Leveraging Heterogeneous Capabilities in Multi-Agent Systems for
Environmental Conflict Resolution

Michael E. Cao*, Jonas Warnke*, Ye Zhao, and Samuel Coogan

Abstract—In this paper, we introduce a high-level controller
synthesis framework that enables teams of heterogeneous agents
to assist each other in resolving environmental conflicts that
appear at runtime. This conflict resolution method is built upon
temporal-logic-based reactive synthesis to guarantee safety and
task completion under specific environment assumptions. In
heterogeneous multi-agent systems, every agent is expected to
complete its own tasks in service of a global team objective.
However, at runtime, an agent may encounter un-modeled
obstacles that prevent it from achieving its own task. To address
this problem, we take advantage of the capability of other
heterogeneous agents to resolve the obstacle. A controller frame-
work is proposed to detect such a situation and redirect agents
with the capability of resolving the appropriate obstacles to the
required target, either by resynthesis of the controllers with
new objectives, or by initially including a runtime-assignable
goal in the controller, resulting in a non-resynthesis solution.
A set of case studies involving the bipedal robot Cassie and a
quadcopter are used to evaluate the controller performance in
action.

I. INTRODUCTION

Heterogeneous multi-agent systems with distinct mobility
capabilities are generally capable of accommodating a larger
variety of tasks than those consisting of a homogeneous team
of agents [1], [2]. To achieve autonomous team behaviors
such as the multi-room patrolling shown in Figure 1b, a
common approach is to automatically synthesize a controller
for each agent, as this is often more efficient than crafting
controllers by hand. However, creating controllers in this
way has its own set of challenges, among which ensuring
that the generated controllers do not cause any agents to
perform tasks that would induce breakage or otherwise risk
the agent’s safety is a top priority [3].

In this paper, we study controller synthesis to resolve
environmental conflicts such that multi-agent team speci-
fications are fulfilled using the generalized reactivity (1)
(GR(1)) fragment [5] of Linear Temporal Logic (LTL). The
GR(1) formula, in particular, allows for reactive synthesis
algorithms that have favorable polynomial complexity while

M. E. Cao and S. Coogan are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, 30332,
USA {mcao34, sam.coogan}@gatech.edu. S. Coogan is
also with the School of Civil and Environmental Engineering, Geor-
gia Institute of Technology, Atlanta, 30332, USA. J. Warnke and Y.
Zhao are with the School of Mechanical Engineering, Georgia Insti-
tute of Technology, Atlanta, 30332, USA jwarnke@gatech.edu &
ye.zhao@me.gatech.edu.

This research was supported in part by the National Science Foundation
under the National Robotics Initiative, award #1924978. The authors would
also like to thank Yuki Yoshinaga and Aziz Shamsah for their assistance in
rendering 3D representations of the simulation environment.

*The first two authors equally contributed to this paper.

(a) Cassie opening the door for the quadcopter

— Cassie CoM trajectory
= Quadcopter trajectory
«++ Foot placement

(b) A bird’s eye view of Cassie’s and the quadcopter’s trajectories

Fig. 1: 3D rendering of case study 1 in Drake simulation [4].
The quadcopter approaches an unknown door obstacle pre-
venting it from achieving its goal. The quadcopter requests
assistance from Cassie. Accordingly, Cassie opens the door
and both agents resume their original task.

retaining the ability to encode a large variety of specifica-
tions [6]-[8]. These reactive synthesis methods are power-
ful because they provide formal guarantees on correct-by-
construction controller behavior under any modeled action
from the environment [9].

A major challenge of reactive synthesis methods is that
they require an explicit model of the environment’s capa-
bilities and may not be robust to unexpected changes in
these capabilities encountered at runtime [10]. For example,
an unmodeled obstacle that interferes with the operation
of the system may unexpectedly appear. Ensuring that the
system’s operation is robust to environmental changes is
therefore an important area of research. To this end, multiple
lines of research have been proposed in the literature, such

as online synthesis of local strategies which are further
patched to the original controller [11], offline analysis of
counter-strategies to resolve unrealizable specifications [12],
controller synthesis that can tolerate a finite sequence (up
to IV steps) of environmental assumption violations [13], or
robust metric automata design such that the system state is
maintained within a bounded e-distance from the nominal
state under unmodeled disturbances [14]. There also exist
robustness methods that allow the system to identify specific
broken environment assumptions [15]. However, none of
these works studied the strategy of employing other agents to
resolve the environmental conflict, which will be the focus
of this paper, as little has been explored in this direction.
For example, the authors in [16] have studied the correction
of broken assumptions, but focus on the cases where the
broken assumption is due to unexpected behaviors by another
agent operating within the workspace, which is resolved by
changing that agent’s behavior.

As heterogeneous agents are generally expected to interact
with their surrounding environment, certain agents may have
the capability to manipulate and correct a broken environ-
ment assumption for another agent. This paper focuses on
leveraging each agent’s individual capabilities to resolve
broken environment assumptions that prevent another agent
from achieving its objective. Formally, we consider scenarios
in which the broken environment assumption causes an
agent’s specification to become unrealizable, yet another
agent has the ability to fix the violation.

The contribution of this paper is to propose a navigation
planning framework with four main components that enable
agents to assist each other in resolving obstacles using
reactive synthesis. These components are summarized as:

o Environment Characterization: Observe the environ-
ment at runtime and verify whether the next state in the
controller automaton would satisfy or violate any new
specifications generated from runtime observations.

o Safe Action Replanning: Backtrack states in the au-
tomaton and replace an action that will lead to a safety
violation with a known safe maneuver.

« Violation Resolution: Identify other agents with the
capability of resolving the violation and assign one to
be responsible for violation resolution.

o Task Replanning: Add the resolution of the violation
to the assigned agent’s objectives and trigger a change
in behavior of that agent to execute its new objective.

We refer to these components collectively as the ‘“coordi-
nation layer” that interacts with the other elements of the
controller (see Figure 2).

The rest of the paper is outlined as follows: In Section II,
we introduce the basics of LTL specifications and GR(1)
formula. We then formally define our problem statement in
Section III. In Section IV, we provide an overview of the
previous work that this study is built upon before detailing
the main approach that enables heterogeneous cooperation in
Section V. Section VI outlines several case studies showcas-
ing our approach, and Section VII concludes the study and
discusses potential future work.

II. PRELIMINARIES

In this study, we use the General Reactivity of Rank 1
(GR(1)) fragment [5] of Linear Temporal Logic (LTL) to
specify desired tasks for each agent in a given environment.
GR(1) synthesis is used to automatically generate correct-
by-construction finite state machines (FSM). The generated
strategy is implemented as a two-player game between the
agent and the environment, where the FSM guarantees the
agent satisfies the goal and safety specifications for any
modeled environment action [6], [8].

GR(1) allows for efficient synthesis while maintaining
much of the expressiveness of LTL. In particular, GR(1)
allows us to design temporal logic formulas (¢) with atomic
propositions (AP) that can either be True (¢ V —¢) or False
(—True). With negation (—) and disjunction (V) one can also
define the following operators: conjunction (A), implication
(=), and equivalence (<). There also exist temporal opera-
tors “next” (), “eventually” (), and “always” ((J). Further
details of GR(1) can be found in [5].

Our implementation uses the SLUGS reactive synthesis
tool [17], which allows rules to be specified in a more
human-intelligible structured slugs format using infix nota-
tion, non-negative integers, comparisons, and addition. These
rules are automatically converted to GR(1) formulas which
are used to synthesize a reactive controller.

III. PROBLEM FORMULATION

This paper studies a particular control synthesis problem
where an agent in a heterogenous multi-agent team cannot
complete its tasks because the environment has violated its
assumptions at runtime. Formally, this occurs because an
unmodeled environment behavior causes the specification to
become unrealizable.

Let P denote the set of heterogeneous agents in a multi-
agent team. When synthesizing a multi-agent controller, each
agent p € P within the team is given its own set of goal and
safety specifications, denoted as ¢? and P, respectively.

At the high-level, the environment is modeled using a
coarse abstraction that divides the workspace into a set of
N discrete regions S = {sg,s1,...,Sn—-1}. As low-level
controllers are responsible for planning agent actions within
each coarse region, they can be swapped in and out to
accommodate different agent types without largely affecting
the high-level actions.

The set of known, irresolvable obstacles @ C S are
accounted for as the set of safety specifications

b= /\ =s. (1)

To account for the heterogeneity of the system, each
agent p € P is also modeled with an a priori known
finite set of capabilities C), = {cpo, ¢p1, Cp2, ... }. Examples
of capabilities include “open doors”, “inspect regions for
hazards”, or “climb stairs”.

Obstacles that are resolvable but not known a priori are
modeled as another subset R C S. Each resolvable obstacle
r € R has an associated action ¢, and set of states S, within

which that action may be performed in order to resolve
the obstacle and remove it from the environment. These
properties are such that

el]G S.c(8\0) 2)

peP

Thus, an agent p is considered to be capable of resolving
an obstacle r if ¢, € C,. It follows that any instance of
an agent encountering an obstacle that it does not have the
capability to resolve is considered a safety violation. We
introduce an “augmented” set of safety specifications ¢?,
which contains the same specifications as ¢F but in addition
contains all of the additional safety specifications originating
from unknown, resolvable obstacles:

/\ O-r 3)

ré€R | ¢ ¢Cp

b=t

Given the necessary preliminaries above, we can now for-
mally define the problem statement.

Problem Statement: Assume a set of given controllers
synthesized using ¢?, and a set of “actual” environment spec-
ifications ? such that one or more % are unrealizable under
2. Once the system is detected to violate ¢P at runtime, we
aim to create a generalizable formulation that can assign an
agent p to resolve and remove the conflicting specification
in P such that the original synthesized controller satisfies

©h.
IV. CONTROLLER SYNTHESIS

To leverage the formal guarantees afforded by LTL, we
synthesize navigation planners for each agent based on the
planning framework detailed in [18]. In this section, we
provide an overview of the task and motion planners, which
serve as the foundation that the proposed coordination layer
will be built on. In subsequent sections, we augment the
high-level navigation planning structure to further encode
collaborative behaviors that are able to resolve environment
assumption violations at runtime.

The approach from [6]—[8] adopted here is summarized as
follows. To synthesize task planners, we construct two-player
games between each agent and an abstracted environment.
We automatically encode a variety of propositions about how
the game may evolve within LTL specifications: we encode
initialization assumptions, environment safety assumptions,
system safety guarantees, and system liveness properties.
We synthesize an automaton that guarantees the agent will
always win the game as long as all the environment assump-
tions hold true at runtime. The automaton is represented
as a finite state machine (FSM). At runtime the current
environment state is an input to the FSM, which outputs
an action for the agent. Each action provided by the FSM is
guaranteed to meet the safety specifications while bringing
the agent closer to completing its task.

In this work we synthesize planners for a bipedal robot
Cassie [19] and a quadcopter to study heterogeneous au-
tonomous multi-agent navigation. When constructing a two-
player game between each agent and its environment, we

. . i ‘
Task pgent Gol Violation Assistance Request, other Adent !
-
Replanner Resolution — ssistance Request | er Agents !
N
l’*““’"‘a“’” Tldent\ﬁed Assumption Violation
Game State .
Navigation Replan Request Environment Local Information

., <————— Environment
Characterization

lNawganon Action
Action & Motion Agent Motion

Planners

Planner Navigation Action

Fig. 2: Block diagram of collaborative task and motion
planning framework. A coordination layer verifies that the
desired actions generated by an offline-synthesized naviga-
tion planner are still safe based on environment information
observed at runtime. If an environment assumption is vi-
olated, the navigation planner replans its current action to
ensure the system enters a safe state while the coordination
layer determines if the violation can be resolved by any other
agent. The resolution is encoded and the plan progresses.

treat other agents as part of a partially observable environ-
ment and encode the possible moves each agent can expect
the others to make in environment safety specifications.
Deadlock resolution becomes a challenge when guaranteeing
collision avoidance and task completion in the presence of
other agents. In this study, we circumvent this challenge by
assuming that the quadcopter is going to fly above Cassie
at all times, so we do not encounter deadlock, which allows
us to focus on mission replanning for assistive behaviors at
runtime. Deadlock resolution techniques such as the one pre-
sented in [20] are implementable in our planning framework.

V. COORDINATION LAYER DESIGN

In this section, we introduce the coordination layer on
top of the synthesized controllers, containing the elements
which enable agents to identify new safety specifications at
runtime, replan actions when necessary, identify and assign
other agents to resolve obstacles, and adjust the behavior of
each agent to execute the conflict resolution. An overview
of the proposed planning framework is depicted in Figure 2.

A. Ewnvironment Characterization

At runtime, the Environment Characterization (EC) block
passes the game state abstracted from the environment to
the Navigation Planner (NP) block and requests a navigation
action. The EC block determines new safety specifications
based on the observed environment and verifies if the
navigation action would violate these specifications. This
block is the main component responsible for observing the
specifications in ¢P that were not known during synthesis.
We assume that the agent has adequate sensing capabilities
to determine if any states reachable by the possible current
navigation actions are safe. If a safety violation occurs, the
EC block signals the NP block to replan its current action.

B. Safe Action Replanning

The safe action replanning occurs within the NP block. At
each step, the current environment state is fed to the FSM to

generate a correct system action. When the replanning flag is
raised, the navigation planner backtracks to the previous state
in the FSM and extracts a new system action to avoid the
safety violation. The new action is passed to the EC block,
which passes it on to the lower-level planners if deemed safe.

C. Violation Resolution

When the EC block determines that the safety specifi-
cations based on the observed environment do not match
the safety specifications used during offline synthesis, it also
passes the details of the violation to the Violation Resolution
(VR) block, including the action(s) ¢, required, as well as
the state(s) S, at which those actions must be performed in
to resolve the obstacle. The VR block then identifies which
agent p € P has the capability to resolve the obstacle,
i.e., any agent p such that ¢, € C),. This component then
broadcasts a request for an appropriate agent to come to
assist.

D. Task Replanning

The Task Replanner (TR) block receives incoming re-
quests for assistance in the form of updated system goals
and is responsible for adjusting the agent’s strategy to assist
the agent in need. This can be accomplished either by
resynthesizing the automaton based on the new system goals
or by augmenting the initially synthesized controller with
an additional runtime-assignable objective, which can then
be assigned to the appropriate obstacle as needed. A more
detailed elaboration of these two strategies is provided in the
following subsections.

E. Resynthesis Method

Once a violation has been detected and assisting agents
have been assigned, the TR block can trigger a resynthesis
of each of the affected agent’s controllers with their new
objectives. After the controller detects that the obstacle has
been resolved, another resynthesis is triggered, returning the
agents to their original objectives.

This method is achieved recursively by storing previous
objectives in a stack; if a new resolvable obstacle is en-
countered while resolving a known obstacle, the resynthesis
targets the new obstacle and pushes the previous set of
objectives onto the stack. Once an obstacle is resolved, the
top set of objectives in the stack is popped off, and controllers
are resynthesized to these objectives. Beyond changing the
target locations in the original objective, any number of
new goal tasks or locations can be encoded in the new
specifications to assist another agent that has encountered
an assumption violation. Additionally, the agent that has
encountered an obstacle that it cannot resolve on its own
can be assigned a new task to complete while it waits for
the obstacle to be resolved. A detailed pipeline of this process
is shown in Algorithm 1.

F. Non-resynthesis Method

For the targeted collaborative behavior, resynthesis is
not strictly necessary if a resolution does not require a

Algorithm 1: Resynthesis for Conflict Resolution

for p € P do
| b < initial objectives;

end

Pstack < @§

synthesize controllers;

while system active do

execute controllers;

if resolvable obstacle r encountered by agent p, at s, then

if ¢, ¢ Cp, then

push all of current b onto Yack;

change ¢b" to safe behavior;

for p € P do

if ¢, € Cp then

add state in S, to ©b;
synthesize controllers;
break;

end
continue;
else if r €ob" then
resolve obstacle r;
pop ng off of Ystack;
synthesize controllers;
continue;

end

end

end

completely new task to be specified for the assisting agent.
Instead, the agent is just required to visit one additional
location. This allows the system to remain in continuous
operation rather than halting for a period of time to allow for
controller resynthesis. Assistance is achieved by including an
additional runtime-assignable goal location in the assisting
agent’s liveness specifications. This behavior is described in
more detail in Algorithm 2.

Algorithm 2: Non-resynthesis for Conflict Resolu-
tion
for p € P do
| b < initial objectives + runtime assignable objective;
end
synthesize controllers;
while system active do
execute controllers;
if resolvable obstacle r encountered by agent p, at s, then
if ¢, ¢ Cp, then
push all of current w5 onto Pgack;
change 5" to safe behavior;
for p € P do
if ¢, € Cp then
‘ assign runtime objective to state in Sy;
break;

end
continue;
else
‘ resolve obstacle r;
continue;
end

end

end

For the full implementation of either of the methods
outlined in this paper, we point the reader to the GitHub
repository located at https://github.com/GTLIDAR/
safe-nav-locomotion.

VI. RESULTS

In this paper, we implement and evaluate the framework
described in Section IV, which was primarily built to syn-
thesize controllers for the bipedal walking robot platform
Cassie, designed by Agility Robotics [19]. We consider a
second quadcopter agent in the environment that has dramati-
cally different capabilities in both mobility and manipulation.
A quadcopter, which lacks the ability to manipulate objects,
is instead able to perform maneuvers that are unavailable
to Cassie, such as backward movement or 180° turns in
a single region. In this study, the quadcopter is assumed
to fly above Cassie at all times, so that collision is not a
concern. Additionally, we preserve the belief space planning
framework proposed in [18], [21], allowing Cassie to infer
the quadcopter location if it is not within Cassie’s visible
range. Cassie’s locomotion planner is designed based on the
phase-space planning framework in [22].

Resolvable obstacles are also implemented within the
simulated environment. We recall from Section III that each
resolvable obstacle r has an associated state S, where an
action ¢, must be performed by an agent p for which ¢, € C,
in order to resolve the obstacle and remove it from the
environment. These properties are directly inserted into the
simulation environment.

The set of resolvable obstacles R and the set of agents and
their capabilities C), are implemented as separate dictionary
data structures. As such, this framework is generalizable
as one would simply need to add the appropriate agent
capabilities and obstacle resolutions to each dictionary.

To represent the potential for obstacles to appear at run-
time, two separate simulated environments are initialized,
one of which does not contain the resolvable obstacles that
will need to be resolved. This instance of the environment,
representing P, is used for the initial synthesis, and then
the resulting controller is applied to the environment instance
containing the resolvable obstacles, which corresponds to (2.
At runtime, if an agent enters a state containing a resolvable
obstacle r that it is unable to resolve (i.e., violates ¢P), the
controller is able to check that a violation has happened
in the simulated environment, and sends this information
to the simulation to assign new objectives to each agent
accordingly, such that the agent p tasked with resolving
the obstacle fulfills ¢, € Cp. Thus, the simulation running
each of the controllers is responsible for the VR and TR
blocks of the coordination layer, while the separate simulated
environment instances simulate the EC component. The Safe
Action Replanner is built directly into the NP block.

Three case studies utilizing the synthesized controllers
are presented to evaluate the proposed approach. For each
case study, an environment is created where a quadcopter
and Cassie are each running on their own controller and
have their own task objectives to complete. The environ-
ment is abstracted into a 7x13 coarse set of regions & =
{50, 51, --., So0 } such that s is the northwestern-most region
and increments following English reading orientation (i.e.
incrementing left to right, then starting at the leftmost region

on the next row). This setup can be seen in Figures 3-6.

For each case study, we consider a team of agents
consisting of P = {quadcopter,Cassie} with unique
capabilities Cqua = {sense}, Ccasic := {push}. These
do not represent the full capabilities of each agent, but only
represent the ones that are relevant for solving the conflict
resolution.

Resolvable obstacles that may appear within a region s;
in the environment consist of two types: r = door and r =
uncertainty. A resolvable obstacle of type r = door, if
found in s;, has properties

Sy ={si}, ¢, = push, 4

and represents physical doors that the quadcopter cannot fly
through, but are able to be opened by Cassie. Resolvable
obstacles of type » = uncertainty have the properties

Sr = {Snortha Seasts Ssouth Swest}y Cr = Sense, (5)

and represent regions in which Cassie is uncertain about its
capabilities to safely traverse through the environment, but
the quadcopter is able to scout them by visiting any adjacent
region.

We design a set of objective specifications for each agent
p € P such that the agent alternates between visiting two
regions in the environment s, sg € S, with an AP scout
unique to each agent, which initializes to False, to track
which region the agent should head towards. The set of
objective specifications is thus given as

Patrol,(sa, sg) =000 (sa A —scout,,) (6)
AO((sa A —scout,) = Oscouty)
ADOO(sp A scoutp)
AO((sg A scout,,) = (O—scout,)

Each implementation of these case studies utilizes the
resynthesis method detailed in Section V-E due to its overall
lower synthesis time, but it should be noted that case study
1 is fully implementable using the non-resynthesis method
outlined in Section V-F. As case studies 2 and 3 require
multiple locations to be visited and resolved, additional work
is required to enable the non-resynthesis method to work in
these cases.

Additionally, while the figures in this section mainly
feature abstractions of the environment in order to easily
illustrate the behaviors of each agent, the computed control
actions are applicable to a real 3D simulation environment,
as shown in Figure 1. Those two subfigures show the real-
world interactions resulting from the behavior in case study
1.

A. Case Study 1: Opening A Door

The first case study leverages Cassie’s manipulation ca-
pability in the environment with higher dexterity and power
than the quadcopter. The quadcopter is tasked with patrolling
between Shomeq and Sawayq, Where spomeq i a region in
the left room and Sawayq is in the right room. Cassie is

. Cassie D Visible Cell

. Nonvisible Cell, No Quadcopter

. Quadcopter . Immobile Obstacle . Resolvable Obstacle

Nonvisible Cell, Potential Quadcopter

. Resolution Target (If Applicable)

(a) Initial Configuration

until it is opened.

(b) The quadcopter’s controller encoun-
ters a door, so instead it elects to have the
quadcopter wait in the preceding region

(c) Cassie opens the door and the original
objectives are reinstated. Both agents are
now able to complete their objectives.

Fig. 3: Execution of case study 1 leveraging Cassie’s higher strength and manipulation abilities to open up the path for the
quadcopter. Cassie’s objective is to patrol the left room, while the quadcopter’s objective is to deliver something to the right
room. However, the quadcopter discovers a closed door separating the two rooms at runtime, prompting Cassie to come
over and open it so that both agents are able to complete their objectives.

tasked with patrolling between spomec and Sawayc, Where
both spomec and sawayc are in the left room:

d . _ Wi
spg“a = Patrolquad(shomersa ayQ)7 @)
Cassie ,__ P meC w
(poassw = atrOICassie(shO eC Sa ayC)'

At runtime, the quadcopter discovers an obstruction at
Sdoor = S47 While in sSgpe = S4¢ that prevents it from
accomplishing its objective in the form of a closed door that
cannot be flown through but can be opened by Cassie. A
resynthesis of objectives is triggered, where the quadcopter
is now tasked with hovering outside the door, and Cassie is
tasked with visiting one of its initial patrol points and the
closed door:

ad ._
Sagu = PatrOIquad(Ssafca Ssafc)a (8)
Cassie ,__
Lo = PatrOICassie(ShomeC7 Sdoor)-

Once Cassie visits the door, it is considered open and the
obstacle is removed from the environment, triggering another
resynthesis which returns both agents to their original target
objectives. A walkthrough of the execution of this case study
is shown in Figure 3. For this case study, we also used low-
level planners to generate safe motions for the quadcopter
and Cassie, including center of mass (CoM) trajectories and
foot placements. The 3D visualization can be seen in Figure 1
and the attached video.

B. Case Study 2: Scouting Ahead

The second case study involves Cassie encountering sev-
eral states and not knowing whether each state is safe to
traverse on foot, requiring the help of the quadcopter’s
heightened sensing capabilities. To this end, the quadcopter
is set to patrol between Sphomeq and Sawayq, Where shomeq
and Sawayq are in the left room, while Cassie must patrol
between Spomec and Sawayc, Where spomec is a region in

the left room and Suwayc is in the right room:

uad ,__
Sag = PatrOIquad (ShomeQ» SawayQ)) 9
Cassi
Odme := Patrolcyggic (ShomeC ; SawayC) .

At runtime, Cassie encounters region Sypcertainl = S34 While
at Sgafel = S33, and it is unsure about its ability to traverse
this region. A resynthesis is triggered, where the quadcopter
is tasked with observing the uncertain region by visiting any
of the adjacent regions (in this case, we select the region
Suncertainl W difeCﬂy west of Sunccrtainl):

uad ,__
503 = Patr01quad(8h0meQ7 5uncertain1W)7 (10)
Cassie ,__
Po = PatrOICassie (ssafelv Ssafel) .

Once the quadcopter observes the unknown region, the
resolvable obstacle is removed from the environment. If the
quadcopter senses that the region is not traversable by Cassie,
then the region is added to O and will be considered as an
immovable obstacle during future synthesis. In this specific
case study, Suncertainiw 1S found to be untraversable.

The two agents are returned to their original objectives,
outlined in (9), before Cassie encounters another uncertain
state at Suncertain? = Seo While In Sgape2 = Ss9, Where
the process repeats. The quadcopter is tasked with visiting
Suncertain2w, directly west of Suncertain2, While Cassie is
instructed to stay at Sgage2. The uncertain region is found to
be traversable by Cassie, and both agents are returned to their
original objectives, now able to fulfill them. A walkthrough
of the execution of this case study is shown in Figures 4
and 5.

C. Case Study 3: Chain of Conflicts

The third case study merges the previous two and requires
both agents to resolve an obstacle. For this case study, the
quadcopter encounters a door while on its way to resolving
an uncertain region encountered by Cassie, requiring Cassie
to first open the door, thus demonstrating the coordination

(a) Initial Configuration

(b) Cassie’s controller encounters an un-
certain region, so instead Cassie’s con-
troller elects to have Cassie wait in the
preceding region until it is resolved.

(c) The quadcopter senses that the re-
gion is actually an immovable obstacle,
resolving it, and original objectives are
reinstated.

Fig. 4: Partial execution of case study 2 leveraging the quadcopter’s more powerful sensory capabilities to find a traversable
path for Cassie. The quadcopter’s objective is to patrol the left room, while Cassie’s objective is to deliver something to the
right room. However, Cassie encounters an uncertain region, prompting the quadcopter to observe the region and determine

that it is nontraversable.

(a) Cassie’s controller encounters another
uncertain region, so again Cassie’s con-
troller elects to have Cassie wait in the
preceding region until it is resolved in-
stead.

(b) The quadcopter senses that this region
is traversable by Cassie.

(c) Original objectives are again rein-
stated, with both agents now able to meet
their objectives.

Fig. 5: Latter half of the execution of case study 2. The quadcopter and Cassie are executing their original objectives when
Cassie encounters another uncertain region. The quadcopter observes the new uncertainty, this time determining that the
region is traversable, thus allowing both agents to fully complete their original objectives.

layer’s ability to handle multiple resolvable obstacles in a
chain when required.

Initially, Cassie is tasked with patrolling between spomec
in the leftmost room and s,wayc in the center room, while
the quadcopter is tasked with patrolling between spomeq and
SawayQ, both in the rightmost room:

uad ,_
(pqo = Pa'[rOlquad(ShomeQa SawayQ)v (11
Cassie ,__
(7258 = PatrOICassie(shome07 SawayC)
Cassie encounters an uncertain state at Supcertain = S43

while in sgafec = S43, triggering a resynthesis requiring the
quadcopter to sense the true traversibility of that state by
VISiting SuncertainE = S44:

uad ,__
80?, = Pa'tr()lquad (ShomeQ y SuncertainE) y (12)
Cassie ,__
Lo := Patrolcagsic (ssafeCa SsafeC)

However, the quadcopter encounters a closed door at Sqoor =
547 while In Sgureq = S48 On its way to resolve Cassie’s
uncertainty, triggering another resynthesis where Cassie is
tasked with opening the door:

ad Q
(ngd = Patl'Olquad(Ssafer Ssafe)’ (3)
Cassi
(Doassle = Patrolcassie(ssafeC, SdOOF)

Once the door is opened and resolved, the quadcopter travels
to the uncertain state and resolves that obstacle as well,
resulting finally in both agents being able to accomplish their
objectives. A walkthrough of the execution of this case study
is shown in Figure 6.

VII. CONCLUSION AND FUTURE WORK

We presented a generalizable approach to identifying and
resolving environment assumption violations discovered at
runtime by automatically leveraging the capability of hetero-
geneous agents. This allows the team of agents to recover
from cases where their objectives become unrealizable due to
runtime-observed violations. We implemented this approach
in a grid world simulation and generated safe 3D CoM
motion plans for a Cassie bipedal robot and a quadcopter.
Future directions of research include implementing deadlock
resolution strategies, further developing the non-resynthesis
solution to enable more complex runtime-assignable behav-
iors, and cataloguing a comprehensive library of robots and
capabilities, such as multi-quadcopter teaming to deliver a
battery for Cassie charging and Cassie long-duration naviga-
tion for package delivery.

(d) Cassie opens the door for the quad-
copter, allowing it to come sense the

(a) Initial Configuration

resolved.

(b) Cassie’s controller encounters an un-
certain region, so it elects to have Cassie
wait in the preceding region until it is

uncertain region.

(e) The quadcopter senses that the region
is passable by Cassie.

(c) On the way to sense the region that
Cassie is uncertain about, the quadcopter
encounters a closed door and waits on the
other side.

(f) Original objectives are now reinstated,
with both agents now able to meet their
objectives.

Fig. 6: Execution of case study 3 showcasing the capabilities of both agents and how they must each contribute in order
to ensure a successful mission. Cassie’s objective is to patrol the left and center rooms while the quadcopter is tasked with
patrolling the right room. However, Cassie is unsure whether it is able to pass into the left room, prompting the quadcopter
to fly towards the region in question. On the way, the quadcopter encounters a closed door, which Cassie must open before
the quadcopter can continue.

(1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[91

[10]

(1]

REFERENCES

Y. Emam, S. Mayya, G. Notomista, A. Bohannon, and M. Egerstedt,
“Adaptive task allocation for heterogeneous multi-robot teams with
evolving and unknown robot capabilities,” in [EEE International
Conference on Robotics and Automation, pp. 7719-7725, 2020.

J. L. Kit, A. G. Dharmawan, D. Mateo, S. Foong, G. S. Soh,
R. Bouffanais, and K. L. Wood, ‘“Decentralized multi-floor exploration
by a swarm of miniature robots teaming with wall-climbing units,” in
International Symposium on Multi-Robot and Multi-Agent Systems,
pp. 195-201, 2019.

T. Wongpiromsarn, U. Topcu, and R. Murray, “Synthesis of control
protocols for autonomous systems,” Unmanned Systems, vol. 01,
pp. 21-39, 07 2013.

R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019.

N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in Verification, Model Checking, and Abstract Interpretation,
pp- 364-380, Springer, 2006.

J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 7, pp. 1771-1785, 2013.
H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370-1381, 2009.

H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” IEEE Robotics & Automation Magazine,
vol. 18, no. 3, pp. 65-74, 2011.

A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL *89, (New York, NY,
USA), p. 179-190, Association for Computing Machinery, 1989.

K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Correct high-level
robot behavior in environments with unexpected events,” in Robotics:
Science and Systems, 2014.

S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in 2012 IEEE
International Conference on Robotics and Automation, pp. 5163-5170,
IEEE, 2012.

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]

[21]

[22]

W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for
synthesis,” in ACM/IEEE International Conference on Formal Methods
and Models for Codesign, pp. 43-50, IEEE, 2011.

R. Ehlers and U. Topcu, “Resilience to intermittent assumption vio-
lations in reactive synthesis,” in International Conference on Hybrid
Systems: Computation and Control, pp. 203-212, 2014.

R. Majumdar, E. Render, and P. Tabuada, “Robust discrete synthesis
against unspecified disturbances,” in Proceedings of the 14th inter-
national conference on Hybrid systems: computation and control,
pp. 211-220, 2011.

V. Raman and H. Kress-Gazit, “Automated feedback for unachievable
high-level robot behaviors,” in 2012 IEEE International Conference
on Robotics and Automation, pp. 5156-5162, 2012.

K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Resilient, provably-
correct, and high-level robot behaviors,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 936-952, 2018.

R. Ehlers and V. Raman, “Slugs: Extensible gr(1) synthesis,” 2016.
J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion
navigation in partially observable environments with uneven terrain,”
in IEEE Conference on Decision and Control, pp. 958-965, 2020.
Agility Robotics in http://www.agilityrobotics.com/.

J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-
Gazit, “Reactive mission and motion planning with deadlock res-
olution avoiding dynamic obstacles,” Autonomous Robots, vol. 42,
pp. 801-824, 2018.

S. Bharadwaj, R. Dimitrova, and U. Topcu, “Synthesis of surveillance
strategies via belief abstraction,” in IEEE Conference on Decision and
Control, pp. 4159-4166, IEEE, 2018.

Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning
and control of non-periodic bipedal locomotion with a centroidal
momentum model,” The International Journal of Robotics Research,
vol. 36, no. 11, pp. 1211-1242, 2017.

