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Asynchronous Filtering of Discrete-Time Switched
Linear Systems With Average Dwell Time

Lixian Zhang, Naigang Cui, Ming Liu, and Ye Zhao

Abstract—Switched dynamical systems can be found in many
practical electronic circuits, such as various kinds of power con-
verters, chaos generators, etc. This paper is concerned with the
filter design problem for a class of switched system with average
dwell time switching. Mode-dependent full-order filters are de-
signed taking a more practical phenomenon, the asynchronous
switching into account, where “asynchronous” means that the
switching of the filters to be designed has a lag to the switching of
the system modes. New results on the stability and �-gain analyses
for the systems are first given where the Lyapunov-like functions
during the running time of subsystems are allowed to increase.
In light of the proposed Lyapunov-like functions, the desired
mode-dependent filters can be designed in that the unmatched
filters are allowed to perform in the interval of the asynchronous
switching before the matched ones are applied. In sense, the
problem of asynchronous filtering for the underlying systems in
linear cases is formulated and the conditions of the existence of
admissible asynchronous filters are obtained. Two examples are
provided to show the potential of the developed results.

Index Terms—Asynchronous switching, average dwell time,
filtering, switched systems.

I. INTRODUCTION

S WITCHED systems, which are efficiently used to model
many physical or man-made systems displaying features of

switching, have been extensively studied over the past decades
[1], [2]. These kind of dynamical systems exist in a variety of
engineering applications, take the electronic circuits field for
example, dc/dc convertors [3], oscillators [4], chaos generators
[5], to name a few. Typically, switched systems consist of a fi-
nite number of subsystems (described by differential or differ-
ence equations) and an associated switching signal governing
the switching among them. The switching signals may belong
to a certain set and the sets may be various. This differentiates
switched systems from the general time-varying systems, since
the solutions of the former are dependent on both system ini-
tial conditions and switching signals [1], [6]. Note that if the
switching signal is autonomous and further attached with Mar-
kovian stochastic behavior, the resulting system is commonly
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termed as “Markov jump systems” [7]–[9]. The differences and
links between the two categories of hybrid systems have also
been investigated, see for example, [7].

The stability problem, caused by diverse switching, is a major
concern in the area of switched systems [1], [10]–[17]. To date,
two stability issues have been addressed in the literature, i.e.,
the stability under arbitrary switching and the stability under
controlled switching. The former case is mainly investigated by
a common Lyapunov function sharing among all the subsystems
[1], [18]. An improved method in the discrete-time domain is to
adopt the switched Lyapunov function (SLF) proposed in [11].
As for the switched systems under controlled switching, it has
been well recognized that the multiple Lyapunov-like function
(MLF) approach is more efficient in offering greater freedom
for demonstrating stability of the system [10], [12]. Some more
general techniques in MLF theory have also been proposed
allowing the latent energy function to properly increase even
during the running time of certain subsystems except at the
switching instants [12], [19]. As a class of typical controlled
switching signals, the average dwell time (ADT) switching
means that the number of switches in a finite interval is bounded
and the average time between the consecutive switching is not
less than a constant [1], [20]. The ADT switching can cover the
dwell time (DT) switching [1], and its extreme case is actually
the arbitrary switching [21]. Therefore, it is of practical and
theoretical significance to probe the stability of the switched
systems with ADT, and the corresponding results have also
been available in [22], [23] for the discrete-time version and
[24], [25] for the related applications. Note that, in these results,
the Lyapunov-like functions during the running time of sub-
systems are required to be non-increasing. A recent extension
considering partial subsystems to be Hurwitz unstable (the
corresponding system energy will be increased) is given in [26]
for linear cases in the continuous-time context.

Besides, the -gain (“ ” in the discrete-time domain) anal-
ysis of switched systems has been frequently related as well
[14], [21], [27]–[29]. By the SLF approach, the -gain anal-
ysis for a class of discrete-time switched systems under arbi-
trary switching is given in [29]. Imposing different requirements
on the used MLF, some results on the -gain analysis for the
switched systems with DT or ADT switching have also been ob-
tained [21], [28]. Likewise, the considered MLF needs mainly
to be non-increasing during the running time of subsystems.
In [30], the stability result in [26] was further extended to the

-gain analysis. A weighted attenuation property is achieved
there (i.e., a weighted disturbance attenuation level), and the
nonweighted form can be recovered if the weighting is zero,
which means that the non-weighted -gain of the switched
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systems with ADT is actually bounded by the maximum of all
individual -gains associated with different subsystems [24].
Note also that the existing results of the -gain analysis for
the switched systems with ADT are within the continuous-time
domain, the discrete-time counterpart has almost not been in-
vestigated up to date, with or without considering that the Lya-
punov-like functions can be increased.

Moreover, in recent years, state estimation for switched
systems has also been widely studied, see for example, [31],
[32] and the references therein. A popular solution is to design
the less conservative mode-dependent filters and find the ad-
missible switching signals such that the resulting filtering error
system is stable and satisfies certain performance. However,
a common assumption is that the mode-dependent filters are
switched synchronously with the switching of system modes,
which is quite ideal. In practice, it inevitably takes some time
to identify the system modes and apply the matched filter,
thus the asynchronous phenomenon between the system mode
switching and the filter switching generally exist1 . So far,
although there are some primary studies on the asynchronous
control problems for switched systems, e.g., [33], [34], the
asynchronous filtering problem for the systems have not been
investigated yet, to the best of our knowledge.

The contribution of this paper lies in that the extended
stability and -gain results for the switched systems with ADT
in the discrete-time nonlinear setting are firstly given by further
allowing the Lyapunov-like function to increase during the
running time of active subsystems. Then, the asynchronous
switching is considered and the filtering for the underlying
systems in linear cases is studied. The remaining of the paper
is organized as follows. In Section II, we review the definitions
on stability and -gain of switched systems and provide the
corresponding results for the switched systems with ADT
switching in the discrete-time context. Section III is devoted
to derive the results on stability and -gain analyses by con-
sidering the extended MLF. In Section IV, the conditions of
the existence of admissible asynchronous filters with the
admissible switching are derived in terms of a set of matrix
inequalities. Two examples are provided to show the potential
and the validity of the obtained results. The paper is concluded
in Section 5.

Notation: The notation used in this paper is fairly standard.
The superscript “ ” stands for matrix transposition, denotes
the dimensional Euclidean space and represents the set of
nonnegative integers, the notation refers to the Euclidean
vector norm. is the space of square summable infinite
sequence and for , its norm is given by

. denotes the space of continuously
differentiable functions, and a function is
said to be of class if it is continuous, strictly increasing, un-
bounded, and . Also, a function

is said to be of class if is of class for each
fixed and decreases to 0 as for each fixed

1In this paper, we slightly abused synchronous (or asynchronous) switching to
mean that the switching of system modes and the switching of desired mode-de-
pendent filters are synchronous (respectively, asynchronous). Correspondingly,
the delay of asynchronous switching is the time lag from the filters switching to
the system modes switching.

. Expression means is equivalent to . In ad-
dition, in symmetric block matrices or long matrix expressions,
we use as an ellipsis for the terms that are introduced by sym-
metry and stands for a block-diagonal matrix. The
notation means is real symmetric and positive
definite (semi-positive definite).

II. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a class of discrete-time switched linear systems
given by

(1)

(2)

(3)

where is the state vector, is the dis-
turbance input which belongs to is the objective
signal to be estimated and is the output vector. is
a piecewise constant function of time, called a switching signal,
which takes its values in the finite set , and

is the number of subsystems. At an arbitrary time
may be dependent on or , or both, or other logic rules.
For a switching sequence is contin-
uous from right everywhere and may be either autonomous or
controlled. When , we say the th subsystem
is active and therefore the trajectory of system (1)–(3) is
the trajectory of the th subsystem. In addition, we exclude
Zeno behavior for all types of switching signals as commonly
assumed in the literature. The jumps of state for discrete-time
system (1)–(3), namely, a continuous signal can not be recon-
structed everywhere, is also not considered here.

In this paper, we focus our study of system (1)–(3) on a class
of switching signals with ADT switching. The following defini-
tions are recalled.

Definition 1: [20]: For switching signal and any
, let be the switching numbers of over the in-

terval . If for any given and , we have
, then and are called av-

erage dwell time and the chatter bound, respectively.
Remark 1: It has been analyzed in [1] that gives the

switching signals with ADT and corresponds exactly
to those switching signals with DT. Also, as an extreme case,

implies that the constraint on the switching times is
almost eliminated and the resulting switching can be arbitrary
[21]. Therefore, as a typical set of switching signals with reg-
ularities [6], the ADT switching covers both the DT switching
and the arbitrary switching and is relatively general.

Definition 2: [1]: The switched system (1)–(3) with
is globally uniformly asymptotically stable (GUAS) if there

exists a class function such that for all switching signals
and all initial conditions , the solutions of (1)–(3) satisfy

the inequality .
Definition 3: For , system (1)–(3) is said to be

GUAS\ with an -gain, if under zero initial condition, system
(1)–(3) is GUAS and the inequality

holds for all nonzero .
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Here, we are interested in designing the following mode-de-
pendent full-order filter for system (1)–(3)

(4)

(5)

where and are the filter gains to be de-
termined. Also, we aim to consider the more practical asyn-
chronous filtering problem, that is, the switches of the filter
gains do not coincide in real time with those of system modes.
Thus, the resulting filtering error system becomes

(6)

where and

Then, our objective is to design a mode-dependent full-order
filter and find a set of admissible switching signals with ADT
such that the resulting filtering error systems (6) is GUAS and
has a guaranteed disturbance attenuation performance, i.e.,

for a in the presence of asynchronous
switching.

Before proceeding further, we present the following results
on the stability and -gain analyses for switched systems in
nonlinear setting here for later use.

Lemma 1: [22]: Consider switched system
and let and be given constants.

Suppose that there exist functions
, and two class functions and such

that
and

, then the system is GUAS for any
switching signal with ADT

(7)

Lemma 2: Consider switched system
and let be given

constants. Suppose that there exist positive definite functions
, with such that

then
the switched system has a -gain no greater than .

Remark 2: Note that the uniformity of stability in Lemmas 1
& 2 means the uniformity over switching signals with the prop-
erty (7). The proof of Lemma 2 can be completed by referring
to the proof of Theorem 2 in [24].

Fig. 1. Extended Lyapunov-like function.

III. NEW STABILITY AND -GAIN ANALYSES

In this section, by considering a class of Lyapunov-like func-
tions allowed to increase with a bounded increase rate, the im-
proved results for Lemmas 1 and 2 are given, respectively, in
order to study the asynchronous filtering problem for system
(1) later. For concise notation, let and denote
the starting time and ending time of some active subsystem,
while and , imply the total length of
the dispersed intervals during which the Lyapunov-like func-
tion is increasing and decreasing within the interval ,
respectively. Using denote the total length of
the interval , the division gives that

and Fig. 1 illustrates the considered
Lyapunov-like function.

Lemma 3: (Theorem 1 in [35]): Consider switched system
and let and be

given constants. Suppose that there exist functions
, and two class functions and

such that

(8)

(9)

(10)

then the system is GUAS for any switching signal with ADT

(11)

where .
Remark 3: Note that the considered energy function in

Lemma 3 can be increased both at the switching instants and
during the running time of subsystems. However, the possible
increment will be compensated by the more specific decrement
(by limiting the lower bound of ADT), therefore, the system
energy is decreasing from a whole perspective and the system
stability is guaranteed accordingly. It is worth noting that an
extreme case where is unbounded is excluded here.

Using the extended Lyapunov-like function as illustrated in
Fig. 1, the corresponding -gain analysis for system (1)–(3) is
given in the following result.

Lemma 4: Consider switched system (1)–(3) and let
and be given constants. Suppose
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that there exist positive definite functions
, with such that

and

(12)

where , then the switched system
is GUAS for any switching signal satisfying (11) and has an

-gain no greater than , where
is denoted in (11) and we assume

.
Proof: For , we say the switched

system is active within the th subsystem, then between interval
, we set the instants as the times

when the variation of the Lyapunov-like function changes the
direction (from increasing to decreasing or vice versa). Without
loss of generality, we assume that the Lyapunov-like function

is increasing during the interval and decreasing
during the interval .

Then, for the th subsystem, according to (12), considering
and denoting

and , we have

(13)

Therefore, under zero condition, one has and
thus we know that

Then we have

Therefore, from the above and , we can obtain
that
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i.e.,

(14)

Thus, we have

As a result, for the th subsystem, we know the -gain is not
greater than . Therefore, we conclude that system
(1)–(3) can have the -gain as . This
completes the proof.

Remark 4: It can be seen that Lemma 3 presents a more gen-
eral result than Lemma 1 which corresponds to the special case
of . Note also that if , one readily knows
from (13) that

(15)

Then from (15) and the same procedure in the proof for Lemma
4, we can conclude that the switched system is GUAS for any
switching signal satisfying (11) and has an -gain no greater
than i.e., Lemma 4 reduces to Lemma 2.

IV. ASYNCHRONOUS FILTERING

In the results obtained above, a natural question is how
is known in advance. Generally, that is hard since within

includes all the randomly
dispersed intervals during which the Lyapunov-like function
is increasing, consequently, the applications of Lemma 3
and Lemma 4 are actually limited. However, they enable the
study on the issues of asynchronous switching, where the

Fig. 2. Typical case of the Extended Lyapunov-like function in Fig. 1.

corresponding will be just the interval close to
the switching instant as illustrated in Fig. 2. In practice, the
interval depends on the identification of system modes and/or
the scheduling of the candidate controller/filter gains depending
on the control or filtering problems to be solved, then the length
of such intervals may vary in different environments. Without
loss of generality, we assume that the maximal delay of the
asynchronous switching, also denoted by is known a
priori here.

In this section, we will investigate the filtering problem for
the underlying system (1)–(3) in the presence of asynchronous
switching. Based on Lemmas 3 and 4, the problem can be solved
starting from the so-called bounded real lemma (BRL), which
is used to give the stability and performance analyses for
system (6).

A. Bounded Real Lemma

By Lemmas 3 and 4, we can obtain a BRL for system (6) as
follows.

Lemma 5: (Theorem 3 in [35]) Consider the switched linear
system (6) and let and
be given constants. If there exist matrices , such
that and ,
where

(16)

(17)

then under the asynchronous delay , the corresponding
system is GUAS for any switching signal satisfying (11) and has
a guaranteed performance index .

B. Filtering

Now a sufficient condition of the existence of the mode-de-
pendent full-order filters for the underlying system in the
presence of asynchronous switching is given in the following
Theorem.

Theorem 1: Consider system (1)–(3) and let
and be given con-

stants. If there exist matrices and ma-
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trices such that
and

(18)

where

with
and

, then there exists a mode-dependent filter
with the asynchronous delay such that the corresponding
filtering error system (6) is GUAS for any switching signal with
ADT satisfying (11) and has an performance index

. Moreover, if feasible solutions exist, the
admissible filter gains are given by

(19)

Proof: First of all, for a matrix , from the fact
, we have

, then we know the following inequalities

(20)

(21)

guarantee and respectively (see the proof
of [22, Theorem 3] for the similar manipulation). Then, replace

and in (20) and (21) by the ones in
(6) and assume the matrices to have the following forms:

Defining matrix variables

(22)

one can readily obtain and . Therefore, if
and (18) holds, we have and

respectively. According to Lemma 5, the filtering error system
(6) is GUAS for any switching signal with ADT satisfying (11)
and has an performance index . In addition, from (22), the
mode-dependent filter gains are given by (19). This completes
the proof.

In the absence of asynchronous switching, i.e., in
Theorem 1, we can easily get the following corollary.

Corollary 1: Consider switched system (1)–(3) and let
and be given

constants. If there exist matrices
and such that

and (18) holds where
is shown in Theorem 1, then there exists a mode-dependent
filter such that the resulting filtering error system is GUAS
for any switching signal with ADT satisfying (7) and has an

performance index . Moreover, if a feasible
solution exists, the admissible filter gains are given by (19).

Remark 5: Solving the convex problems contained in the
above Theorem 1 and Corollary 1, the scalars and can be
optimized in terms of the feasibility of the corresponding con-
ditions. In addition, it is obvious that , which means that
the performance achieved in the presence of asynchronous
switching is worse than the one in the case of synchronous
switching. However, the filter designed without considering
asynchronous switching, even under the admissible switching
(11), may fail to obtain the prescribed (or optimized) or even

, which we will show via the example in next subsection.

C. Examples

In this subsection, we will present two examples to demon-
strate the validity of the filter design approach in the presence
of asynchronous switching. The first numerical example is used
to show the necessity of considering asynchronous switching,
and the second example is derived from a PWM-driven boost
converter, a typical circuit system to illustrate the applicability
of the theoretical results.

Example 1: Consider a discrete-time switched linear system
(1)–(3) consisting of three subsystems described by

The maximal delay of asynchronous switching .
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The objective is to design a mode-dependent full-order filter
and find out the admissible switching signals such that the re-
sulting filtering error system is stable with an optimized
disturbance attenuation performance.

We shall first demonstrate that if one studies the filtering
problem of the above system assuming synchronous switching,
i.e., by Corollary 1, the corresponding design results will be in-
valid in the presence of asynchronous switching. Giving

and and solving the convex optimization problem
in Corollary 1, one can get and the cor-
responding filter gains as

(23)

Due to the space limit, we omit
here. The filtering error response in Fig. 3(a) shows that the
above filter is effective with under a
switching sequence with for given

. However, the filtering error responses in the
presence of asynchronous switching, plotted in Fig. 3(b)–(d) for
the switching sequences with , respectively, show
that the filtering error system is stable though, the optimized

performance can not be guaranteed. In other words, the de-
signed filter can not estimate the state of the original system
in a required performance index. Now, turn to Theorem
1 and consider the asynchronous switching. By further giving

and solving the convex optimization problem in The-
orem 1, we can get and filter gains as
( are omitted)

(24)

Then, for the switching sequences with (both are
greater than 2.463), the filtering error responses using filter (24)
are given in Fig. 4(a)–(b). Also, Fig. 5 gives the validation on the

performance indices that the resulting filter error systems
can achieve when applying (23) and (24), respectively, under
randomly 200 switching sequences with . It can be ob-
served from Fig. 3, 4, and 5 that the filter (23) designed by
Corollary 1 is invalid (even can not ensure , on the
contrary, the filter obtained from Theorem 1 is effective in spite
of asynchronous switching.

Example 2: Consider a PWM (Pulse-Width-Modula-
tion)-driven boost converter, shown in Fig. 6. The switch
is controlled by a PWM device and can switch at most once in
each period is the inductance, the capacitance, the
load resistance, and the source voltage. As a typical circuit
system, the converter is used to transform the source voltage
into a higher voltage. The control problems for such power
converters have been widely studied in the literature, such as
the optimal control [36], the passivity-based control [37], and
the sliding mode control [38], etc. In recent years, the class of
power converters is alternatively modeled as switched system

and the corresponding stabilization problem has also been
investigated [39], [40]. As done in [39], [40], by introducing
variables and the differential
equations for the boost converter are as follows:

(25)

(26)

Then, (25)–(26) can be further expressed by

(27)

where and

Note that each mode in (27) is non-Hurwitz and the stabiliza-
tion problem for it is solved in [40] by designing stabilizing
switching laws (the result for the buck-boost converter therein
is applicable to the boost converter). As a prerequisite of em-
ploying the filtering techniques, however, all the modes of the
filtered system (1)–(3) should be stable. Here, differing from
[40], we assume that each mode is firstly stabilized by some con-
trol law and get a closed-loop continuous-time switched system

, where the two subsystems are both Hur-
witz. According to the same normalization technique used in
[40], the matrices in (27) can be given by

Since the objective in the example is to testify the asyn-
chronous filter design techniques and show the potential
of the obtained theoretical results in circuit systems, we
assume the control matrices for (27) to be

and a set of admissible controller gains
can be solved as

. Then, the closed-loop system
can be obtained with matrices

By setting a certain sampling time and considering
that there exists the disturbance input in the underlying system,
one can obtain
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Fig. 3. Filtering error response by filter (23): (a) � � �� ��� � �, (b) � � �� ��� � �, (c) � � �� ��� � �, (d) � � �� ��� � �.

in (1)–(3) and suppose other system matrices to be

Also, we assume the maximal delay of asynchronous switching
. Then, by giving and

solving the convex optimization problem in Theorem 1, we can
get and filter gains as

We also omit due to space limit. The
effectiveness of the desired filter with the above gains can be

verified by observing the responses of the filtering error sys-
tems in the same rein of Example 1. We only demonstrate the
applicability of the developed filter design techniques and omit
the curves here.

V. CONCLUSIONS AND FUTURE WORKS

The problems of the stability and -gain analyses and
filtering for a class of discrete-time switched systems with ADT
switching are reinvestigated in this paper. By allowing the MLF
to increase during the running time of subsystems with a limited
increase rate, the more general stability and -gain results are
obtained. Aiming at a more practical problem that the switching
of the filters may have a lag to the switching of system modes,
the asynchronous filtering is considered and the existence con-
ditions of the asynchronous filters for the underlying sys-
tems in linear cases are derived. It is also shown that the obtained
conditions cover the cases of synchronous switching. Two ex-
amples illustrate the validity and applicability of the obtained
theoretical results.

As future works in the theoretical aspect, it is expected that
the methodologies behind this paper can be used for the under-
lying switched systems with parameter perturbations, time de-
lays, etc. It is also worthwhile to investigate the asynchronous
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Fig. 4. Filtering error response by filter (24): (a) � � �� ��� � �, (b)
� � �� ��� � �.

Fig. 5. � performance indices of filtering error system by filter (23) and filter
(24).

switching problems on the switched systems with other classes
of switching signals. As for the applications aspect, some ex-
amples with higher dimensions, which widely exist in circuits

Fig. 6. Boost converter.

systems field, are significant to be considered and the desired
reduced-order filters design need to proceed.
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