fe) (17)

uli]

where, X = [Xus s FG]T, is the filtered (low-pass) current
state and K € R™ ™ is a gain matrix. u[¢] is composed
of three terms; the feed-forward(f f), feed-back(fd), and the
admittance force controller(fc).

Remark 1: The low-level controller in the KUKA Sunrise
software [52] uses user-defined joint space impedance control
internally. We set a safe robot impedance to execute our
commands as well as to allow the manipulator to behave safely
in the compliant environment.
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path, the robot needs to vary the velocity to compensate for centripetal and
frictional force components caused through the contact

The high-level MPC loop is implemented at 5 Hz with a
horizon of 1 s and a time step of dt = 0.02 s. In each MPC
iteration, we solve for a trajectory by the ADMM planner
as described in Section [Vl and we use C++11 in all of our
code implementationﬂ To maintain the contact force accuracy
and to avoid instabilities resulting from low frequency control
update rate , , we use a low-level force controller
which runs at 100 Hz where the update rate is appropriate
for the compliant (low-stiffness) environment.

In one of the ADMM planner blocks, we use DDP to
solve for the robot and contact dynamics, which consumes
most of the computational power. To make the real-time
implementation feasible, we use automatic differentiation for
derivatives provided by CppADCodeGen [54]], and RobCoGen
[46] is used to derive the analytical rigid body dynamic model.
On a Linux machine (Intel i7) with 3.4 GHz clock speed,
average computation time for a horizon of 1s took 150 ms.

4The code implementation can be found at https:/github.com/lasithagt/
admm|
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Fig. 5: Model Predictive Control (MPC) Implementation. H, 7" and s; are
the number of timesteps for the horizon, timesteps for the compute delay and
current state from the system. Computation takes 7" steps. During the time,
execution thread keeps executing the previous plan. Once planning thread is
finished, the current execution plan is updated; the time-steps corresponding
to delay is truncated.

Without AutoDiff and analytical models, it takes 1300 ms.
With AutoDiff, it is possible to run MPC at a approximate
rate of 5 Hz.

Each iteration of the DDP takes on average 10 ms while
we limit the number of DDP iterations to 10 per ADMM
cycle to ensure the solver returns an optimal trajectory on
time. We run a maximum of 5 ADMM iterations in each
trajectory computation cycle. While the constraint residuals
are not guaranteed to reach the same threshold every trajectory
iteration, our experimental results demonstrated that 5 ADMM
iterations were sufficient to reduce residuals to the order of
1072, In an ideal MPC setup, the first control input from the
output trajectory is applied to the robot and, the current state is
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used as the initial state for the MPC computation at the next
iteration. However, there could be a significant computation
burden for the trajectory planner in a practical setting. To take
into account the computation and communication delay in the
hardware system, we use an asynchronous MPC similar to
[55] as shown in Figure [5| The current state (x[t]) is applied
to the planner. It takes 7' time-steps to compute the trajectory.
During that period, the previous trajectory is executed. After
T time steps, trajectory U, 4+ g = {uy, ..., Wy g} is returned
by the planner. In the actual execution of the trajectory, we
truncate the control input sequence up to 7' time-steps as
shown in Figure [5} The planner and the execution threads are
run in parallel in different threads using the threading library
in C++11.

Although MPC is beneficial in handling model uncertainties
and environmental disturbances, this is not sufficient for tasks
that require force modulation. This is due to the instabilities
that could arise from contact and determined by the control
update rate and surface material properties [[16[], [53]]. We use
a force controller which updates control input at a rate of 100
Hz to avoid contact-induced instabilities. Admittance control
is proven [48] to be better suited for compliant environments
where impedance control is best suited for stiff environments.

Force control is important as the surface parameters are not
uniform and prone to un-modelled dynamics (e.g., damping,
restitution, slipping). To compensate for it, we use admittance
control as the force controller in the low-level control. To
mitigate the instabilities that would arise from position-based
admittance control [56], we use torque as the control input
as opposed to position control. The stiffness of the contact
surface material was estimated as described in [16].

Supc(t] = Clx,y, z) ' (Fi[t] — Fe[t]) (18)

where J(q) is the kinematic jacobian matrix, dupc[t] is joint-
space torque and C(x,y, z) is the compliance matrix which
can vary spatially (in the space (z,y, z)ﬂ

VII. EXPERIMENTS

To validate the applicability of theoretical attributes of our
work in a practical setting, we demonstrate it via physical
experiments on a custom-designed platform, shown in Figure
[6} Moreover, we compare our framework with other state-of-
the-art methods which are used widely in robotics motion
planning in simulation (in MATLAB®). Then, we show the
contact parameter identification methods and compare results
with the disturbance-induced tracking task.

A. Trajectory Optimization Algorithm Comparisons

The primary motivation for a distributed motion planning
scheme such as ADMM is to use different optimization
methods that specialize for each sub-problem and incorporate
constraints into it. For example, it is efficient to use first-order
differential methods to generate IK solutions and solve for the
dynamic model separately to find a consensus between them.

5C is set to be a constant in this study and identified experimentally

These were benchmarked in MATLAB® with a 3.4 GHz i7-
core processor. In addition, we benchmark our method against
other standard methods, namely:

1) Our Method: ADMM with 3-block architecture (Con-
census). The ADMM architecture with three blocks:
nonlinear dynamics, IK and projection blocks are solved
and concensus is found in the ADMM update. More
details can be found in Appendix

2) Sequential Quadratic Programming (SQP). Direct collo-
cation with trapizoidal transcription were used with the
dynamical system with contact dynamics;

3) Iterative Linear Quadratic Regulator (iLQR - vanilla
DDP). iLQOR [36]] was used with a combined cost of the
desired cartesian trajectory (SE(3)), force trajectory,
state, control, and contact constraints;

4) ADMM with 2-block architecture (Sequential). ADMM
scheme with 2-blocks as implemented in [50] was used.
In the nonlinear dynamics block, desired state and
control cost is used in the DDP solver. Projection block
projects to state, control and contact constraints;

5) ADMM with 3-block architecture (Sequential). The
ADMM architecture with three blocks: nonlinear dynam-
ics, IK and projection blocks are solved sequentially
in the ADMM update. More details can be found in
Appendix

Figure [/| shows the comparison of cost reduction and the

contact residuals reduction for the methods described listed
above. For the ADMM variants, * — axts represents the
number of dynamic solver (DDP) iterations instead of ADMM
iterations for a fair comparison with other methods (e.g., SQP
and iLQR).

B. Cost Reduction

One advantage of using ADMM with a 3-block architecture
is to track a reference Cartesian trajectory (SF(3)) without
adding an extra cost term in the dynamics block, which could
impede the fast convergence of DDP. The cartesian trajectory
can be solved efficiently with differential IK and redundancy
resolution for redundant systems. Moreover, the solution can
warm start the dynamics block. It is evident in the convergence
of ADMM (Figure with 3-block architecture solved in
the consensus manner. However, sequential variants tend to
converge slower with the penalty parameters (p) used. While
the convergence is fast, more iterations are needed for the
constraint residuals to drop to a satisfactory threshold of 10~2.

C. Constraint Satisfaction

Constraint residuals for each iteration in Figure 7] (right)
are recorded, and the cost coefficients are tuned for each
method. It is observed that residuals in the consensus ADMM
with 3-block architecture drop relatively faster than other
methods. Moreover, the SQP method initially started with a
lower residual value and increased (and decreased again). This
observation can be attributed to the pre-processing phase of the
SQP solver to find an initial solution that is constraint satisfied
regardless of the objective cost. Furthermore, the iLQR keeps
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the residual constant without significant improvements. It is
due to the cost and constraints combined cost term, prioritizing
cost over constraints.

D. Experimental Results

In our previous work @], we demonstrated the validity
of the contact model experimentally when the environmental
platform is stationary (as shown in Figure [§). In this work,
we extend it to a non-stationary environment where periodic
disturbances are applied (1H z pulsations) as shown in Figure
Moreover, we demonstrate the feasibility of the real-time
deployment of the proposed framework. The experimental
results can be summarized to the categories below:

Residuals vs Iterations

1) Open-loop trajectories in the presence and absence of
environmental disturbances.

Open-loop trajectories with low-level force controller
activated.

Model predictive controller (MPC) with low-level force

controller in the presence and absence of disturbances.

2)

3)

E. System Identification of Material Properties

To experimentally validate the proposed soft contact model,
parameters related to contact body material need to be iden-
tified, e.g., frictional coefficient and Young modulus. The
friction coefficient is estimated by performing pre-determined



—— FC —— withoutFC —— MPC+FC == Desired |
X (m) X (m)
0.06 -
0.050 -
0.04 -
0.025 - 0.02 1
0.000 - 0.00 -
-0.025 - ~0.027
-0.04 -
-0.050 |
-0.06 A
-0.05 0.00 0.05 —0.0010-0.0005 0.0000 0.0005 0.0010
= 5.0 45 =
o Y7 - 4.0 7 S
S 25 3.5 S
LE 2 i T T T . T T T - Z
0 5 10 0 5 10
> 14 25 x
Y &
g 0 0.0 2
LE _1 L T T T _25 l T T T LE
0 5 10 0 5 10
2 2 ° s
8 0- S
LE 0 - T T T T T w T :Lé
0 5 10 0 5 10
Time (s) Time (s) Time (s)

Fig. 8: Top row: Paths tracked by the end-effector vs commanded. Bottom Row: Comparison of ground truth of normal and frictional forces vs predicted by

the model.

motions along the surface of the material surface while record-
ing the force/torque data through an ATI mini45 sensor which
is attached to the end-effector in Figure [6]

The Young modulus is estimated through performing cyclic
linear probing on the surface of the material with the same
end-effector point geometry of a sphere (was tested on a
material testing platform INSTRON®). It is performed through
a non-linear least square estimator by using Eqgs. (I)) and (6]
was used to estimate the frictional coefficients by non-linear
least squares estimation as below. Formulation [4] summarizes
parameter estimation problem.

Formulation [] presents the identification of parameters.
Frictional force magnitude in the moving direction Fgc,
velocity magnitude v, and normal contact force F, are calcu-
lated from the collected data. A three dimensional robust least
square approximation is fit with a logistic distance function
in MATLAB®. This fitting is used to mitigate the sensitivity
to the model deviation as the deformation increases (see
Figure [10). Identified Young Modulus and friction coefficient

Formulation 4 Contact Parameter Identification

k=N B 9F2 %
mbin kz_o ldx — 16E§R |2 Derived from Eq. (1)
=2 3a?
i dp — pF, |14+ (2v —1)—=
g}kgkz:o”k uz[+(v )05z | ™

— kqve|2 Derived from Eq. ()

were incorporated into the overall optimization in Eq. (TI0).
Desired states to track are the desired end-effector position
(%e, Ye, ze) and the desired normal contact force F,.

The purpose of identifying material properties is two-fold.
First, to validate that the used models are well suited and
to use in the trajectory optimization framework to generate
optimal open-loop trajectories. Friction data fitting results are
presented in Figure Data were fit with a resulting R-
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Motion Path 1

Motion Path 2

Motion Path 3

path (m)  force (N) path (m)  force (N) path (m)  force (N)

without FC 0.284 1.042 0.392 1.328 0.302 0.891
with FC 0.0183 0.384 0.0258 0.481 0.0172 0.0273
MPC + FC 0.0164 0.283 0.0191 0.319 0.0233 0.0084

TABLE I. RSME for motion and force and motion, FC-Admittance Force Control, MPC-Model Predictive Control, Motion Path 1(Circle), Motion Path

2(Eight), Motion Path (Line)
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—— MPC+FC
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Fig. 9: left: Normal and frictional forces with surface pulsations. Comparison of the activated force controller (blue), inactivated force control (orange), and
MPC and activated force control (green). right Normalized force and motion superimposed on a heat map. Note that, motion pulsations of the experimental
platform (Figure [6) cause the ripples observed in force profiles, for which the controller is attempting to compensate.

squared value of 0.9103. Frictional coefficient (1 = 0.4512)
and damping coefficient (kg = 13.1315) were identified.

It is observed that with the increase of normal force on the
surface, the effects of deformation dominates the frictional
forces. This phenomenon is due to the increased rolling
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Fig. 10: Friction model validation and identification. p = 0.4512, K; =
13.1315, R-squared = 0.9103.

friction and material-specific artifacts, e.g., non-uniformity
in frictional coefficient and stress distribution. Moreover, the
presence of fluids or any micro-particular particles will in-
crease the non-uniformity.

In the implementation, optimal state trajectories and in-
puts are generated through the optimization formulated in
Eq. (10). Constraints were satisfied within 10~2 residual
value violations in both primal and dual stopping criteria.
Figure [I0] shows that the contact model used is valid for a
range of normal forces. Therefore, the desired contact force is
maintained within the valid bound of the friction model.

FE. Open-loop Trajectory Generation without Environmental
Disturbances

Open-loop trajectories generated from our trajectory op-
timization method are used as reference trajectories for the
experiments. Any mismatch in contact forces (e.g., those due
to friction and deformation) would directly affect the motion
and vice versa. It is observed that the control input solved



via TO was able to track the motion (xg) and force profile
(Fy) significantly better than a position-controlled robot with
force modulation as shown in Figure [8| This is due to its
open-loop compensation of frictional and centripetal forces en-
countered during the contact interaction. However, the tracking
performance is not superior but reasonably adequate due to the
model imperfections caused by the soft material’s unmodelled
dynamics, stiction, and non-uniformity.

As described in Section the same open-loop full
trajectories were executed with force control as described
in Section [VI] Figure [§] shows experimental results, which
suggest low-level force control alone (the blue trajectory) can
improve the reference force tracking accuracy significantly.
However, the reference motion tracking accuracy degrades
due to the frictional forces encountered on the surface ob-
served in the experimental results. The reference force and
motion tracking performance improve with active force control
and MPC (the green trajectory). Furthermore, Table |[I| shows
quantified results on multiple motion trajectories with different
geometries with different curvatures. In Cartesian geometries
that contain sharp curves (e.g., rectangular geometry), the
centripetal force component is an addition to the frictional
force in contact force compensation, the velocity at the corners
needs to vary to maintain the path and the contact as illustrated
in Figure [d] Failing to compensate for it could result in sliding
and deviating from the desired motion (the without FC case
in Figure [§). Only friction force needs to be compensated in a
straight line, while both centripetal and frictional components
are present in a curved geometry.

G. Model Predictive Control with Low-level Force Controller
under Periodic Environmental Disturbances

Previously, it was shown that force control and MPC could
improve both force and motion tracking accuracy. However,
the environment is subject to motion disturbances in a realistic
setting. To cope with such disturbances and compensate for
frictional forces simultaneously, we experimentally show the
efficacy of the proposed TO method. Figure [] illustrates the
force and motion tracking accuracy when under force control,
without force control, and with force control, and MPC. Sim-
ilar to the static case, low-level force control improves force
tracking, but the reactive” nature can be observed in the force
tracking (in Figure [0 right column, second row subplot). As a
result, the MPC with contact model information improves both
force and motion tracking accuracy significantly. Moreover,
the system remains stable with externally induced motion
disturbances and model uncertainties. Such a success can be
attributed to the lower-level admittance controller and the
model-based TO run in a MPC fashion. Experiments were
run on multiple Cartesian trajectories to validate on varying
geometries, and quantified results are reported in Table

H. Discussion and Limitations

The experiments and results demonstrated the importance of
incorporating contact in the TO framework for better force and
motion tracking accuracy. In safety-critical applications, stiff,
position-controlled robots are not desired as they could raise

safety concerns. Contact-model-based force-controlled control
architectures could provide safe and improved performance.
Our static environment results exhibit better performance
compared to a motion-induced dynamic environment. Fitting
the environment motion disturbance (e.g., breathing, heart-
beat) to a parametric model can further improve the tracking
performance. In our current work, the robot’s impedance is
set to a predefined mode that can be limiting. For example,
a high impedance robot is more suited for tasks requiring
more motion accuracy over force and vice versa. Adapting
the robot’s impedance depending on tasks and applications can
further improve safety, force, and motion tracking accuracy.

While our work presents a method for force and motion
TO, we acknowledge multiple limitations pertaining to the
application and computational techniques. For example, the
contact model we use is only valid locally. For large de-
formable bodies, the contact model will require a more com-
putationally expensive method (e.g., Finite Element Methods).
Furthermore, the range of force magnitudes was maintained
throughout the experiments to be within a local range (in the
linear range of Figure [I0). To compensate for the friction in
high deformation and lubrication cases, additional factors of
the deformation friction will have to be learned or modeled.

Although this work achieved MPC online planning, there
are more promising TO parallelization mechanisms [|57[]—[59]]
that can further improve the computational performance. For
instance, (i) in the DDP backward pass, a computation speed-
up is achievable through a parallelization method of Riccati
recursion [44]; (ii) In the DDP forward pass, computation
speed-up can be targeted by first proposing an approximate
physics model, where a computationally cheap estimate of a
coarse model can be evaluated [60]. Then the generated coarse
trajectory can be used as an initial seed of the TO with a fine-
grained model. This coarse-fine problem can be solved in an
iterative procedure. (iii) Finally, these mechanisms above will
suit a paralleled ADMM implementation on GPU processors.
Although this work does not focus on TO parallelization
mechanisms, these potential directions are worth to be reported
and can be insightful to the deformable tissue manipulation
and medical robotics community.

VIII. CONCLUSION AND FUTURE WORK

In automation tasks requiring physically soft tissue contact,
it is paramount to design soft contact interaction models where
controllers can be designed to guarantee safety performance.
Contact modeling is crucial in correctly identifying the contact
material and performing mundane tasks such as incisions along
given paths and motion disturbance compensation. This study
presented a coherent framework for simultaneous motion and
force modulation on compliant surfaces. Moreover, we pre-
sented a distributed (ADMM), real-time framework executed
in a MPC fashion capable of handling state, control, and
contact constraints. Further, we incorporated a soft contact
dynamical model into the trajectory optimization (TO). Results
proved that motion and force tracking accuracy is significantly
improved in both static and dynamic environments. Potential
applications of this work include contact manipulation in soft
tissues or safety-critical environments.



Motion Path 1

Motion Path 2

Motion Path 3

path (m)  force (N) path (m)  force (N) path (m)  force (N)

Pulsations, without FC 0.0142 2.723 0.0264 2.470 0.0075 1.377
Pulsations, with FC 0.0839 1.095 0.0757 1.289 0.0187 0.8450
Pulsations, MPC + FC 0.0258 0.573 0.0384 0.852 0.0153 0.3230

TABLE II: RSME for motion and force and motion, FC-Admittance Force Control, MPC-Model Predictive Control

Trajectories solved from the TO were experimentally val-
idated on a soft surface (EcoFlex®) with the aid of a robot
manipulator with an attached spherical shaped tooltip. Surface
material properties were estimated and further used in gen-
erating optimal trajectories. Experiments were performed on
a static and a motion-induced dynamic environment. Results
of MPC, with and without force control, were presented.
Ground truth forces were obtained using a force-torque sensor
(ATI mini45) and compared against the obtained results. MPC
with force control was able to track both motion and force
both in a static and a dynamic environment with significant
improvements. Results and discussion conclude model-based
contact modeling and hierarchical TO (e.g., low-level and high
level) provide a better alternative for safe simultaneous force
and motion generation.

The future extension of this work is to improve the gen-
erability (i.e., “richness”) of the contact model to adapt to
a wide range of material properties. Furthermore, real-time
estimation of the contact model properties can improve the
adaptability of the planning framework. Moreover, we intend
to extend the work to plan trajectories in three-dimensional
surfaces to demonstrate practical applications such as planning
robotic incisions on a human body.
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X. APPENDIX

A. Deformable Patch Contact Model

In this Appendix, we provide the details on several stress
distributions. First, the normal Stress Distribution o :

;=—2<1—Z>; (r <a) (20)
Radical Stress Distribution o,
fer () e) o
Hoop Stress Distribution og:
2R (-B)A0-5) e

where p,,, = F/(ma?) is the average stress applied in contact
part by manipulation and a = v Rd is the radius of contact
area (refer to figure [2). The transformation matrix 71" is

cd s6 0
T=| —s8 8 0
0 0 1

B. ADMM Formulations

1) Augmented Lagrangian: The augmented Lagrangian for
our three-block consensus ADMM is written as follows:

N
min |t il + u[i]TRuli
Jmin, D (¥ Qe R + uli Rai)

+ W || PR Genrli]) — x|
+ Ly w7 (Xar[i], wli], Ali])

+ 2o — %ar + VA3

+ Zlxar = far + V313

+ B u—a Vi

A PEP R

2) Three-block Sequential ADMM: Instead of establishing a
consistency constraint between the decision variables from the
IK sub-block the projection sub-block, the sequential ADMM
enforces an equality between DDP sub-block and IK sub-block
as shown in Formulation 3

Different from the consensus variant, the original optimiza-
tion problem is separated into:

Contact dynamics sub-block:

Lea = S (6F [T Qp 6F[i] + uli] " Ruli])

=0

. ) ;i )
+ %HXM —%n +VEZ+ ?]HXI\/[ —Xpm + VfH%

+ B —avhIB + E A - A+ v

Inverse kinematics sub-block:

N
Ly = ZWpH}-IC(&M[i]) - XZ[Z]H2

=0

+ P lxar = s + Vi3



Formulation 5 Distributed Constrained Optimization (Se-
quential)

(Tracking Task)

N
min SF[i]" Qp 6F[i] + ufi]” Ruli]
bbb 150

+ W, || FE (x5, ) — <21l
+ Ly 7 (Xarli], ali], Ali])

x[d]
(Variables-DDP)  ¢[i] = [[xas[i] %ar[i] Feli]]”, u[i]*]"
(Variables-1K) @li] = xr[i])”
(Variables-Proj)  ¢[i] = [xas[d])T, ai]”, A[i]7]T
Vi=0,1,...,N -1 la)
(Dynamics) s.t. x[i + 1] = F(x[i],ufi]) (21b)
(Initial Condition) x[0] = x¢ (21c)
Xy = XMm
(Consistency Constraints) M xu (21d)
u=n1u
A=A

Projection sub-block:

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

N
Loroj = >, Ty r(Xarlil, li], Ali])
1=0
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