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SUMMARY

Robust and flexible behavior generation for robot task execution remains a difficult

problem due to the wide variety of constraints, disturbances, and uncertainties present in

the environment. Behavior Trees (BTs) have emerged as a powerful Control Architecture

for reliable and flexible autonomous action execution that is capable of authoring com-

plicated logic. More specifically, BTs can execute high level actions based on a tree of

composed primitive policies to accomplish a task. This thesis examines the design of two

unified robot frameworks that integrate BTs as a robust middleware between high-level

decision making as well as low-level motion planning and control. Firstly, a framework

for legged locomotion with disturbance rejection is proposed, which incorporates model

based trajectory optimization for motion primitive generation and a hybrid dynamic track-

ing controller for bipedal stability. Each node of the BT is integrated as a single walking

step that can be sequentially combined for multi-step locomotion plans with robustness to

disturbances. A high level decision maker, Linear Temporal Logic with reactive synthesis,

is then used to automatically generate scalable actions with the understanding of potential

disturbances. Secondly, a manipulation framework was designed that incorporates a variety

of motion primitives with a supporting perception framework for solving generic manipu-

lation problems. At the task planning level, the ROS2 PlanSys2 architecture was used to

generate a plan based on BTs and solve multi-step plans. Assembly and disassembly tasks

are specifically demonstrated using pick, place, alignment, locking, unlocking, insertion,

removal, and many other action primitives for the maintenance of industrial and aerospace

environments.

xiv



CHAPTER 1

INTRODUCTION

Robots are increasingly being applied to real-life scenarios to provide physical, economic,

and societal benefits if deployed correctly. In particular, robots have found a large amount

of success in solving dull, dirty, and dangerous tasks that humans would otherwise not want

to do. Not only does this benefit workers, it also provides novel solutions for businesses to

optimize maintenance and logistics problems. Unfortunately, many of these tasks require

well trained manipulation skills or the ability to navigate unstructured terrains. Anthropo-

morphic robot arms have been used in industry for decades to solve simple manipulation

tasks, but it hasn’t been until recently with the advent of intelligent perception systems

robots could perceive a generic environment and translate it into an action. Additionally,

recent advances in the control of legged robots has vastly expanded the ability of robots

to explore difficult unstructured environments. However, many of these complex systems

require large and flexible frameworks to design appropriate task, perception, planning, and

control problems.

At the highest level, a robot must be capable of reasoning about its environment to

dictate lower level commands to itself. These tasks can often be decomposed symbolically

into a set of steps based on the logic connections of each step. For example, if a robot wants

to wash a dish in the dishwasher, it must make sure the washer is open, the rack is pulled

out, the dish is unobstructed, and the dish is free of excess residue. However, this plan does

not consider the large variety of errors and uncertainties that can arise in this task. Slippery

or stuck plates, stuck racks, unidentifiable handles, overly constrained spaces for grasping,

and sink water could all cause the robot to fail the task. In the context of dynamic legged

locomotion, the task of maintaining balance is critical to avoid a fall. Furthermore, footstep

locations may need to be determined based on a series of logical choices. However, legged
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robots are expected to operate in highly unstructured environments, where uncertainty and

error is prevalent. It is clear that control architectures need to be robust to errors that are

guaranteed to arise at a symbolic level. Plans must be malleable and change based on the

actual state of the world. AI Planning has traditionally been used to explore this process

of solving planning and scheduling problems. However, many AI Planning techniques

remain fragile to deviations from the nominal plan. In addition, it is sometimes the fault of

a lower-level module like control that causes an error.

Indeed, motion planning and control are essential for the robust execution of tasks. Hu-

mans are quick to re-plan if an initial motion plan or control strategy fails. For a robot,

this is often analogous to adjusting constraints, gains, or biases to execute the correct ac-

tion. Recognizing these failures and then knowing which parameters to tune remains a

difficult problem. Task and Motion Planning attempts to more tightly couple the control

and symbolic aspects of a robotic architecture. By using mutual constraints between the

task planning and motion planning, a longer horizon robust motion plan can be generated.

The task planning computes the symbolic actions (discrete) and motion planning generates

geometric policies (continuous) for control. Unfortunately, these plans are often difficult to

solve in a real-time. As a result, they are often incapable of re-planning in an online fashion

to handle disturbances or deviations from the original plan.

However, the separation between Task and Motion Planning does not need to be a rigid

one. More flexible control framework abstractions can be integrated between the Task

and Motion Planning levels to give developers the flexibility to design recovery strategies.

Behavior architectures, such as Finite State Machines, Behavior Compositions, and more

recently Behavior Trees can be used to help expand the robustness of a robotic platform.

In particular, Behavior Trees have shown immense success in the video game industry to

design AI agent behaviors and actions that engage users. Many of these strengths transfer

to robotic systems and can be leveraged for robust execution.

Recently, robots have demonstrated advanced motion planning, navigation, vision, and
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control methods to complete difficult tasks in the real world. For example, the DARPA

Subterranian challenge recently showed impressive multi-robot navigation capabilities to

search underground and industrial sites for key objects [1]. The challenge stresses that sys-

tem should be able to encounter a wide variety of problems while operating in the field.

Similarly, the Amazon Picking Challenge [2] showed that robot arms could provide gen-

eralized solutions to warehouse pick-place tasks. The challenges emphasize the need for a

system framework that can handle a variety of different world states with novel planning,

perception, and control techniques.

1.1 Thesis Outline

This work proposes two novel robot frameworks that integrate Behavior Trees as the core

tool for robust task execution. The first framework shows the integration of Behavior Trees

with a bipedal legged robot, Cassie, for disturbance rejection. Where Behavior Trees are

automatically generated from Linear Temporal Logic Reactive Synthesis specifications for

robust action execution. However, legged robots are difficult to stabilize and require a

large amount of low-level motion planning and control to work in tandem with the higher

level decision making. Consequently, this work also shows extensive controller, motion

planning, and state estimation development to achieve fast bipedal walking. The second

framework developed shows the integration of Behavior Trees with a manipulation sys-

tem execution action sequences with the Planning Domain Definition Language (PDDL).

For each PDDL action, a Behavior Tree is used to robustly execute a manipulation task.

Furthermore, a database is used to allow continuous and online updates to the knowledge

schema of PDDL to handle uncertainties. A perception pipeline is also shown for generat-

ing sparse keypoints representing actionable points on objects. These keypoints can then

be used as constraints for manipulation problems.
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CHAPTER 2

BACKGROUND

2.1 Robust Behavior Authoring with Behavior Trees

This chapter examines the use of Behavior Trees (BTs) as a tool for authoring robust control

structures. BTs are one of the more popular architectures to arise recently, especially in

computer graphics and gaming [3]. Despite it’s success in the graphics community, it must

be compared to other common control authoring frameworks that have been traditionally

used in robotics. Each control framework has a task execution model associated with it,

meaning the sequence of executions and triggers for set of tasks can be represented by a

formal model. As a result, a reasonable comparison between approaches can be constructed

based on the expected model performance.

2.1.1 Common Robot Control Behavior Architectures

Many trade-offs must be considered to choose an appropriate control architecture for ex-

ecuting resiliant and robust robot behaviors for a task. To this end, many modern control

architectures allow for code re-usability, modular designs, closed loop execution, readabil-

ity, and analysis. Closed-loop execution refers to a robots’ ability to execute a sequence

of actions in a close-loop fashion. Note that planning can still be conducted offline and

open-loop, but the execution should maintain constant feedback. Furthermore, closed-loop

execution justifies the potential of synthesizing control architectures, where task planners

or machine learning techniques can automatically generate action orders. Principles of re-

usability also arise for large codebases and long term projects, where the scaling of a com-

plex system is dictated by the reuse of smaller subsystems. Modular designs thus further

the notion of re-usable code by subdividing a system into smaller independent modules.
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The rate at which a system can scale is also largely dictated by the time to integrate a new

functionality. To this end, human readability/usability refers to the structure of a code-

base or tool to minimize developer expertise for a task. An architecture is analyzable if it

maintains the ability to extract both qualitative and quantitative properties from the system,

such as efficiency and reliability. These aforementioned properties are essential to control

architectures and come in a variety of forms.

Finite State Machines

Finite State Machines (FSMs) are one of the most frequently used mathematical models

of computation. A FSM constructs a system such that it can only be in one of a finite

number of states at a given moment. Provided an event, a FSM could transition to another

state in response [4]. The FSM in Figure 2.1 demonstrates this property by transitioning

between multiple states exploring, tracking, etc. in order to pick up an object based on the

completion of actions and the object state.

Figure 2.1: Graphical representation of a FSM for a robot that searches a room picking up
objects.

FSMs are widely used for a variety of reasons. Most notably, their ease of implemen-

tation allows them to be easily implemented in any sequential programming language. In

addition, their structure is intuitive and can easily be interpreted by developers to author
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new actions.

However, FSM’s struggle to scale in an efficient and maintainable way. As the number

of states increase, so do the number of transitions between them. Eventually, the transitions

become difficult to modify and interpret for both the designer and machine. Adding or

removing states also requires the re-evaluation of all the transitions and internal states of

the global FSM, making it hard to modify and susceptible to human error.

Hierarchical Finite State Machines

An extension to the classical FSM is the Hierarchical Finite State Machine (HFSM), which

eases some of the scaling and re-usability issues associated with FSMs [5]. HFSMs allow

for the creation of super states, which consist of two or more states in a FSM. Transitions

between super states can then be formed to reduce and scope the transitions of the sub-

states.

Organizing super states thus allows for so-called behavior inheritance, where sub-states

can inherit properties from the super state. For example, if a robot is carrying a tool and in

the super state Use Screwdriver, there could be a sub-state Align which requires the robot

to align its end-effector in-axis with the objective using one hand. However, a similar super

state Use Powerdrill could be defined that has the sub-state Align requiring the end-effector

to be offset by a specified amount and use two hands.

Despite the modularity improvements of HFSMs, they still do not address the issues

of maintaining large code behavior structures. Long action sequences still require manual

transitions that can backtrack. In addition, HFSM hierarchy is entirely user defined and not

always clear.

Behavior Composition

Behavior Composition expands the domain of a controller by composing multiple asymp-

totically stable controllers. Provided that the goal of each controller is within the region

6



of attraction of the next controller, the overall basin of attraction for the system can be ex-

panded. This process of layering controller funnels is repeated over local regions of state

space until the state enters the domain of a terminal controller that drives the state to a

final goal [6]. The most common representation of this process can be seen as a series of

Lyapunov functions, where the bottom of each controller funnel feeds into the next (Figure

Figure 2.2). Instead of modeling state-independent global dynamics, behavior composi-

tions model state-dependent local dynamics where the regions of state space are handled

by models that know how to coax the system into another funnel.

Figure 2.2: A simple visualization of a Composition with three controllers. Each controller
has a Lyapunov function that is active if its state is outside the domain of a lower funnel.

Since Behavior Composition is grounded in stability theory, it is rather easy to analyze

the effects of sub-tasks on each other. These sub-tasks can also be developed independently

and strictly bounded, allowing for modularity between applications. Unfortunately the

mathematical notation does come at the cost of inflexbile code and N-dimensional state

spaces that are difficult to understand/visualize.
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2.1.2 Behavior Trees

Behavior Trees (BTs) were first developed and standardized in the video game industry as

an alternative to FSMs. In particular, BTs were used in the control structure of NPCs [3].

Large codebases meant that modularity was a key property for the game industry to enable

code reuse, incremental design, and testing. BTs provided an alternative view of FSMs that

focused on modularity and hierarchy.

A BT is formally a directed tree where leaf nodes are called execution nodes and in-

ternal nodes are called control nodes. These nodes maintain a standard parent and child

terminology, where the root is a node with no parent and all other nodes only have one

parent. Control nodes, on the other hand, can have one or more child below them. A BT

begins from the root and generates ticks, which get propagated to the child nodes at a stated

frequency . Ticks are a signal that specify the execution of a node. For each tick, the child

will return a running status if its executing a process and a success or failure depending

on the termination of the process. Ticks traverse a tree in a Depth First Search fashion and

thus traverse from the left to the right. As a result, a modular tree-structure design provides

hierarchical deliberation with both plan extensions and refinement.

While there are only two types of notes (execution and control), each has multiple node

categories. Execution nodes are defined as either action or condition nodes. Control nodes

are defined as either a sequence, fallback, parallel, or decorator node. Many implemen-

tations of behavior trees expend these four basic control nodes, but we will focus on the

classical implementation.

Action: The action nodes executes a command (e.g a motion plan) when it receives

ticks. success is returned if the action completes successfully or failure if the action fails.

Ongoing actions return running.

Condition: The condition node checks a proposition like an ”if” statement. For ex-

ample the GraspOk condition in Figure 2.4. A condition node returns success or failure

based on if the condition is met. Since conditions are binary (true/false) they do not return
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a running status.

Sequence: The sequence node is represented by a ”−→” as shown in Figure 2.3 and

propagates ticks to its leaves from the left to the right until it finds a leaf that returns either

running or failure, then it returns running or failure respectively to the parent. However, a

sequence node will only returns success if all its children return success. If a leaf returns

failure or running, the sequence node will not propagate ticks to the following leaf node.

Figure 2.3: (Top) A sequence node (green) with multiple action leaves (blue). (Bottom)
This example would execute the following operations in order: 1) go to a desired position
2) make sure the robot gripper is in the correct position 3) close the robot gripper.

Fallback: The fallback node is commonly represented by a ”?” as shown in Figure 2.4

and is the core of robust behavior trees. Fallbacks propagate ticks to its leaves from left

to right until it finds a leaf that returns either success or running, which it then echos to

its parent. Importantly, a fallback will only return failure if all its leaves return a failure.

However, if a leaf returns success or running, the fallback node will not propagate ticks to

the following leaf node.

Parallel: The parallel node is represented by a ”⇒” as shown in Figure 2.5 and propa-

gates ticks to all its leaves. It returns success if K leaves return success, but returns failure

if N −K + 1 leaves return failure. Otherwise the parallel node returns running. Given that

N represents the number of leaves and K < N is threshold designed by the developer.

Decorator: The decorator control node only has a single leaf, which is manipulated

to return a modified status and be ticked according to a developer-specified rules. For ex-
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Figure 2.4: (Top) A fallback node (orange) with multiple action leaves (blue). (Bottom)
This example would execute the following operations in order: 1) go to a desired position
2) make sure the robot gripper is in the correct position and only proceed if the grasp
condition is valid 3) close the robot gripper.

Figure 2.5: (Top) A parallel node (yellow) with multiple action leaves (blue). (Bottom)
This example would move both the mobile base and try to grab an object ”simultaneously”
since the ticks propagate to both of the actions.

ample, an invert decorator inverts the success/failure status of the leaf. Another common

decorator is the Repeat node, which only lets its leaf fail M times to succeed before return-

ing failure without ticking the leaf. Alternatively, a RepeatSeconds decorator allows the

leaf run for T seconds to succeed before returning failure without ticking the leaf.
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2.2 Trajectory Optimization

Optimization has become an essential tool as robots become increasingly reliant on numer-

ical solutions for both online and offline motion planning and control. Most optimization

problems are the numerical solution to a problem that minimize a general cost function.

The cost dictates the performance of the system and must adhere to a wide variety of

constraints. Given a linear or non-linear dynamical system ẋ = f(t, x, u), a trajectory

optimization (TO) problem solves for a locally optimal trajectory. The resulting solution

to the TO problem will provide the state and/or control x(t), u(t) over the entire trajectory.

For example, the path a robot end-effector or center of mass follows over time would be

the state trajectory whereas the actuator torques to create the trajectory is the control. If

a trajectory adheres to all specified system constraints it is considered feasible. A wide

variety of constraints can be considered, such as the system dynamics, collision avoidance,

and other boundary conditions. A trajectory is said to be optimal if it is the considered to

be the best among feasible trajectories. Where the best trajectory is defined based on the

cost function of the optimization [7].

TO problems come in multiple forms [7, 8, 9], but this introduction will focus on dif-

ferentiable continuous-time dynamical systems. To determine the ”best” trajectory based

on cost function minimization (Equation 2.1), the TO problem will adjust its decision vari-

ables to find an optimal solution. Total time, torque, acceleration, pose error, etc. are all

common costs for trajectory optimization problems.

arg min
x(t),u(t)

L(x(t), u(t), t) (2.1)

As mentioned previously, cost function minimization can be subject to to different con-

straints. First, dynamic constraints specify how control effort propagates the system state

over time (Equation 2.2). For example, a spring-mass motion is constrained by Hooke’s

law. For many cases, the system dynamics can be simplified to template models to decrease
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solve time for a TO problem.

ẋ(t) = f(x(t), u(t), t) (2.2)

Path constraints (Equation 2.3) restrict a trajectory geometrically and is one of widest

constraint categories. For example, reachibility or collision constraints are common con-

straints for constraining the kinematics of a robot to a specific configuration space through

time.

h(x(t), u(t)) ≤ 0 (2.3)

Boundary constraints (Equation 2.4) ensure the starting and terminal conditions are

correct. Simply stated, they guarantee the solution of the end goal is feasible and reachable.

In Equation 2.4, t0, tf represent the initial and final time in the optimization.

g(x(t0), x(tf ), t0, tf ) (2.4)

Lastly, the system state (Equation 2.5) and control effort (Equation 2.6) can both be

bounded by upper and lower boundary constraints. For example, joint positions and efforts

could be bounded by known robot lower (xlower, ulower) and upper (xupper, uupper) state and

control limits of the actuators.

xlower ≤ x(t) ≤ xupper (2.5)

ulower ≤ u(t) ≤ uupper (2.6)

2.2.1 Trajectory Optimization Problem Formulations

While there are a variety of ways to construct a TO problem, the two major methods imple-

mented are direct method and the indirect method [10]. The primary difference between
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the direct and indirect method is the way dynamics are incorporated and what decision

variables are selected. The indirect method only uses control inputs, such as torque, as de-

cision variables and does not directly include the system state. Instead, the dynamics state

is forward propagated based on the initial state and the control inputs to estimate the entire

trajectory of the system. Unfortunately this makes the terminal state heavily dependent on

the estimation of the initial state and good tracking control. On the other hand, direct meth-

ods incorporate both the state and control as decision variables. As a result, this method

can incorporate a large number of decision variables at the cost of having a multiple opti-

mization problems. Since the direct method incorporates the state as a decision variable,

it is not sensitive to the initial state of the system like the indirect method. While indirect

methods tend to perform better for real-time applications, the performance of both methods

is predominantly dependent on the type of problem being solved.

For many problems, the optimization can be decomposed into a set of much smaller

problems in a process known as transcription. Transcription separates the dynamics of

the problem into a finite set of nodes called knot points. The continuous time dynamics

between knots can be approximated by polynomial splines in a process called collocation.

Furthermore, constraints are added to the problem to ensure continuity between adjacent

polynomials. Each polynomial coefficient and the expected control must then be defined

as decision variables for the optimization to solve [11]. As a result, more knot points

increase the accuracy of the approximations, but at the cost of computation time. Higher

order splines can also be used to increase the accuracy, but this also increases the number

of decision variables and computation time. Alternatively, the dynamics can be forward

propagated explicitly using integration schemes, such as Runga-Kutta, in a process known

as shooting similar to indirect methods.
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2.2.2 Non-Linear Programming

The formulation of the TO problem dictates what tools and techniques can be used. The

structure of the cost function and constraints in particular dictate whether the optimization

is considered non-linear. A general formulation for a Non-Linear Program (NLP) where

the cost function, inequality constraints, and equalities can all be non-linear functions is

shown in Equation 2.7. Where x is the set of decision variables, L(x) is the cost function,

fi(x) is the ith inequality constraint, and hi(x) is the ith equality constraint.

min
x

L(x) (2.7)

s.t. fi(x) < 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., n

Many commercial NLP solvers exist to solve these problems, such as IPOPT [12], SNOPT

[13], and KNITRO [14]. However, most NLP’s will only find a local minima instead of

the global minimumum for the problem. Additionally, there are no guarantees that a NLP

will converge to a valid solution in the first place. Numerical conditioning thus becomes

imperative for solving TO problems quickly and accurately in robotics.

2.2.3 Convex Optimization and Quadratic Programming

Mathematical simplifications can also be made to the dynamics and constraints to decrease

the computation time of a TO problem. In particular, a convex optimization problem re-

quires that the cost function (Equation 2.7) and inequality constraints are convex functions.

The equality constraints should also be affine functions. Compared to a NLP, convex prob-

lems typically get solved much more efficiently and are also guaranteed to converge to the

global minimum. Software like CVX [15] is readily available to solve convex problems of

all varieties.

Quadratic Programs (QP) can be formulated to further simplify the problem and im-
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prove the solve times. QP’s are a particular type of convex program that take the form of

Equation 2.8 where the inequalities are affine and the cost is a quadratic function. There

are a multitude of commercial solvers such as Gurobi [16], OSQP [17], and qpOASES [18]

that can solve a QP efficiently.

min
x

1

2
xTRx+ cTx (2.8)

s.t. Ax ≤ b

Additional optimization problem structure can be exploited to help to reduce the time it

takes to solve the problem. Costs or constraints in block diagonal, upper triangular, or

diagonal matrices can be solved much faster with the use of sparse matrix libraries. Ad-

ditionally, using previous problem solutions as an initial guess that is close to the optimal

solution will also reduce the solve times. This process is known as warm starting a prob-

lem and it is frequently used in robotics since many control problems require the sequential

solving of optimization problems based on feedback [19].

2.3 Dynamic Modeling of Robots

Many optimization problems for multi-body robots rely on accurate kinematic and dynamic

models for the system. Systems can modeled with extreme accuracy by accounting for non-

linearities such as friction in the joints and the compliance of linkage systems. However,

this system identification is very challenging and will often results in optimization problems

that can’t be solved in a reasonable amount of time. As a result, simplifications to a model

are made to provide tractable optimizations problems. These reduced models are called

template models. Legged robots, in particular use template models to represent the system

as a floating mass or inverted pendulum. Control engineering tradeoffs must be made to

capture enough of the full dynamics to successfully control the robot.

The interaction of rigid bodies with each other is a well studied subject. A robot arm
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or leg can be seen as a chain of coupled rigid bodies with additive properties [q1, q2, ...].

Additionally, for mobile robots (such as legged robots), a floating base model of the robot

can be used to represent the moving body as a spatial pose vector qb ∈ R6 with three

rotational and linear components. In many cases, position of the floating base is the same

as the center of mass for the robot. The complete vector for a generic robot system can be

expressed as q = [qb, q1, ...., qn]T , which represents the current pose of the robot base and

its joints. The full rigid body dynamic representation of the system can thus be represented

by Equation 2.9 [20].

M(q)q̈ + C(q, q̇)q̇ +G(q) = J(q)Tλ+ Sτ (2.9)

Where M ∈ Rn×n, C ∈ Rn×n and G ∈ Rn are the Mass, Coriolis, the Gravitational

matrices. J ∈ Rmxn represent the jacobian of the multi-body system under the influence of

external contact wrenches λ ∈ Rm. The matrix Sn×n is a selection matrix that only selectes

commands for actuated joints. Often times, the full-body dynamics of Equation 2.9 can be

further simplified by constraining certain joints, such as a pinned point contact dynamic

model that assumes no yaw motion at a contact point. A more thorough discussion of rigid

body dynamics and its computational algorithms can be found in [21].
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CHAPTER 3

TASK, MOTION PLANNING, AND CONTROL FOR BIPEDAL LOCOMOTION

3.1 Introduction

Push recovery is one of the most essential capabilities for legged locomotion. Falling can

be considered a critical failure, so implemented methods should be backed by formal guar-

antees to ensure consistent and reliable locomotion. To this end, this chapter examines a

reactive task and motion planning framework resilient to external perturbations [22]. Re-

jecting perturbations has been widely studied, but the nature of bipedal locomotion incorpo-

rates difficult motion planning and control problems for stability. For example, adversarial

disturbances and aggressive turning can lead to negative lateral step width (i.e., crossed-

leg scenarios) with unstable, underactuated, motions and self-collision risks. In addition

to being a computationally difficult motion planning problem, most methods neglect the

task planning layer in the context of disturbances. Thus a planning and decision-making

framework that closely ties linear-temporal-logic-based reactive synthesis with trajectory

optimization incorporating the robot’s full-body dynamics, kinematics, and leg collision

avoidance constraints was explored. BTs are integrated between the high-level discrete

symbolic decision-making and the low-level continuous motion planning to handle dis-

turbance since the Linear Temporal Logic (LTL) decision maker can only contextualize

disturbances during apex points in locomotion.

Push recovery for bipedal locomotion has been extensively studied at the motion plan-

ning level in previous works and has been inspired by human locomotion biomechanics

[23, 24]. Multiple strategies such as ankle, hip, and foot placement methods are proposed

to handle external perturbations [25, 26, 27]. However, many of these push recovery strate-

gies have difficulty guaranteeing leg self-collision avoidance because they employ template
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Figure 3.1: a) A Human is forced to cross legs to recover from an external disturbance
based on its foot placement. b) The Human is constrained to the stepping stones and must
execute a crossed-leg motion plan. c) An illustration of the biepdal robot cassie executing
a crossed-leg motion. A Prismatic Inverted Pendulum model is superimposed to show the
underlying template model.

models such as centroidal momentum models or inverted pendulum. Since template mod-

els do not completely model the kinematics of a legged robot, it makes solving full-leg

kinematic constraints difficult. However, it is a strong assumption to state that a robot will

never be in close contact with itself in highly dynamic locomotion. Liu et al. [28] demon-

strated a control framework that considers self-collision under various disturbances, but

only considers a single step and not more difficult multi-step or non-periodic recoveries.

Reactive approaches for high dimensional robots have used distance metrics to generate

repulsive motions, but this leads to motion plan discrepancies and tracking errors [29, 30,

31]. ”Behavior” or ”Gait” libraries have also been used to generate neutrally stable real-

time motion plans in unstructured or constrained environments [32, 33]. However, all these

methods fail to also address replanning at the higher, symbolic, level when a disturbance

occurs.

Reactive execution is crucial in the context of high-level task planning to account for

environmental changes at runtime. The task planning layer is often slow to update plans or

only able to consider discrete logic. Temporal-logic-based reactive synthesis [34, 35, 36]

has been explored to find strategies that generate formally-guaranteed safe motions with
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Figure 3.2: Block diagram of the proposed framework. a) Experiments of Cassie disturbed
during stable walking; b) The high-level task planner synthesis, employing an LTL two-
player game; c) The BTs act as a middle layer that reactively execute subtrees based on
real-time environmental disturbances; d) A whole-body motion planner is used to generate
feasible motions and refine LTL specifications ψ. The high-level task planner and the
phase-space planner are integrated in an online fashion as shown by the solid black arrows.

provably correct robot actions, even subject to disturbances. However, reactive synthesis

has been under-explored for dynamic locomotion until recent years. LTL [37, 38, 39]

has been used to synthesize reactive locomotion navigation plans over various terrains and

with obstacles. However, the feasibility of executing synthesized task plans on high degree-

of-freedom legged robots when subjected to perturbations remains fairly unexplored. To

address this challenge of perturbed task and motion planning for legged robots, this work

leveraged trajectory optimization (TO) to verify the synthesized task feasibility.

Due to the hierarchical nature of control frameworks, the motion and symbolic planners

often have fragmented understandings of the system state and environment between con-

tinuous and discrete modes. Previous methods have explored controller synthesis that can

sanction a finite sequence of assumed environmental errors [40], online synthesis of im-

perfect local strategies that are further patched with lower-level controller [41], and robust

automata that are designed with unmodeled disturbances [42]. Unfortunately the discrete

symbolic nature of LTL planning also has limitations for real world applications. Since

plans exist symbolically, unexpected disturbances at runtime (such as pushes) between dis-

crete plan points or unmodeled errors can dramatically change the execution symbolic plan

[43]. This can result in expensive recalculation processes or invisible disturbances at the

LTL level.
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Behavior Trees (BTs), as mentioned in the beginning of this paper, have been widely

explored to author and execute autonomous plans while tracking environmental changes

[44, 45]. Their reactive and modular structure can authorize multiple behavioral plans and

achieve fault-tolerant task executions [3, 46]. [47] previously devised finite state machine

(FSM) controllers for unexpected terrain height variation, but relied on large handmade

state machines. Intuitively speaking, BTs can be viewed as a more scalable and acyclic

version of FSM for complex behavior execution. It was recently shown that LTL-based

reactive synthesis [37] could generate a reactive TAMP with robust reachability analysis for

dynamic maneuvers and disturbance rejection. However, it only accounts for perturbations

applied at specific apex keyframe instances. These formal methods still have not shown

formal safety to perturbations at any locomotion phase. Naturally, this means BTs could be

used to handle continuous environmental perturbations by designing actions in a fallback-

based structure online to amend the errors in the synthesized discrete automaton.

3.1.1 Contribution

This study addresses the push recovery problem for legged robots subject to external per-

turbations that can happen anytime. In particular, this work focuses on the coupling of the

high-level LTL with the low-level motion planning for reactivity at both layers. A combined

TAMP framework composed of hierarchical planning layers operating at different temporal

and spatial scales is proposed ( Figure 3.2). The LTL planning was tightly coupled with the

dynamics of a bipedal robot to design safety-guaranteed decisions at keyframe states. As a

result, these plans include Center of Mass (CoM) state or foot placements, in response to

the keyframe perturbations. When perturbations occur at non-keyframe instants, analyti-

cal Riemannian manifolds are used to recalculate a new keyframe transition online for the

current walking step. BTs are integrated to allow updated keyframes to be any continuous

value within the allowable range, instead of a finite set of discrete values quantified in the

LTL-based planner. Full-body legged motions are generated using kinodynamic-aware TO
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for non-periodic multi-step locomotion with self-collision constraints.

3.2 Additional Background

3.2.1 Phase-space Planning

First and foremost, I must further introduce the mathematical concept of reduced-order

”template” models for legged robots. The CoM position pCoM = (xCoM, yCoM, zCoM)T is

composed of the sagittal, lateral, and vertical positions in the reference frame of the robot.

Likewise, the CoM velocity is defined as ṗCoM = vCoM = (vx, vy, vz). Following tradi-

tional locomotion models, the apex state of the system is the state at the maximum position

papex in a gait. During bipedal locomotion, the apex state appears once per footstep and is

not strictly dependent on periodic motion, thus capturing the complexities of walking gaits.

The apex position can be denoted as papex = (xapex, yapex, zapex)T with foot placement

pfoot = (pxfoot, p
y
foot, p

z
foot)

T and relative CoM height hapex.

The Prismatic Inverted Pendulum Model (PIPM) has been widely used in literature [48].

The PIPM model extends the simple linear inverted pendulum by allowing for a variety of

heights in the locomotion plan. Using it’s system dynamics, the CoM trajectories can get

generated according to the the phase-space plan [49]. For completeness, we summarize the

derivation from [48] to justify the analytical solutions used in section 3.3. Consider a single

contact case, the centroidal momentum dynamics can be calculated using a simple balance

of forces and moments:

(pCoM − pfoot)× (fCoM +mg) = −τCoM (3.1)

where the forces fCoM and angular moments τCoM of the modeled virtual flywheel act on

the CoM under the gravitational vector g. A nominal locomotion plan maintains τCoM = 0,

which allows us to formulate the dynamics for a ith walking step walking plan
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Figure 3.3: A 3D prismatic inverted pendulum template model of the Cassie robot. The
lateral distance between the CoM and the feet is expressed as ∆y. A negative lateral step
width ∆y < 0 implies that the robot is in a crossed-leg scenario.

p̈CoM,i = Φ(pCoM,i, ui) =


ω2

asym,i(xCoM − pxfoot,i)

ω2
asym,i(yCoM − pyfoot,i)

aω2
asym,i(xCoM − pxfoot,i)

 (3.2)

where the asymptotic slope ωasym =
√
g/hapex. The control input ui = (ωasym,i, pfoot,i)

is calculated based on the position of the feet. h denotes the height of the CoM from

the contact points in stance. Furthermore, the template model becomes linear with an

analytical solution if the CoM is constrained within the piece-wise linear surface hs =

a(xCoM − pxfoot) + hapex with slope a. The resulting analytical solutions are then used to

derive the analytical equations in section 3.3 based on [48].

3.2.2 Linear Temporal Logic Reactive Synthesis

To formally guarantee locomotion task completion under environmental disturbances, our

method must use General Reactivity of Rank 1 (GR(1)) [50]. The GR(1) formula is a
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fragment of LTL that allows reactive synthesis algorithms to encode a large variety of

specifications and provide correct-by-construction guarantees [35, 34, 51].

LTL specifications are temporal and logical relations can be used to represents tasks.

The transition system is a discrete description of the system dynamics and environment. A

GR(1) formulation supports atomic propositions (APs) that can be True (ϕ∨¬ϕ) or False

(¬True). In addition, these formulas can use logical symbols of negation (¬), disjunction

(∨), and conjunction (∧). Temporal operators such as “next” (©), “eventually” (♦), and

“always” (�) are used as propositional logic extensions. The semantics of LTL can be

further explored in [52].

3.3 Planning Methods

In this section, the mid-level motion planning and high-level symbolic decision-making

components of the framework ( Figure 3.2) are described. The hierarchical framework is

composed of (i) LTL-level reactive synthesis for handling perturbations at apex keyframes,

(ii) a BT interface that is generated for the robust execution of one walking step (OWS)

between keyframe instances, (iii) whole-body motion primitive generation for kinodynamic

TO to avoid self-collision.

3.3.1 Keyframe-based Non-periodic Locomotion

To formulate a multi-step bipedal robot walking, the entire trajectory is split into multiple

OWS phases that start and end at a keyframe state [53]. The discrete keyframe transition

pair (ki, ki+1) can be used to describe the ith OWS cycle. Each keyframe contains the apex

CoM state (sagittal and lateral), as well as the index of the stance foot (subsection 3.3.2).

Each OWS has a keyframe transition and maintains a CoM trajectory according to the

locomotion dynamics. Forward and backward walking in the sagittal plane uses numerical

integration to solve the contact switching time of OWS. Where t1 and t2 represent first-half

and second-half of the OWS phases, respectively. The next lateral keyframe state can then
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be determined using the next sagittal keyframe. In particular, the next lateral keyframe can

be calculated by matching the t1 and t2 timing constraint, due to the simultaneous contact

switch in both directions. Consequently, the lateral keyframe transition and the lateral CoM

state (pswitch,l, ṗswitch,l) can be calculated at the contact switch instance. Finally, the next

lateral foot placement can be computed with the following analytical solution:

pfoot,l = pswitch,l +
(e2ωasymt2 − 1)ṗswitch,l

(e2ωasymt2 + 1)ωasym

(3.3)

where wasym and p are defined from Equation 3.2. The subscript l indicates that the foot

placement is for the lateral space. As mentioned previously, the concise derivations can be

referred to in the work of [53].

Keyframe-base walking allows for non-periodic walking, which is more accommodat-

ing to rough terrain and disturbances compared to periodic walking. Thus a keyframe

decision-maker is necessary for real-time feasible and safe keyframe transitions.

3.3.2 LTL Specifications for Push Recovery

Given the LTL specification ψ and transition system TSE, the reactive synthesis problem

attempts to find a winning strategy such that the execution path satisfies ψ [39]. Provided

that the specification is realizable, the automation will be generated and provide transitions

for any environmental actions within the constraint.

Definition 3.3.1 (Riemannian partition). The transition system discretizes the continuous

robot state space (i.e., robot’s CoM phase-space near the apex state) into Riemannian

partitions defined as:

R := Rposition×Rvelocity = {rp,n, rp,z, rp,p}×{rv,z, rv,s, rv,m, rv,f}

where the relative position of the CoM with respect to the contact feet is represented by

the elements in Rposition and CoM apex velocity (zero, slow, medium, fast) is defined as
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Figure 3.4: An illustration of a phase-space Riemannian partition and lateral keyframe
transition for a two-step crossed-leg disturbance recovery.

Rvelocity. To minimize computational complexity, the sagittal and lateral phase-spaces were

discretized into 12 Riemannian partitions.

a disturbed keyframe state (rp,n, rv,m) is shown in Figure 3.4, which represents a neg-

ative step position and medium velocity to reject the disturbance. A keyframe state whose

CoM velocity is zero in sagittal axis is noted as (rv)s = (rv,z)s. The analytical manifolds

of CoM dynamics from the Prismatic Inverted Pendulum Model (PIPM) are used to derive

the Riemannian partitions. More details will be introduced in subsection 3.3.5.

Definition 3.3.2 (Locomotion keyframe). A keyframe K is defined as a system apex state

composed of the sagittal partition Rs, the lateral partition Rl, as well as the foot stance

index set Fst = {left, right} which is used to identify crossed-leg motions or wider lateral

step strategies based on the gait.

K := Rs×Rl×Fst.

In order to decide the next keyframe state kn, the system takes an actions asys ∈ Asys ⊆

Rs×Rl×I×W . In addition, I = {small,medium, large} andW = {small,medium, large}

represent the step length and width. Lastly, l ∈ I and w ∈ W are the nominal distances be-

tween the current and the next foot placements projected on sagittal and lateral axis. Note
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that I,W represent the nominal global distances between footholds whileRs,Rl represent

the relative apex states for the CoM in nominal foot frame.

The environment state is represented by a perturbation set penv ∈ Penv := Rs×Rl∪{∅}

that pushes the system to the center of a Riemannian cell. In the current implementation,

the task planner assumes that the environment will only make perturbations at keyframe

instances. Perturbations are seen as near instantaneous actions that cause CoM position

and velocity jumps after applying an external force to the robot’s pelvis frame. The en-

vironment can also choose to do nothing, i.e., penv = ∅. Together, the robot action

Asys and environment action Penv are used to determine the next apex keyframe state

kn = TSE(kc, asys, penv). The combination of these actions are used to define part of the

automaton state S.

Definition 3.3.3 (Steady state keyframe). To further characterize the locomotion of the

system, a special set of keyframes are defined as steady state keyframes kss ∈ Kss during

perturbation-free walking.

Kss = {kss|kss =
(
(rp,z, rv,·)s, (rp,·, rv,z)l, fst

)
}

where (rp,z, rv,·)s means that the sagittal CoM apex position is above the nominal foot

placement and can take any allowable sagittal velocities, while (rp,·, rv,z)l means that the

lateral CoM apex position can take any values and the apex velocity has to be zero rv,z (see

Figure 3.4).

The system assumes a steady state initial condition kss
sys = ((rp,z, rv,m)s, (rp,z, rv,z)l, right).

to define the initial state:

sinit = (kinit, ainit
sys , p

init
env)

=
(
kss, ((rp,z, rv,m)s, (rp,z, rv,z)l), ∅

)
By default, the robot will choose to maintain stable walking unless there is a disturbance
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from the environment. Given a perturbation, the keyframe state is required to return to a

steady state trajectory within two steps:

�
(
k = ¬kss ⇒ (©k = kss) ∨ (©© k = kss)

)
Two steps are used to consider disturbances in either direction during OWS. If the left

foot is in stance and the robot get pushed aggressively to the left, the only feasible motion

to stabilize involves a crossed-leg (negative step length) motion. The feasibility of these

transitions must be verified by the low-level full-body TO ( subsection 3.3.6). However,

infeasible task transitions should be removed due to the systems full-body kinematic and

dynamic constraints. In this way, the LTL defines a set of TO-refined task specifications.

After the TO refinement, all full-body-dynamics-feasible transitions are known offline and

encode TO-refined specifications:

�
(
k = ((rp,z, rv,m)s, (rp,z, rv,m)l, right)⇒

a = ((rp,z, rv,m)s, (rp,z, rv,s)l, small, small)

...

∨a = ((rp,z, rv,m)s, (rp,z, rv,m)l, small,medium)
)

Recovering to a steady state kss in the presence of perturbations requires the next

keyframe kn to minimize the sagittal apex deviation from its expected value and decrease

the lateral apex velocity. For example, an instantaneous medium apex velocity would re-

quire the next apex velocity to be either medium, small or zero: �
(
rv = rv,m ⇒ (©rv =

rv,m ∨ rv,s ∨ rv,z)
)
. In addition, a smaller step width w ∈ W will be chosen instead of a

larger one: �
(
(w = small ∨ w = large)⇒ (©w = small)

)
.To prevent the recovery mo-

tion from being interrupted, the robot also assumes the environment perturbation happens

at most once per two steps: �
(
penv = ¬∅ ⇒ (©penv = ∅)

)
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3.3.3 Task Planner Synthesis

Provided the LTL specifications above, the task planner models the interplay between the

robot system and the environment as a two-player game. The keyframe transition game

structure is constructed in the form of a tuple G := (S, sinit, TSE) with:

• S = K×Asys×Penv represents the possible automaton state of the transition system,

• sinit = (kinit, ainit
sys , p

init
env) is the initial automaton state

• TSE ⊆ S × S is a transition describing the possible moves that the robot system can

make with the antagonist environment.

Disturbances toward the stance leg (see Figure 3.1) will require the foot placement of

the swing leg to move closer to or cross the stance foot. In such extreme cases, a mini-

mum of two steps is required to recover which poses a self-collision challenge for making

safe decisions. These dynamics-informed decisions make use of the TO-refined transition

specifications to guarantee that the task planner makes valid keyframe transitions. By con-

struction, the TO ensures that all constraints on the full-body motion and the keyframe

transitions are feasible. The LTL automaton will select the keyframe transition sequence

that goes back to steady keyframe state, which represents the apex state during normal

forward walking.

The decision maker uses the current estimated system keyframe state kc at each instant

and plans a sequence of transitions until the final state kf = kss. The resulting action

roll-out produces the action plan P = {kc, . . . , kf}.

3.3.4 Behavior-Tree-Based Dynamic Replanning

To address continuous perturbations at non-keyframe instants, the framework integrates a

perturbation-aware behavior tree (PABT). The BTs allow local modification of the CoM

trajectory online and assign a new keyframe transition. For moderate perturbations, the
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Figure 3.5: An illustration of the PABT structure. The PABT groups a set of locomotion
subtrees Ψi. Each subtree is a fallback tree that encodes a keyframe transition (kc,i, kn,i)
and a Riemannian recalculation action.

PABT only complements the previously mentioned reactive synthesis by using the real-

time estimated CoM state (pCoM, ṗCoM) to locally modify the keyframe transitions. In the

case of large perturbations, where the perturbation redirects the CoM state to a different

Riemannian cell, the PABT recalculates a new transition based on the original keyframe

(kc,d, kn,d) from the high-level reactive synthesis.

In order to encode this recovery-based planning, the PABT groups a set of locomotion

subtrees Ψ =
⋃
i

Ψi. Each subtree Ψi contains a pair of the current-to-next keyframe states

(kc,i, kn,i). These keyframe pairs are integrated as condition nodes in the locomotion sub-

trees ( Figure 3.5) as pre and post condition requirements. Each locomotion subtree is a

fallback BT structure that executes its action nodes when the desired keyframe transition

from the high-level matches their condition nodes. More explicitly, the pre-condition and

post-condition nodes check if the desired transition kc,d matches with keyframe condition

kc,i.

After the PABT modification at non-keyframe instances, the desired keyframe transition

remains feasible despite the CoM state deviation. This is because the action node Ai can

also incorporate a keyframe recalculation procedure. The recovery strategy [53] was used

to perform a Riemannian recalculation, which replans the motion when the CoM state gets

perturbed from the nominal manifold. To ensure the proper constraints are incorporated,

the PABT uses a position guard strategy (subsection 3.3.5) to recalculate the keyframe
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Algorithm 1: Keyframe Decision Making and PABT Execution
Input: PABT Ψ, Decision-maker DM , current time;
Set: status = success;
while status == success do

kc, time = StateEstimation();
if time == keyframe instant then

P = DM(kc);
for (kc, kn) in P do

Ψc = LocomotionSubtree(kc, kn);
Ψ.Insert(Ψc);

end
end
/* PABT Riemannian Recalculation */
status = Ψ.Tick();
(kc, kn)′ = Ψ.GetModifiedTransition();

end
Output: updated PABT Ψ, modified keyframe transition (kc, kn)′;

state. The modified keyframe state is not guaranteed to be a Riemannian cell center or

may end up in a different cell. This shows the recalculation is suitable for continuous

perturbation recovery, especially since the synthesized decision-maker only determines the

keyframe transition from the Riemannian cell center. As shown in Figure 3.6, the local

BT modifications handle the discrepancy between the current (perturbed) CoM state and

its Riemannian cell center by recomputing an updated keyframe transition.

The PABT grows as the new action plan P is commanded from the task planner. New

subtrees Ψc are constructed by the PABT to represent each of the transitions (kc, kn) from

P . The new subtrees are then inserted as new behavior leaves of the root node. One tick of

the PABT thus triggers the corresponding subtree that matches the keyframe conditions. If

none of the subtree is able to handle the situation, the PABT will return failure and ask the

task planner for a new action plan. The expansion of the PABT and its execution process is

illustrated in Alg. algorithm 1.
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3.3.5 Riemannian Robustness Margin Design

To quantify the robustness margin of the motion plan, we used the Riemannian distance

metric and manifold in [53] to measure the deviation of CoM state from the nominal CoM

manifolds in phase-space. Since locomotion operates on in periodic motions, the Rieman-

nian metric discretizes the phase-space with tangent and cotangent locomotion manifolds.

This captures the distance error in a discretized curved space instead of a naı̈ve Euclidean-

type discretization. Both the tangent and cotangent manifolds comply with the PIPM lo-

comotion dynamics and thus provide an intuitive trajectory recalculation representation for

CoM deviations. As shown in Figure 3.4, 12 Riemannian cells in the sagittal and lateral

directions partition the CoM state near the stance foothold. The top 9 cells capture non-zero

velocities and the bottom 3 cells represent states with zero velocities. Since the apex CoM

state is of particular interest for planning, the top 9 cells are centered around the nominal

sagittal apex state during walking. The robust margin is represented by the size of each

cell, which indicates the amount of deviation the system can handle before switching to an

adjacent cell.

Furthermore, the position guard strategy is used to recalculate the next CoM apex state.

Assuming the CoM state jumps to (p′CoM, ṗ
′
CoM) on a new tangent manifold σ′, the next

CoM apex state is recalculated based on:

(papex, ṗapex) = (pfoot,

√√√√ ṗ′2CoM ±
√
ṗ′4CoM − 4ω2

asymσ
′

2
)

(3.4)

where (papex, ṗapex) corresponds to the next keyframe kn in the LTL plan. A set of motion

primitive then interpolates a full-body motion that connects the current CoM state to the

updated next keyframe.
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Figure 3.6: Lateral and sagittal responses to diagonal disturbances at keyframe and non-
keyframe instants while walking at 0.5 m/s apex velocity. Each color represents a single
step generated by the LTL-BT.

3.3.6 Collision-Aware Kinodynamic Trajectory Optimization

While the task planner and PABTs generate keyframe transitions robust to perturbations,

they do not consider the full set of constraints acting on the robot. However, mapping the

keyframe transitions to whole-body trajectories in real-time often poses a challenge due to

computational difficulties. To address this, TO was used to create a set of motion primitives

offline in a gait library. Each motion primitive represents OWS trajectories that can be

sequentially composed for multi-step walking. The initial state of the motion primitives was

varied to also include recovery transitions. The TO generates reference motions that satisfy

the physical constraints while minimizing the trajectory cost [54, 55, 56]. Critically, the TO

incorporates self-collision constraints and keyframe boundary constraints to guarantee that

the optimal full-body motion is feasible. As mentioned previously, the TO is formulation

is also used as a verification to check the feasibility of high-level keyframe transitions. The
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nonlinear program (NLP) of TO is formulated as:

arg min
X

D∑
j=1

Nj∑
i=0

Ωj · Lj(uji ) (3.5)

s.t. Mj(q
j
i )q̈i + Cj(q

j
i , q̇

j
i ) +Gj(q

j
i ) = ui, (dynamics)

q̇j+1
0 = ∆j(q̇

j
Nj

), (reset map)

λc,z ≥ 0, |λc,xy| ≤ µλc,z, (friction)

Ekin
j (qji ) ≤ 0, (kinematics)

Ecol
j (qji ) ≤ 0, (self-collision)

Ekey
j (qji , q̇

j
i ) = 0 (keyframe boundary)

where the OWS domain includes D = 2 continuous single stance phases and a single

velocity reset map. Each stance contains Nj knots, which represents the state-control pair

nji = (xji , u
j
i ) at the ith instant. The full state vector is x = [qb; q̇] denoted by the robots

floating base qb and joint states q. The NLP solves the optimal state-control trajectory

X∗ = {nj∗i } by minimizing the pseudo energy cost Lj = ||uji ||2 with weights Ωj while

enforcing the physical constraints of the robot.

The resulting trajectory was shaped by the physical constraints of the system. The sys-

tem dynamics constraint was enforced between knot points using Hermite-Simpson collo-

cation. M , C, and G denote the Mass, Coriolis, and Gravity matrices of the robot’s rigid

body dynamics section 2.3. q̇j+1
0 = ∆j(q̇

j
Nj

) is a jump map that connects the velocity jump

between two consecutive stance modes. Additionally, the a linearized friction cone is used

to bound the horizontal contact forces λc,xy. The kinematic constraints Ekin
j (qji ) ensure that

the joint angles, foot positions, and CoM trajectories are bounded. D geometric point pairs

(gdl , g
d
r ) on two legs are selected as self-collision constraints (see Figure 3.2d). The signed

distances ld are evaluated at each geometric point pair using forward kinematics FKgd(qi)

for all d ∈ D, i ∈ Nj . The minimally allowed distances are thus denoted as ldmin. While
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heuristic, the finite set of geometric points is enough to constraint safe trajectories for the

swing leg.

ld(qi) = FKgdl
(qi)− FKgdr

(qi), (3.6)

Ecol
j (qi) = ||ldmin||22 − ||ld(qi)||22. (3.7)

Lastly, the keyframe transition (kc, kn) commanded from the task planner is enforced as

a boundary condition for the apex CoM position, velocity, and foot position. However,

online motion planning for the footstep planning was found to be more stable based on the

angular momentum of the system.

3.4 Tracking Controller Design

The tracking controller is the lowest layer of the control hierarchy for a legged system.

While many formulations exist, its objective is to accurately track desired reference trajec-

tories while maintaining robust to errors. For legged robots, these errors appear primarily

in the multi-body system dynamics and contact with the environment. When interacting

with the environment, it is critical that the robots maintains compliant to account for mod-

eling errors. Recall that the motion planning methods presented previously make a flat

world assumption, meaning that any uncertainties in the terrain must be stabilized using

the tracking controller.

3.4.1 Feedback Linearized Controller

Initially, the system used a simple feedback linearized proportional-derivative controller

with virtual constraints to track reference trajectories. The estimated CoM velocity was

used to interpolate gaits from offline generated motion primitive library. Each motion

primitive represented a two-step whole-body trajectory. The resulting whole-body trajec-

tory from the motion primitive library was transformed into the desired control variables
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γd(τ, qpitch, qroll, α). Since γd represented with virtual constraints (Table 3.1), they needed

to be transformed back to the joint reference frames using forward and inverse kinematics.

The corrected joint angles were then regulated by a simple PD controller and static gravity

compensation.

Following the bipedal control method from [33], the virtual state for the stance and

swing leg lengths, swing orientation, swing foot pitch angle, and torso orientation were

regulated (Table 3.1).

Table 3.1: Virtual Control Variables with right leg in stance and left leg in swing.

Virtual Constraints Name Variables in γd
Torso Roll qroll

Stance Hip Yaw q2st

Torso Pitch qp
Stance Leg Length qLLst

Swing Leg Roll qLRsw

Swing Hip Yaw q2sw

Swing Leg Pitch qLPsw

Swing Leg Length qLLsw

Swing Foot Pitch qFPsw

A simple PD control law can then be formulated around the desired virtual states. The

following γ̃0 is ordered such that the first four actuators refer to the stance leg, followed by

the swing actuators.

γ̃0(q) = [qroll, q2R, qpitch, q4R, q1L, q2L, q3L, q4L, q7L] (3.8)

ẽ = γ̃0(q)− γ̃d(·) (3.9)

The PD control law, with diagonal proportional and derivative gain matrices kP,fbl, kD,fbl ∈

R9x9, was used to scale the output of the system.

uv = −kP,fblẽ− kD,fbl
˙̃e (3.10)
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The virtual constraints in γ̃0(q) and control uv were order such that they correspond to

the first four actuators of the stance leg and the five actuators on the swing leg. Since

the assumed torque on the stance foot is zero, so the virtual constraints are approximately

zeroed.

The output of the PD controller will drive the error between the desired CoM and swing

trajectories to zero. Simple PD control schemes for multi-body systems has been thor-

oughly studied in recent years while amassing numerous robustness properties.

3.5 Results

To demonstrate the robustness of the proposed methods, the system have tested various sce-

narios in simulation using Matlab Simulink and hardware with a bipedal robot, Cassie. The

Fast Robot Optimization and Simulation Toolkit (FROST)[55] to solve for the kinematics

and dynamics functions of the robot and formulate the direct collocation NLP. Two closed-

lop linkage systems are integrated into the leg of Cassie, making it difficult to solve the

constrained rigid-body dynamics numerically online. Thus the system dynamics functions

generated and solved analytically offline. The NLP solver IPOPT[12] solved the TO prob-

lems detailed in Eq. Equation 3.5. The entire framework, together with a virtual constraint

controller[33], executed continuously at a rate of 2kHz online. Impulse forces acting on the

body were measured through near discontinuous changes in CoM velocity. As for the task

planner, the SLUGS reactive synthesis toolbox[57] was used to design LTL specifications

with APs and synthesize the keyframe-based automaton.

An ideal tracking controller will perfectly track the periodic CoM profile with clear

apex states. The PD controller from subsection 3.4.1 was run on hardware at an average

steady state walking speed of 0.4, 0.5, and 0.6 m/s (Figure 3.7). Furthermore, Figure 3.8

shows the acceleration of the robot over multiple steps to a reference steady state walking

speed of 0.35 m/s. Thorough hardware testing demonstrated that the method was capable of

smoothly transitioning between a standing and walking state with a max steady state walk-
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ing speed of 0.7 m/s. The peak-to-valley amplitude of the CoM velocity varies between

0.07 to 0.1 m/s depending on the desired walking speed according to the PSP plan.

Figure 3.7: PSP trajectory compared to Cassie’s actual trajectory.

Figure 3.8: Desired average speed of the PSP trajectory compared to Cassie’s actual veloc-
ity. Step response of Cassie being commanded to walk at 0.35m/s.

For crossed-leg experimentation, 9 riemannian partitions were used with non-zero apex

velocities forRc
s,Rc

l andRn
s , respectively. For each (rcs, r

c
l , r

n
s ) pair, the phase-space plan-

ning found the next allowable rnl . The resulting Riemannian abstraction thus provided

9 × 9 × 9 = 729 possible crossed-leg transitions prior to the full-body TO. The stopping
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Figure 3.9: Maximum allowable velocity change exerted on the CoM for a single step at
30◦ increments. Values on the left half resulted in single wider step recoveries and values
on the right half require crossed-leg maneuvers.

criteria for the constraints and variable bound violation of the TO were set on the order

of 10−3. It was found that 4 pairs of collision points gave safe solutions for self-collision

avoidance. Three of the points were located at the middle of shin, tarsus, and toe links.

The fourth pair was located at the edge of Cassie’s heel spring, as shown in Figure 3.2(d).

However future motions may require up to 6 or 8 pairs to increase the density of avoid-

ance constraints. Alternatively, a more formal mesh-based collision method like [58] could

be used to certify the motions at the cost of more computation. In total, it took 250 min-

utes to generate 520 feasible transitions for crossed-leg motions and 5 minutes for 9 wider

step recovery motion. Hardware experiments were conducted on the CAREN [59] testing

platform to obtain exact disturbance results.

The feasible transitions were evaluated and automatically generated specifications into

structured SLUGS files. Where each specification encoded feastible keyframe transitions

for the high-level decision making. For steady state walking and wider step recovery sce-

narios, the lateral rsl and rnl were the bottom three zero’d Riemannian partitions.
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Figure 3.10: Success rate of the recovery motion when a disturbance happens anytime
during OWS at multiple directions. Three disturbances were used with a) small 0.1 m/s b)
medium 0.2 m/s and c) large 0.3 m/s disturbances

Figure 3.11: Tracking controller results for Cassie executing a 0.4 m/s laterally disturbed
leg crossing maneuver from a 0.5 m/s stable forward walking.

The performance of our framework was evaluated through multiple push recovery stud-

ies. Pushing tasks were of particular interest since they demand fast responses from the

system and often result in large discrepancies between high-level task planners and low-

level motion planners. Perturbations were applied once every other walking step and could

occur at any phase of OWS. As shown in Figure 3.6, the system was capable of com-

posing multiple OWS trajectories together according to the reactive synthesis plan. This

discrete composition of single steps can be seen as somewhat similar to Model Predictive

Control approaches, where the system control is forward simulated over a horizon. Cassie

was firstly disturbed to the non-apex velocity (0.4, 0.4) m/s at a keyframe instant. Since

the perturbation occured at the keframe instant, the keyframe decision-maker planned a
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two-step recovery strategy with one crossed-leg step and one wider step to return to a

steady state kss. Disturbances at non-keyframe states required the robot to recalculate a

new CoM trajectory to an updated keyframe state. The PABT locally modified the desired

keyframe transition and allowed the transitions to begin and terminate in non-Riemannian-

cell-centers. The reactive synthesis could still update the keyframe transitions as long as

the CoM state was inside the Riemannian robustness bound (the grey areas in Figure 3.6).

The PABT thus succeeded in preserving the notion of continuous replanning as opposed to

only considering a finite set of discrete keyframe transitions like traditional LTL.

In Figure 3.9,maximum impulse velocity changes that the system could recover from

were compared in 12 directions during OWS. The perturbation was measured by velocity

change instead of force impulse because the CoM state is measurable, whereas the external

forces are difficult to quantify in general. The robot walked sagittally (positive x direction)

with an apex velocity of 0.5 m/s. After getting perturbed, the system was allowed to re-

cover using up to two steps. In theory, longer horizon multi-step recovery strategies can be

designed to potentially allow the robot to handle larger velocity impulses. However, this

study only adopted the two-step recovery strategy because it is the minimum number of

steps required for a crossed-leg. Note that the arguement for longer, N > 2 step recov-

ery and its validity for disturbance rejection is still disputed. When the push direction was

lateral left (positive y), the robot would take a wider step to come back at kss; otherwise,

when the push direction was lateral right, the robot needs to adopt the crossed-leg maneu-

vers. The perturbations were applied at 4 different phases, with phase φ = 0% and 90%

closer to keyframe states (boundary phases), and φ = 30% and 60% closer to the contact

switch phase (50%). The result shows that the phases close to keyframes were better at

absorbing large left perturbations. Closer to the contact switch phase, the right side pushes

were handled better due to the increased lateral velocity halfway through the step.

What’s more, the recovery success rate with 100 trials in 4 directions was tested ( Fig-

ure 3.11). Diagonal disturbances were applied at 45◦ from the front to the right. For each
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trial, the robot disturbed with 3 instantaneous velocity jumps of 0.1, 0.2, 0.3 m/s. The per-

turbations for each trial were evenly spaced (φ = 1%) for the entire phase duration. It can

be seen that failures primarily occurred at the point of maximum velocity for the stance

phase (right stance: φ ≤ 10% and φ ≥ 90%, left stance: 40% ≤ φ ≤ 60%). Similar trends

were seen in the maximum velocity disturbances ( Figure 3.9).

Finally, the tracking performance for the system was evaluated for ±0.4 m/s lateral

disturbances while the left leg was in stance, during a stable walking with 0.5 m/s apex

velocity. The positive disturbance forced a two-step crossed-leg recovery due to the stance

feet ( Figure 3.11) and has a RMS tracking error of 0.0084 m and 0.0593 m/s. For nega-

tive lateral disturbances, the system stabilized within 1 wide step, similar to methods like

capture point [25] with a RMS tracking error of 0.0039 m and 0.0363 m/s in lateral phase-

space.
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CHAPTER 4

STATE ESTIMATION AND MOMENTUM CONTROL FOR BIPEDAL

LOCOMOTION

4.1 Introduction

Examining the results of Chapter 3, it is evident that the robot was not capable of walk-

ing at normal human walking speeds. Since the robot was not capable of walking faster

than 0.75m/s in the sagittal direction and also barely able to handle disturbances of half

that value. Through extensive hardware testing it was found that the performance limita-

tions of the methods proposed in Chapter 3 were due to a combination of factors at the

motion planning and control layers of the framework. First, it should be stated that bipedal

locomotion stability is heavily dependent on footstep location [60]. Consequently, it was

found that the desired footstep locations determined at the motion planning level were not

dramatic enough to fully reject larger disturbances. Even if sufficient footsteps were being

planned, the simple feedback-linearized PD controller was not able to respond fast enough

to reach the desired location. Lastly, the kinematic estimation of Cassie’s CoM state was

not accurate enough to respond to disturbances and hybrid impacts at faster speeds.

To get the best performance on hardware with the bipedal robot Cassie, additional de-

velopment effort was put into the implementation of a floating base Extended Kalman Fil-

ter (EKF), Angular Momentum based Linear Inverted Pendulum (ALIP) footstep planner,

and passivity-based hybrid dynamic tracking controller. However, the LTL, BT, and Gait

Library components of the original framework (Figure 3.2) remained the same. The Ex-

tended Kalman Filter provided accurate kinematic estimates for the floating body of Cassie

by combining its multi-body kinematics, contact, and inertial proprioceptive sensor infor-

mation. The ALIP determines robust swing foot positions to accurately reject disturbances.
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Footstep prediction was also conducted prior to the collision avoidance trajectory optimiza-

tion, which meant the robot was still able to prevent self-collision for crossed-leg motions.

Tracking these improved footstep locations was also essential to ensure the stability of the

system. The feedback-linearized tracking controller was replaced with a hybrid dynamic

passivity-based tracking controller that incorporated the natural dynamics of the robot for

better performance. Each of these modules were then tied together to create a cohesive

hierarchical legged framework with extensive hardware testing (Figure 4.1).

Gait
Library

LTL+BT
Reference Gen

Footstep
Prediction

Inverse
Kinematics

Tracking
Controller

State
Estimator

Disturbance
Detection

pushed

pswing

Figure 4.1: Extended system framework that includes the LTL+Behavior Tree task planner
with the Extended Kalman Filter and Passivity Controller. The passivity controller could
be replaced with either of the controllers seen in section 3.4

4.2 Angular Momentum Based Footstep Planning

Momentum is a core component of locomotion because it encapsulates both the mass and

velocity properties of a system. Previously, CoM position and velocity were used as vari-

ables for representing the status of how well the system was balancing. Instead, balance

could be represented based on the momentum of the system. To this end, the momentum-

based footstep planning and control architecture from [61] was implemented using a linear

inverted pendulum model (LIPM). The resulting Angular Momentum based Linear Inverted

Pendulum (ALIP) control model showed many beneficial properties by representing it in a

different reference frame, despite being a template model.

The LIPM model makes many assumptions as a template-model to best estimate the

dynamics of the system while maintaining linear control properties. The model assumes a
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constant height h, but also maintains a constant center of mass m under the influence of

gravity g. Instead of choosing sagittal CoM position and velocity (xCoM, ẋCoM) as a state,

the system state was augmented to use the CoM and y-component angular momentum in the

frame of the contact foot (xc, Lyc ). Where the angular momentum in the contact frame can

be represented as L = (Lxc , L
y
c , L

z
c). In addition, the kinematics of the CoM in the frame of

the contact foot are represented as pc = (xc, yc, zc) for position and ṗc = vc = (vxc , v
y
c , v

z
c )

for velocity. The resulting angular momentum transform, while approximate, has many

beneficial properties. First and foremost, momentum incorporates both the mass and ve-

locity during a step to better predict the dynamics of the system. Secondly, momentum

about a contact point is invariant to the effects of impacts at that point. This constant

momentum property removes the need for the jump map prevalent in velocity models. Re-

moving the need for a jump map dramatically improves the prediction of the system state

through contact and mitigates aggressive tracking responses [61].

The LIPM dynamics about the foot contact point can be calculated using the simple

dynamic equation:  ẋc
L̇yc

 =

 0 1
mh

mg 0


xc
Lyc

 (4.1)

From the current state, we can predict the future state at time t̃ before foot contact switch.

xc(t̃)
Lyc(t̃)

 =

 cosh(ωl((t̃− t)) 1
mhωl

sinh(ωl((t̃− t))

mhωlsinh(ωl((t̃− t)) cosh(ωl((t̃− t))


xc(t)
Lyc(t)

 (4.2)

where ωl =
√
g/h (note that this is not strictly the apex state), t is the current time

and t ≤ t̃ ≤ T , and T is the expected switch contact time. Furthermore, T−k and T+
k

represent the left and right evaluations of the discrete contact instant. The next contact

time is represented as Tk+1. The prediction for the end of the next step can then used to

calculate the next stable footstep location pfoot. The dynamics from Equation 4.2 can then

be used to estimate the momentum at any time in the horizon. Provided the CoM height
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is constant and the ground is flat, the angular momentum at the next contact will be equal

to the angular momentum about the current stance leg. As a result, the simple transfer law

can be stated through contact:

Lyc(T
+
k ) = Lyc(T

−
k ) (4.3)

At the beginning of the next step, the angular momentum can be estimated by the angular

momentum and position of the center mass relative to the swing foot based on the dynamics

(Equation 4.2) and transfer law (Equation 4.3):

Lyc(T
−
k+1) = mhωlsinh(ωlT )pxfoot(T

−
k ) + cosh(ωlT )Lyc(T

−
k )

Lyc(T
−
k+1)(t) = mhωlsinh(ωlT )pxfoot(T

−
k ) + cosh(ωlT )Lyc(t)

(4.4)

From here, the longitudinal target step position can be calculated using the closed form so-

lution in Equation 4.6. Where Ly,dc (T−k+1) can be calculated substituting the desired angular

momentum into Equation 4.4. An implementable swing foot expression can then be deter-

mined by rearranging the system to include the desired momentum about the next footstep:

pfoot(T
−
k )(t) =

Ly,dc (T−k+1)− cosh(ωlT )Lyc(T
−
k )(t)

mhωlsinh(ωlT )
(4.5)

Since angular momentum about the contact point is decoupled between the sagittal and

lateral axes, the lateral control can be identical to longitudinal foot placement control.

However, the angular momentum of the next walking step Lx,d(T−k+1) must be known

in order to plan footsteps with a non-zero lateral stance width. Assuming an average zero

velocity, a simple periodically oscillating LIP model can be sufficient to obtain Lx,d

Lx,dc (T−k+1) = ±1

2
mhW

ωlsinh(ωlT )

1 + cosh(ωlT )
(4.6)

where W is the desired step width. Note that L is positive or negative depending on the

stance leg. The angular momentum in the x-axis can be defined in a similar manner to
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Equation 4.1, where Lxc = −mgyc. Turning is then commanded by assuming a target

direction and calculating Ly,dc and Lx,dc in the new desired frame.

Unfortunately for faster walking speeds (vx > 1m/s), the vertical velocity vzCoM can no

longer be assumed to be zero. Thus the vertical velocity in the contact frame vzc must be

added. Equation 4.6 can be represented for faster speeds with the more general momentum

equation:

Lyc(T
+
k ) = Lyc(T

−
k ) +mvzc (T

−
k )(pxfoot(T

−
k )− pxst(T−k )) (4.7)

where pst represents the current stance foot position relative to the CoM. As a result, the

desired footstep position pfoot must be updated to:

pxfoot(T
−
k ) =

Ly,dc (T−k+1)

m(hωlsinh(ωlT )− vzCoM)cosh(ωlT )
−

(Lyc(T
−
k ) +mvzCoM(T−k )pxst(T

−
k ))cosh(ωlT )

m(hωlsinh(ωlT )− vzCoM)cosh(ωlT )

(4.8)

Once the analytical foot placement is calculated, its state is used to determine an appro-

priate full-body trajectory that avoids collision (subsection 3.3.6). The resulting combined

motion planning framework preserves the notion of momentum based stability from the

LIPM model while maintaining safe trajectory generation for a highliy nonlinear multi-

body system.

4.3 Passivity-Based Hybrid Dynamic Controller

While the previous PD controller functions well for low speeds, it does not incorporate the

natural dynamics of the multi-body system. Following the method implemented in [61],

the passivity-based controller adapted from [62] was applied to a floating base model. First,

a more accurate multi-body model of the Cassie robot must be modeled to account for its
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dynamics:

M(q)q̈ +G(q, q̇) = Bu+ Jc(q)
T τc + JTspτsp (4.9)

where u is the motor torques, τsp is the spring torques in Cassie, τc is the contact wrench,

Jsp is the spring jacobian, and Jc is the contact jacobian. The dynamics of system are

represented by joint angle q, velocity q̇, and accelerations q̈. The Coriolis and Gravity

matrices are combined and represented with G and the mass matrix M .

Multiple model simplifications are made to formulate the system’s control. A line con-

tact at Cassie’s feet during the single support phase do not provide six holonomic con-

straints and leaves the foot roll as a free degree of freedom (Equation Equation 4.11).

In addition, the springs are assumed to be rigid once firmly in contact (Equation Equa-

tion 4.10), which provides two constraints per leg. Cumulatively, these simplifications

reduce the 20 DoF floating base model to 11 DoF.

Jspq̈ = 0 (4.10)

Jc(q)q̈ + J̇c(q)q̇ = 0 (4.11)

As a result, the full dynamic model for Cassie while in single stance support can be

formulated as the following:


M −JTsp −JTc

Jsp 0 0

Jc 0 0


︸ ︷︷ ︸

M̃


q̈

τsp

τc


︸ ︷︷ ︸

f̃

+


G

0

J̇cq̇


︸ ︷︷ ︸

G̃

=


B

0

0


︸ ︷︷ ︸
B̃

(4.12)

The coordinates can be decomposed into both controllable (actuated), qa, and uncon-

trollable, qu, components q = [qa, qu]
T . An uncontrolled state vector f̃u = [qu, τsp, τc]

T can
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then be used to partition Equation Equation 4.12 into two component equations:

M̃11 M̃12

M̃21 M̃22


q̈a
f̃u

+

G̃1

G̃2

 =

B̃1

B̃2

u (4.13)

Solving the above equation, we eliminate the f̃u and obtain the following set of partial

passive-dynamic equations dictated by the controllable components:

M̄ q̈a + Ḡ = B̄u (4.14)

where
M̄ = M̃11 − M̃12M̃

−1
22 M̃21

Ḡ = G̃1 − M̃12M̃
−1
22 G̃2

B̄ = B̃1 − M̃12M̃
−1
22 B̃2

(4.15)

The Passivity-based controller can then be defined with error dynamics e := qa − qr

based on the actuated joint reference qr such that

M̄ë+ (C̄ + kD,pc)ė+ kP,pce = 0 (4.16)

where M̄ is the augmented Mass matrix and C̄ is the augmented Coriolis matrix in Ḡ such

that ˙̄M = C̄ + C̄T . The PD control gains kP,pc, kD,pc and provide compliant tracking to

unexpected terrain variations. Reformulating Equation 4.14 with Equation Equation 4.17

provides the following torque command law:

ua = B̄−1(M̄ q̈r + Ḡ)− B̄−1(kP,pce+ (C̄ + kD,pc)ė) (4.17)

where ua is the vector of joint torques. The resulting passivity-based controller incor-

porates more of the robots natural dynamics. Choosing diagonal gain matrices will also
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approximately decouple the tracking errors for Cassie.

4.4 State Estimation

The accurate and real-time acquisition of position, orientation, and velocity of its CoM with

respect to local and global frame is essential to stable robot localization, path planning,

navigation and controls. A simple approach to estimate CoM position and velocity is to

use forward kinematics and foot contact information. Forward kinematics can be used

to calculate the relative position and velocity of the CoM with respect to contact foot.

This allows for stable control and stabilization within the local frame. However, using the

forward kinematics alone poses several issues in estimating Cassie’s pose in global frame,

which are crucial for motion planning. In particular, the orientation estimate would be

subject to significant error from joint measurement errors and the method would fail to

estimate any aerial motion. Using an Inertial Measurement Unit (IMU) provides direct

orientation and acceleration data, but is subject to sensor drift. For the case of Cassie,

a VectorNav VN-100 9-DoF IMU is used for obtaining gyro and accelerometer readings

in a global reference frame. The internal state estimator provided by VectorNav, while

effective, will still drift and provide noisy estimates due to the highly dynamic and impact

driven nature of locomotion. Furthermore, this error in state measurement will accumulate

and provide worse estimates for the state of the robot. Simple dead reckoning approaches

are thus too inaccurate for bipedal kinematic estimation. Consequently, the errors prevalent

in the IMU and kinematic estimates require an additional filter to extract the proper motion

profile.

In particular, Hartley et al.’s Contact-aided Invariant Extended Kalman Filtering for

legged robot state estimation was implemented because it demonstrated that a Right-Invariant

Extended Kalman Filter (RIEKF) formulation was superior to the more commonly used

Quaternion Extended Kalman Filter (QEKF) [63]. Both the kinematics of the robot and

the IMU are used to help estimate its CoM relative to it’s contact points and maintain an
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accurate global state estimate. However, the RIEKF approach reformulated the entire state

as a single matrix Lie group instead of a decoupled state to formulate the error dynamics

that take advantage of symmetry and geometry. The RIEKF also demonstrates a faster

convergence rate to the correct estimation and better performance in real-time.

A full derivation of the RIEKF algorithm can be found in [63], but the core of the

algorithm is restated here for completeness. The state matrix Xt was defined using state

variablesRt, pt, vt and dt representing the time varying IMU orientation, position, velocity,

and relative contact points in the world frame respectively. The IMU body frame is not

identical to the CoM frame and requires a small transform to correctly represent the CoM

frame. ω̃t and ãt represent the IMU angular velocity and acceleration measurements and ṽt

represents the measured velocity with slippage affected by Gaussian white noisewgt , wat , w
v
t

respectively. The biased IMU parameters θt include angular velocity bωt and acceleration

bat , which slowly vary with time according to the standard Brownian motion model such

that ḃωt = wbωt and ḃat = wbat . hR denotes the measured orientation of the contact frame with

respect to the IMU frame based on joint encoder measurements. The resulting dynamics

d
dt
X satisfies the group affine property for log-linear error dynamics.

Xt
∆
=



Rt vt pt dt

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1


, (4.18)

d

dt
Xt =



Rt(ω̃t)× Rtãt + g vt 03,1

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1


−Xt



(wgt )× wat 03,1 hRw
v
t

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1


(4.19)
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d

dt
X

∆
= f(Xt)−Xtwt (4.20)

The deterministic system dynamics f(Xt) satisfies a group affine property to make the

error dynamics right-invariant. Based on this affine property, the log-linear right-invariant

error dynamics can be linearized on the exponential map of the Lie group [63]. The error

dynamics of the robot is calculated based on the estimated dynamics with bias parameters

f(X̄t, θ̄t). Where R̄t, p̄t, v̄t and d̄t are the kinematic state estimate and the IMU measure-

ment estimates are calculated with ω̄t
∆
= ω̃t − bωt and āt

∆
= ãt − bat based on the bias terms,

thus make the dynamics parameter dependent.

f(X̄t, θ̄t) =



R̄t(ω̄t)× R̄tāt + g v̄t 03,1

01,3 0 0 0

01,3 0 0 0

01,3 0 0 0


(4.21)

The continuous right-invariant error dynamics is defined as At and calculated as in [63]

with covariance matrix Q̄t based on the white noises of the IMU gyro and accelerometer.

The estimated state tuple is predicted with the set of differential equations d
dt

(X̄t, θ̄t) =

(fu(X̄t, θ̄t), 06,1). AdjX̄t
represents the matrix adjoint of the estimated state variables from

Equation 4.18. The noise vector wt
∆
= [wωt , w

a
t , 03,1, hRw

v
t , w

bω
t , w

ba
t ] is augemented to also

include the bias terms.

At =



0 0 0 0 0 −R̄t 0

(g)× 0 0 0 0 −(v̄t)×R̄t −R̄t

0 I 0 0 0 −(p̄t)×R̄t 0

0 0 0 0 0 −(d̄t)×R̄t 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(4.22)
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Q =

AdjX̃t
012×6

06×12 I6

Cov(wt)

AdjX̃t
012×6

06×12 I6

 (4.23)

During the prediction stage, the state estimate, X̄t is propagated based on the system

dynamics (Equation 4.22) and the covariance matrix (Equation 4.23). The covariance ma-

trix Pt is updated using the Ricatti equation (Equation 4.24) according to [64].

d

dt
Pt = AtPt + PtA

T
t + Q̄t (4.24)

The linear correction stage of the RIEKF can then be completed using the kalman gains

Kt, estimated forward kinematics to the foot hp, IMU biases θ̄, and contact jacobian Jc.

The measurement Yt, output Ht, and noise N̄t matrices are first calculated:

Y T
t =

[
hTp 0 1 −1

]
(4.25)

Ht =

[
0 0 −I I 0 0

]
(4.26)

N̄t = R̄tJcCov(wαt )JTc R̄
T
t (4.27)

The gain Kt is composed of the dynamics gain Kξ
t and IMU bias gain Kγ

t and computed

as follows:

St = HtPtH
T
t + N̄t (4.28)

Kt =

Kξ
t

Kγ
t

 = PtH
T
t S
−1
t (4.29)

An auxiliary selection matrix Π
∆
= [I 03,3] was introduced to then select the appro-

priate state variables when correcting the system as in [65]. The corrected state tuple and
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covariance are then corrected through the update equations:

X̄+
i

θ+
i

 =

exp(Kξ
t ΠX̄tYt)X̄t

θ̄t +Kγ
t ΠX̄tYt)

 (4.30)

P+ = (I −KtHt)Pt(I −KtHt)
T +KtN̄tK

T
t (4.31)

The RIEKF will try to estimate the kinematics of the robot floating base and prevent

IMU drift that will cause positioning error. This state estimator is purely proprioceptive be-

cause it only assumes inertial, contact, and encoder measurements as inputs to the model.

While variants of the RIEKF do exist that include perception for Simultaneous Localization

and Mapping (SLAM), it was not necessary and would require much more system devel-

opment with a supporting computer to process the camera or LIDAR inputs [63]. SLAM is

more relevant when discussing navigation and mapping problems rather than disturbance

rejection.

4.5 Results

4.5.1 RIEKF Estimation Performance

The primary objective of the RIEKF was to to estimate the correct orientation, position, and

velocity of the CoM in a global reference frame. The IMU is located in the robot’s torso and

provides measurements at 800Hz. Additionally, Cassie provided joint angle measurements

from the encoders at 2kHz. Contact was detected by measuring the deflection in the pair of

springs on each leg to estimate a force. To verify the method, Cassie was run on a treadmill

at a constant sagittal velocity of 0.45 m/s for 47 seconds. The resulting RIEKF results were

then compared to the unfiltered VectorNav IMU results.

First, the estimated orientation needed to correct for sensor drift in the IMU and incor-

rect measurements due to the hybrid nature of contact. The IMU already has a low gyro

and accelerometer bias noises of 5 deg/hr and 0.04 mg due to its internal orientation esti-
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mation [11]. While CAssie is standing, the pure orientation measurements from the IMU

remain accurate, but this stability doesn’t hold when the robot begins walking. The impact

driven nature of locomotion caused large errors in the pitch and roll axis using just the un-

filtered VectorNav estimator. By incorporating the full state of the system, the RIEKF was

able to quickly converge to the ground truth orientation in both simulation and hardware

Figure 4.2.

Figure 4.2: The yaw, pitch, and roll angle tracking error was addressed to track the ground
truth.

The nature of contact causes instantaneous velocity jumps in the floating base of a

legged robot. As a point of comparison, the noisy velocity profile was filtered out by the

first-order filter that was incapable of recovering the correct velocity profile. Figure 4.3

clearly shows that the first-order method over-filtered the noisy contact dynamics. By ap-

plying RIEKF, the velocity profile was able to observe the desired phase-space profile to

a much higher resolution. The unfiltered IMU data from the VectorNav clearly detects the

moments of impacts, but the signal is so noisy it is difficult to construct a control signal

from.

Lastly, velocity estimates from the unfiltered kinematics and first order filter were used

to estimate Cassie’s position in the world frame using dead reckoning. The RIEKF would

estimate it’s position in the world frame internally Figure 4.4. In particular, The xy-world
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Figure 4.3: The velocity comparison between noisy unfiltered measurement, first order
filter, RIEKF, and ground truth.
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)

Figure 4.4: Position estimation in the world frame based on the kinematics of the robot.
The raw velocity and first order filtered velocity estimate of the IMU were used to dead
reckon a position. The trivial estimation results are compared to the RIEKF position, which
correctly tracks the position of the robot in the world coordinate frame.

frame is of the most interest since it is subject to the most estimation drift. This is largely

due to the fact that the IMU z-axis is inline with the gravity vector. After the designated

time, it can be seen the RIEKF corrects the resulting bias and drift in the position estimation

to maintain the correct position estimate. Meanwhile the unfiltered and first-order filter

approaches accumulated over 1m of drift in both the x-axis and y-axis.
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4.5.2 Comparison of PD and Partial Feedback Linearization with ALIP Footstep Placement

The Passivity-based controller (section 4.3) and ALIP footstep planner (section 4.2) al-

lowed for significant improvement in the performance of the system. The footstep pre-

diction from the ALIP was used to generate stable footsteps, which were then used as

constraints for the gait library interpolation. Once a safe gait policy gets calculated, the

passivity controller tracks the desired swing and stance trajectories. Both the ALIP and

gait library interpolation were executed online at 2kHz.

It can be seen in Figure 4.5 that the ALIP footstep placement significantly increased the

walking speed of the initial feedback-linearized PD controller. The ALIP allowed Cassie

to walk in a stable fashion up to 1.5m/s (double its previous speed without ALIP). How-

ever, recall that the desired motion profile of the bipedal system in steady state is a periodic

trajectory between defined apex keyframes. The velocity of the PD controller did not track

the expected apex-to-apex motions in the sagittal plane after 1m/s due to the uncompen-

sated dynamics. However, the passivity-based controller showed far better tracking results

and was able to walk up to 2m/s on flat ground while maintaining an apex-to-apex motion

profile in the CoM sagittal velocity (Figure 4.5).

Figure 4.5: (Left) Comparison of the Partial Feedback Linearization and PD Control in the
Sagittal axis while tracking a 2m/s desired speed. (Right) Footstep placement and tracking
accuracy for multiple steady-state steps and a lateral disturbance

56



With the passivity controller, Cassie was also able to consistently track the desired foot-

steps within a few centimeters. Even when disturbed, it can be seen that the footstep swing

was still able to accurately track target values through a crossed-leg maneuver Figure 4.5.

From experimental testing, footsteps were within 0.2m of the desired location even when

disturbed, despite this accuracy is not formally guaranteed.

4.5.3 Validation on the CAREN Testbed

Lastly, Cassie was tested on the CAREN testing platform and subject to a variety of omni-

directional disturbances. The robot was tasked with maintaining a 0.7 m/s sagittal walking

speed and would receive a 0.7 m/s magnitude disturbance at 30 degree angle increments

between 0 and 360 degrees. Disturbances were triggered at φ = 50% swing phase during

the right leg swing based on the performance shown previously in Figure 3.9. Phases were

tracking based on the measured contacts of the robot on the treadmill.

The passivity-based tracking controller and ALIP planning improvement continued to

show the best results on hardware. At 0.7 m/s, the system was able to successfully recover

from every disturbance and would only fail if it accidentally stepped off the treadmill.

Figure 4.6 shows 90 degree increments of the full testing to illustrate it’s principal angle

disturbance responses. The platform motion would move in the opposite direction that

Cassie would measure due to the relative motion between the CoM and the platform. A

left perturbation for CAREN thus meant a right wide step response from Cassie. The most

extreme cases were a right perturbation causing a crossed-leg maneuver and a backward

perturbation that caused Cassie to take a large forward step to stabilize. Unfortunately the

CAREN platform was incapable of reaching larger disturbances due to hardware limitation.
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Figure 4.6: Cassie executing a i) wide-step disturbance recovery ii) crossed-leg disturbance
recovery iii) forward disturbance recovery iv) backward disturbance recovery to a 0.7 m/s
perturbation while walking sagitally at 0.7 m/s.
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CHAPTER 5

A ROBUST PLANNING AND MANIPULATION FRAMEWORK FOR

ELECTROMECHANICAL TASKS

5.1 Introduction

Long time-horizon task completion that is robust to errors and incorporates a large, hetero-

geneous, set of motion planning solutions remains a difficult problem. Most task planning

frameworks do not possess sufficient knowledge about the environment or task relevant ob-

jects to execute a large variety of complicated tasks. Additionally, these frameworks often

do not have the functionality to recover from actions that fail or be robust to environment

uncertainties.

Assembly tasks are particularly challenging because they often involve a wide variety

of objects and tools. To be extensible, manipulation policies and perception algorithms

must be capable of generalizing across objects that vary in size, appearance, and topology.

Tasking should also be capable of understanding relevant information such as precondi-

tions and effects with manipulated objects. For example, a nut driver affords a robot to

fasten/unfasten nuts, and the robot may to control its direction and speed. Provided a com-

plete enough object representation, symbolic decision makers can interpret this knowledge

to chain together behaviors and complete a task. However, the execution of these behav-

iors must still be robust to inevitable skill failures as well as to errors in the perceiving the

object or the environment.

The goal for this work was to complete diverse assembly tasks in real-time that are

formulated at run-time and are rich with object and environment uncertainty. In particu-

lar, we are interested in the assembly of electromechanical systems in industrial or space

settings. For example, a space station may be unoccupied for an extended period of time
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Figure 5.1: Both reactive and deliberative planning strategies are incorporated into the
framework for task execution. Here, our system demonstrates the completion of an assem-
bly task.

and requires robots to complete maintenance tasks. Mechanical tasks could include fas-

tening/unfastening bolts, suctioning flat surfaces, and inserting/stacking objects. These

mechanical tasks may also require a wide variety of tooling to complete. Electrical objects,

such as connectors can be seen as an extension of the classic Peg-In-Hole (PIH) problem

[66] with a wide variety of shape, topology, and constraints. The uncertainty of PIH prob-

lems for control has been well studied over the years [66]. However, despite this large

shape variety, electrical connectors share categorical resemblances with each other and can

easily be grouped regardless of cable shape or unique connector features. For example,

D-Subminiature (D-Sub) connectors vary by the number of pins, case geometry, etc., but

are all represented in the same class.

section 5.3 describes our task planning framework while section 5.4 describes our work

with keypoint detection. In section 5.6, the complete system was evaluated in the task of

electrical connector insertion using various connector types and subject to state and control

errors. An electromechanical repair task was then solved using the complete combined

system (Figure 5.1), where the robot must determine a long horizon action plan to solve the
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task. Additionally, the task requires the system to flexibly adapt its data online, through the

use of a database based on the categorical object representation.

Many existing hierarchical frameworks decompose the planning complexity of a PDDL

problem into sub-problems. These systems are preferred in practice [67] [68][69] because

they simplify the task sequencing and support code reuse as the system scales. As a result,

this hierarchy works naturally with reactive planning schemes, such as Behavior Trees, as

a middle layer for task execution [70][71].

Task and Motion Planning (TAMP) [72] [73] reasons about both geometric and sym-

bolic planning constraints. While TAMP methods can solve complex long horizon prob-

lems, they are often rigid and incapable of reactive behaviors due to their intractable com-

putational complexity. Furthermore, TAMP problems can fail to abstract to more heteroge-

neous tasks that involve a wider variety of low-level planning or perception techniques.

Many perception formulations exist for encapsulating object specific information and

solving tasks. Most pipelines for pick and place tasks are capable of recognizing a known

object and estimating a singular 6-DOF object pose. In general, pose estimation algorithms

can be classified as learning-based and geometry-based approaches with supporting anno-

tated datasets [74]. Recently, more object estimators have shown to be very generalizable.

Dense descriptors can be used as an intra-category and self-supervised object representa-

tion for manipulation at a shape level [75]. While shape representations can be used to

solve some tasks, but it is still unclear how these methods extend to partially observed ob-

jects or sparser object representations. Instead, one could consider keypoints because they

are human specified, offer a sparser representation, and can still generalize with shape vari-

ation [76]. Additionally, keypoints are typically used as building blocks for different shape

parameterizations, e.g. the polygons in [77] from which a manipulation policy is defined.

Consequently, it is fair to say that keypoints offer a consistent object detection method as

well as a flexible representation for encapsulating action specific constraints relevant to a

task.
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Figure 5.2: System framework with heterogeneous skills and perception pipeline. The
database manages logical instances and binding to current metric information. This infor-
mation was used to characterize the current environment and populate the PDDL domain at
runtime. Our perception backbone extracts object position and keypoints to contextualizes
objects in the scene for the database. BTs are used to reliably execute PDDL actions by
calling on one or more skills using instance based information from the database.

Peg-In-Hole (PIH) problems have been well studied and the subject of control and plan-

ning research for decades. At its core, the PIH problem represents a case study in planning

and control subject to uncertainty due to the tight tolerances present. Additionally, it has a

wide variety of industrial problems and manifests in multiple forms [66]. Contact model-

based and contact model-free methods are the most dominant approaches to solve the class

of problems. Model-based methods can provide guaranteed results and generalize some-

what well, but often rely on a good compliance controller and heuristic tuning [78][79].

Model-free approaches primarily encapsulate learning based methods, such as Learning

from Environment or Demonstration. Moreover, they can generalize with a wide variety

of sensor modalities, but can suffer from data inefficiencies and lack of guarantees [80]

[81] [82] [83] [84]. Despite the long history of PIH problems, there has been little work

that explores action specific variations of the PIH problem, such as locking and unlocking

phases that may be required to move the peg.

The goal of this project was to create a architecture based on the Plansys2 framework

[70] for robust execution with Behavior Trees. The Plansys2 framework was extended by

incorporating a structured XML schema and MongoDB database which conform to the
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emerging IEEE RAS P1872-1 Robot Tasking Standard [85] in order to encapsulate more

complicated object representations at the symbolic level. Since the logical variables are tied

to the database, this backend modification also allows the system to dynamically modify

its knowledge base in PDDL using perception and state feedback. Our framework allows

for dynamic replanning due to skill/behavior failure as well as unexpected environmental

states.

In the work, over a dozen skills were used in our framework, allowing the system

to solve a wide variety of tasks in assembly/disassembly. Since the goal was to solve

electromechanical problems with an extensive selection of electrical connectors and tools

for insertion, special focus is placed on our insert and removal skills. Importantly, the

implemented insertion strategy expands the traditional PIH problem to include a locking

and unlocking phase. These additional phases are essential for connectors such as BNC

and Ethernet to prevent damage or failure.

Coupled with the skills, a keypoint perception pipeline was incorporated to estimate

semantic 3D keypoints as a more cohesive object representation. Desired objects are first

detected using instance segmentation. Next, a 3D keypoint detection network provides

detailed object representations with a set of learned keypoints. These object keypoints

are encapsulated in the XML schema representation and are used to parameterize motion

planning costs and constraints. By reducing object representation to sparse keypoints, the

method also provides focus on task relevant information that can easily be fused with sen-

sor input for grasping, picking, and placing objects. This sparse representation mean that

manipulation can be planned using a variety of methods like trajectory optimization or a

learned policy.

5.1.1 Contribution

This work thus attempts to develop a system with multiple new components. First, a ma-

nipulation pipeline that leverages a diverse set of skills under a Behavior Tree framework.
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Where logical planning is provided by a Planning Domain Definition Language (PDDL)

[86] planning system and is linked to a back-end database with an XML schema for ground-

ing the symbolic information to motion plans. This allows for compact representations and

dynamically changing object data for the symbolic plan. Moreover, the proposed task frame

decomposition conforms to the emerging P1872-1 standard and may be seen as a test case

of that standard’s application. Generic object representations are also made to estimate

the object pose using a variety of keypoints to capture shape variation between objects.

Task specific keypoints are then used for both symbolic and geometric planning. Lastly, an

insertion planner extends the sequential composition pipeline for peg-in-hole problems to

locking connectors of varying geometry and lock types.

5.2 Additional Background

PDDL remains one of the most standardized languages for Artificial Intelligence (AI) plan-

ning. PDDL attempts to model a domain as a set of states using a list of factors and/or

objects. These worlds begin with an initial state using apriori data and evolve using a set

of rules and constraints. Actions represent a transition to a different state, but are limited

by the constraints of the world. Objects define item instances in the world. Predicates are

facts in the world that can either be True or False. For example, a predicate box-built ?s

- site in the domain would represent whether a box is assembled (True/False) at a specific

site instance. Goals specify the terminal state of the world the planner should reach. To

organize these logical concepts, PDDL syntax specifies a domain and a problem file. The

domain file establishes the context of the world by specifying the states, predicates, and ac-

tions. Consequently this specifies the states, the rules, and the how to move between states.

The problem files represents a single instance of a world specified by the domain. Initial

states are specified as true or false and a goal state is established for a planning problem.

To limit the length of this thesis, we will not cover the exact syntax of these files and the

logical constraints, but readers are encouraged to explore [86, 87].
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5.3 Task Planning with Behavior Trees and Skills

The proposed framework shown in Figure 5.2 builds upon the recent trend in behavior trees

for reliable task planning and execution. However, this work extends the core implemen-

tation by integrating it with a backend database and XML schema for structuring object

classes and managing dynamic information online.

5.3.1 Task Planning with Behavior Trees

Plansys2 [70] was used to generate a PDDL plan that incorporates BTs as a part of its task

planning framework. The PDDL domain and problems are modeled with Behavior Trees

to construct a planning graph Ga, which is a directed acyclic graphic of tuples Ga =<

Aa, Ca >. Aa is defined as a set of actions in the plan corresponding to the nodes of the

graph and Ca is the set of directed arcs representing the action execution procedure. The

action set Aa is composed of action unit tuples ai ∈ Aa of the form < ta, ρa, Ra, Ea >.

tai is the time of the action, ρai is action to be executed, Rai is the set of predicates that

encapsulate the parameters for executing the action, and Eai is the set of predicates that

will be added to the domain knowledge base after successful execution of the action. An

existing BT is composed of skills regulated by control nodes is then correlated to each

action ai .

Once more, BTS are utilized to organize low-level skills (motion plans, control actions,

triggers, etc) into higher-level behaviors. The developer is able to compose and modify

behaviors without any robot recompilation due to the XML format of the BT. Pragmatically

speaking, this is important for system deployment, since there may be no guarantee of being

able to recompile code once it is deployed on a robot. Parameter substitution from the

BT into the skills is automatically performed where parameters are typically the names of

instances in the environment. Binding of instance name to metric location is then performed

by our database during skill execution.
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For example, the BT Attach End Effector(<robot>,<gripper>,<trajectory>,<tool rack>,

<insert>), is composed of the skills Cartesian Move(<tool rack>), Zero Force Torque(),

Tool Changer (<constant open>), Insert (<insert>), and Replay Move (<tool rack>,

<trajectory>) in a fallback tree structure (section 5.5). This action would insert the end-

effector into the specified tool, attache it, and pull it out of its holder using a planned tra-

jectory relative to the tool rack. For the demonstration mentioned in this work, the location

of the tool rack was located using an AprilTag and pushed to the database online.

The BT blackboard implementation only passes primitive datatypes for node parame-

terization. To add schema based data structures to BTs, the blackboard passes ASCII string

keys that pull data from the supporting database. This allows the framework to provide

more data rich object information throughout the BT as structures. For example, the BT

would be provided string bnc-obj from PDDL, which is then used to search the database

for a connector type structure named bnc-obj that would encapsulate electrical connector

type, geometry, locking type, etc.

5.3.2 Databases and Schema’s for Dynamic Information

A critical part of the overall system is the knowledge schema. This XML schema contains

a representation of all of the information in the task frame. At the lowest layer, the base

schema contains domain specific extensions to represent object data. The base schema

is referred to as the knowledge cell and contains generic types that may be specialized

by other schemas, as well as types that are likely to be utilized across multiple domains.

Most notably, these schemas can contain information such as the shape of the object, its

pose, and any action specific information. For example, the solid object type is an abstract

type that is extended to form any object (an instance) that is represented in the world. An

extension of a solid object is the domain specific object instance electrical connector, which

contains additional information such as connector type, if it has locking/unlocking logic,

etc. These object types can be continuously inherited and combined with other schema
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types to construct increasingly complicated object and environment representations that

can be referenced in both compiled source code, non-compiled formats (BT XML files)

and task planning languages (e.g PDDL).

Predicates are also stored in the knowledge schema. The predicates represent the world

state as well as preconditions, maintenance conditions, and expected action effects. These

predicates build upon any of the structure represented in the schemas. For example, the

predicate (gripper type ?g - gripper ?f - gripper function) is used to encapsulate a struc-

tured representations of a gripper object type as well as the entirety of its inhereted func-

tionalities. The parameterizations of this predicate can then be used as part of a goal state,

constraint on an action, or an expected result after an action.

A database generator was used to generate three products. First, the stuctured data

contained in the XML schema is used to automatically generate C++ Classes. Secondly,

all named instances and predicates for logical reasoning were stored in a generated logical

database. Lastly, a metric MongoDB database is generated to translate logical names to

geometric quantities. Metric data can be populated a priori or pushed to the database

online, consequently tying symbolic quantities to potentially dynamic information. For

example, a tool rack pose that tools use as a reference pose gets identified using fiducials

and can be updated at runtime.

5.4 Category-Level Object Representations

Robots should be capable of achieving purposeful manipulation by generating motion poli-

cies for multiple different objects within the same category. Many existing pose-estimation

methods assume a single SE(3) transform template representation for an object. However,

this representation oversimplifies many objects and does not provide object specific infor-

mation. Keypoint frameworks, on the other hand, are able to generalize SE(3) actions into

a superset of points on the object. To this end, the perception system is capable of parame-

terizing desired keypoints on an object regardless of shape variation or color/texture of the
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objects in a given category. Moreover, keypoints can represent costs and constraints for

trajectory optimization problems that wish to manipulate a desired object.

Object category-type actions (e.g. locking tab, button) can also be attributed to ob-

ject keypoints. Furthermore, symbolic logic from the task planning can be linked to the

metric object details and be incorporated into predicates or parameters. For example,

some electrical connectors have locking mechanisms (e.g ethernet connectors). Conse-

quently, the locking mechanism is defined by a geometric location and symbolic constraint

of locked/unlocked that must be pressed to unlock the connector.
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iec 0.891
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Figure 5.3: (a) Mask R-CNN of connector ports from the wrist camera (b-h) Keypoints
detected on various electrical connectors (i) Visualization of depth prediction on a D-sub
connector.

Since keypoints are specific to each object instance in a camera frame, each needs to

be identified independently in the scene using instance segmentation. To this end, Mask

R-CNN [88] instance segmentation was used to estimate bounding boxes around desired

objects and to create a mask outline for the respective object instances. Object classification

can be used as a lookup in the database for more object rich information, such as the
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control parameters or locking type. However, Mask R-CNN does not capture the exact 3D

geometry of the object which can lead to the location of a locking tab.

Once an RGB-Depth stream is obtained and object images are segmented by a bound-

ing box, a modified integral network [89] produces a probability heatmap and predicted

depth map in the 2D image frame (Figure 5.3). A probability distribution map fi(u′, v′)

is generated by the nextwork that details the likelihood a keypoint i is to occur at pixel

(u′, v′) provided
∑

u′,v′ fi(u
′, v′) = 1. Expected values of these distributions can be used

to recover keypoint i at a pixel coordinate (u∗i , v
∗
i ).

(u∗i , v
∗
i )
T =

∑
u′,v′

(u′ · fi(u′, v′), v′ · fi(u′, v′))T (5.1)

The probability distribution maps are then used to generate predicted 3D keypoints

using the calibrated camera intrinsics and extrinsics. Estimated zi depth coordinates for the

keypoint are calculated based on the predicted depth at every pixel di(u′, v′).

zi =
∑
u′,v′

di(u
′, v′) ∗ fi(u′, v′) (5.2)

Annotated pixel coordinates and depth for each keypoint from the training images are

used to train the network using an integral and heatmap regression loss [89]. A 34 layer

Resnet is used as a backbone for the neural network and the dataset generated is detailed in

subsection 5.6.2.

The keypoints can be leveraged for a variety of tasks such as grasp planning, visual

servoing, and insertion. A set of N position keypoints rkp = {rkp,i}Ni=1 ∈ R3×N and an ob-

ject pose p(rkp,i) ∈ R6 are defined in the world frame. Common constrained optimization

solvers can then be used to generate a kinematic robot action that manipulates the object
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with transform Ta ∈ SE(3)

min
Ta∈SE(3)

L(Ta, rkp,i)

s.t. g(Ta, rkp,i) = 0

h(Ta, rkp,i) <= 0

(5.3)

with flexible constraint choices for g(·), h(·), and cost function L(·). Since keypoints may

not directly align due to perception errors, desired actions are best computed as an opti-

mization problem that minimizes the L2 distance between specified transformed keypoints

and their desired targets rdkp,i:

L = ||Tarkp,i − rdkp,i||2 (5.4)

A wide range of potential constraints for connectors and objects can be used on key-

points for object poses since they are simply kinematic constraints. For the experiments

conducted, a point-to-plane constraint was set to make sure objects are aligned with a de-

sired object plane orientation axis vdaxis. An estimated object orientation was calculated

using two keypoints along the length of the object vobj axis =
rkp,i−rkp,j
||rkp,i−rkp,j||

.

||1− < vdaxis, rot(Ta)vobj axis>||2 = 0 (5.5)

While the mentioned constraints will generate feasible trajectories for pick and place

tasks, is worth reiterating that this is a simple transform example. More complicated manip-

ulation policies, such as visual servoing or contact constrained motion plans could also use

keypoints as a reference [90]. Additional constraints such as contact or obstacle avoidance

could also be used to generate feasible trajectories.

Robot grasping was performed based on the keypoint extraction. The grasp was as-

sumed to be tight and the grasp point non deformable. The keypoints are used to reduce the

search space on the object pointcloud to determine the best grasp position. For most con-
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nectors, the estimated object pose was used to calculate a desired orientation in the gripper

frame based on the cropped bounding box pointcloud data.

5.5 Manipulation Skills

The framework provides a hierarchy that makes use of skills which are programmed onto

the robot. These skills are be composed through the use of an XML file into a configurable

BT that performs a desired behavior. By composing these BTs, a task may be accom-

plished. For this work, the implemented skills are listed in Table 5.1. Control nodes in

the BT are responsible for making sure a behavior is completed successfully by monitoring

skills. Skills range in complexity from trajectory planning to a simple boolean trigger for

changing tools with a solenoid.

While some skills have the same goals, their underlying methods can vary based on the

task. For example, movement to a point in SE(3) may be accomplished using a Cartesian

Move which will precisely position the end-effector using only position feedback or through

the use of a Compliant Move that will incorporate compliance in the movement.

Compliant Control: Interacting with objects necessitates both exteroceptive force

feedback as well as pose control. A common approach is impedance control because it

indirectly controls contact force through a stiffness. However, impedance control does not

directly control force to maintain equilibruim with its environment, which may lead to jam-

ming. Instead, the compliance controller uses a parallel force/position controller [91] that

specifies both wrench and pose goals for a desired configuration. The control is formulated

as follows:

ax = Kp,x(xdee − xee) +Kd,x(ẋdee − ẋee) (5.6)

λ̂ = G(q) + λe (5.7)

af = Kp,f(λd − λ̂) +Kd,f(λ̇d − ˙̂
λ) (5.8)
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πcmd = ax + af (5.9)

where G(q) ∈ R6 is the gravity compensation wrench and λd, λe ∈ R6 represent the

desired and current external wrenches for the task measured at the F/T sensor mounted to

the end-effector. Kp,x, Kp,f are the proportional gains for position and force respectively.

Kd,x, Kd,f are the derivative gains for position and force components of the compliant con-

troller. Lastly, xee, x
d
ee ∈ R6 are the current and desired cartesian end-effector pose, which

assume rigid contact interactions with the environment. A joint velocity command q̇cmd is

generated based on the inverse kinematics of πcmd. Since the Force/Torque (F/T) sensor is

at the end-effector wrist position, and not at the point of gripper contact, the control point

varies by grasp. To account for this issue, the contact wrenches can be projected from the

object reference frame back to the wrist sensor end-effector frame.

λobj =

 RT
obj 0

RT
obj[pgrasp×] RT

obj


obj

ee

λe (5.10)

where λobj ∈ R6 represents the wrench at an arbitrary point pgrasp on a grasped object with

relative rotation Robj ∈ R3×3 to the end-effector frame.

Cartesian and Joint Control: Cartesian and Joint movement actions are solved with

STOMP [92] and MoveIt! [93] for safe collision-free motions. Replay movement actions

execute a parameterized pre-recorded trajectory that can be used for more complicated

motion policies such as tool changing. Simple kinematic offsets can be made to offline

trajectories, such as changing the starting T0,a or ending TN,a transform to be at a desired

pose.

Visual Servoing: ViSP [94] is used for executing Point Based Visual Servoing (PBVS)

and Image Based Visual Servoing (IBVS) actions. Given the known coordinate of an object

in the view of the camera, such as an AprilTag or identified electrical connector, the visual

servoing can be used to track a desired offset pose.

Triggering Actions: Items such as zeroing sensors, switching pneumatics, or push-
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ing/pulling data to the database are available. Transforms are added/removed from the

database based on perception. In addition, tool changers can use pneumatic solenoids for

locking end-effectors in place.

Connector Insertion: Insertion of connectors can be achieved using a variety of meth-

ods and is representative of a classic PIH problem. However, electrical connectors are

not ideal PIH problems due to their shape variation and locking/unlocking mechanisms.

Connector insertion was approached using a model based approach (Figure 5.4)

Connector insertion planning is decomposed into four phases: meet, search, embed,

and lock. For unplugging connectors, a similar process was used: unlock and unplug. The

meet phase moves to the estimated insertion position and looks for contact with a surface,

the search phase executes a search policy to align the peg with the hole, and the embed

phase assures that the connector successfully bottoms-out in the hole with the minimum

force possible. Like most model based methods, our approach relies on compliant control

(section 5.5) to interact with the environment. Each of these planning phases is seen as

an independent skill that can be composed into either a BT or a FSM depending on the

complexity of the insertion. The FSM (Figure 5.5) is used to manage the transitions be-

tween different contact modes based on the estimated contact state. Each stage updates the

constraints for the planning required to insert and lock a connector. Since the connector is

known from the perception system, the schema representation of object in the database can

be used for parameterizing insertion. For example, a BNC connector is insertable based on

the PDDL predicates and is constrained as ”twist” locking in the database.

Estimating the contact state requires two supporting steps: contact state modeling and

classification. Contact states were modeled based on the set of values κ = {eκ, fκ, dκ},

where eκ ∈ R6 is a set of binary values based on axis constraints for each phase, fκ is a

set of contact force thresholds, and dκ is the bottom out distance. Contact state classifica-

tion is determined by measuring the difference between the modeled contact state κ and

the observed contact state. Simple online tests verify the constraints of the insertion and
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Table 5.1: Generic skills that can be composed in Behavior Trees to reliably complete an
action.

Skill Name Skill Description
Cartesian Move Inverse kinematic planning and tracking to

a pose in SE(3)
Compliant Move Inverse kinematic planning to and tracking to

a pose in SE(3) with the compliant controller
Joint Move Commands M joint configurations q ∈ RM

Replay Move Tracks a premade trajectory in SE(3)
Tool Changer Tool changer solenoid trigger that allows for

end-of-arm-tooling to be replaced
Add/Remove Frame Adds or removes a transform frame in the

world coordinate system
Zero Force Torque Resets the force torque sensor to avoid drift
Visual Servo Perform a visual servo move to align

with a detected object
Insert/Unplug Inserts or Unplugs an object
Meet/Search/Embed Component policies from Insert
/Lock/Unlock
Detect Keypoints Runs Mask R-CNN+Keypoint pipeline
Keypoint Grasp Calculates a grasp for the desired

keypoint object based on pointcloud data
Keypoint Move Moves the arm based on the desired keypoint

transform for an object in hand

propagate the FSM to its next state (Figure 5.5) until the connector is fully constrained

according to the model.

A meet policy can be simple and is terminated using Eq. Equation 5.11. Provided

that the end-effector can orientate itself orthogonal to the plane of the meeting surface, a

simple linear motion plan can be executed until termination. Alternatively, if the ”hole”

is identified in the world, a closed loop PBVS policy would be used until it overcomes a

threshold force fmeet ∈ R3.

vdir · (Ree · f) ≤ fmeet (5.11)

Where vdir is the direction of motion for meeting, Ree is the end-effector rotation, and

f ∈ R3 is the force sensor reading.
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Figure 5.4: Contact strategy for insertion with locking and unlocking phases. A state
machine manages transitions between hybrid motion plans based on the contact state and
previous states. State machines are used with the intention that each state has the potential
to be replaced with a more complex motion planning policy on its own.

Search uses tilt, spiral, or time varying Lissajous trajectories to generate a blind motion

plan in R6. A spiral can be generated from a grasped object with initial position p0. The

robot generates a planar spiral trajectory normal to the directional vector vsearch with radius

rs,i where δβ and δrs are discretized step lengths for the angle and radius or the polar

motion. I, I1, I2 are the identity matrix and its first and second column respectively. Lastly,

Qrod is Rodrigues’ rotation formula for generating a trajectory.

pi+1
+
= rs,i+1 ·Qrod · (I1 + I2) (5.12)

Qrod = (I + sin(βi+1))[vsearch×] + (1− cos(βi+1))[vsearch×]2 (5.13)

βi+1 = βi + δβ, rs,i+1 = rs,i + δrs (5.14)

An alternative to the spiral is a Lissajous curve for each axis of the end-effector pose:

pi = ηtσsin(Ωf ∗ t+ δoff) (5.15)

Where t is time, η is a unit scaling factor, σ is a time scaling factor, Ωf is the frequency

of oscillation, and δoff is a phase offset.
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Figure 5.5: The insertion planning state machine manages the stage of the insertion process
using the contact classification and modeling. X,Y,Z represent the linear Cartesian compo-
nents and Φr, Φp, Φy represents the roll, pitch, and yaw components of motion. This FSM
only demonstrates one example set of transitions, but is not bound to it. For example, S4
could Φy is left unconstrained for round, non-locking, connectors.

Recent works (e.g [83]) have used learned and/or visuo-contact policies for the search

and embed phases of the process. These methods are able to be easily integrated into

the insertion pipeline for robust insertion since it is containerized into a FSM. But more

complex insertion methods were outside the scope of this work.

Embedding provides an increasing force until the end-effector has traveled an estimated

distance and a predicted force threshold is surpassed. Since the wrench is directly con-

trolled, the closed-loop parallel force-position controller can actively avoid jamming. If

jamming does occur (or more extreme contact situations), a Deconflict state commands the

opposing currently experienced force, but tries to maintain the same pose until the contact

wrench is zeroed. A fully inserted connector can also be subjected to a pull test to verify

that it was locked and secured.

Locking mechanisms were modeled as screw, twist, tabbed, push, and null based lock-

ing/unlocking mechanics for the insertion/removal problem. Screwing used a multi-turn

trajectory before termination. Twist locks, such as BNC connectors, were similar but only

considered trajectories with angles αtwist < π. Tab locks, such as ethernet connectors,
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required the object grasp to squeeze a keypoint to unlock. A keypoint on the tab con-

strained the predicted grasp such that the the finger remains in contact with the keypoint

(rkp,i = pfinger) to unlock the connector while unplugging. Null was used to describe non-

locking connectors, such as HDMI, which causes a pass-through to the next state in the

FSM. It should be mentioned that some connectors do have multiple locking conditions,

such as twist and tab, but these extra complications fall outside the scope of this paper and

may require higher degree of freedom grippers.

Table 5.2: Behavior Trees used to execute the desired electromechanical task. Each BT is
composed of skills detailed in section 5.5

Behavior Tree Name Behavior Tree Description
Init Initializes the robot and any world information
Attach/Detach Inverse kinematic planning to a cartesian pose
End Effector
Fasten/Unfasten Fastens/Unfastens an object based on number

of bolts constraining it
Pick/Place Pick and place unconstrained objects
Insert/Unplug Object Moves and Inserts or Unplugs an object
Detect Keypoints Detects keypoints at regions of interest

5.6 Results

To verify the methods and performance of the framework, the perception and insertion

pipelines were benchmarked as independent components. The performance of the overall

architecture was evaluated in the task of assembling an electromechanical module. Using

a single PDDL Domain, the system was able to create a task plan that solved the assembly

problem repeatedly while automatically planing trajectories robust to intra-category varia-

tions without excessive ad-hoc tuning.

5.6.1 Electromechanical Task Overview

The robot was tasked with assembling an electromechanical module that may represent an

industrial module or science experiment on a space station. At a high level, successful
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task planning solutions do the following: (1) unfasten the nuts restraining the module to

move it to the install location (2) fasten the module to its new location (3) unplug electrical

connectors from a storage area to power and communicate with the module, and (4) display

a valid output from the module to verify correct installation.

A variety of tooling and sensors are required to complete the desired assembly task. A

6-DOF UR10e robot arm with an internal Force Torque (FT) sensor was used to interact

with the environment. Two end-effector tools were used for the demonstration: a 2F-85

Robotiq two finger gripper and a custom nut driver with a magnetic socket. QC-11 pneu-

matic tool changers were used to quickly attach and detach end-effectors for the arm. An

Intel RealSense D435 was used for collecting RGB-Depth images and pointclouds for iden-

tifying keypoints. Both the intrinsic and extrinsic parameters for the RGB-Depth camera

were calibrated using MoveIt [93].

The PDDL plan was solved using the conventional POPF [95] planner. Since much of

the computational task planning complexity was incorporated in the Behavior Tree struc-

ture, the solver was able to compute a valid assembly task plan in 0.52 seconds. The

assembly task took 10 minutes and 14 seconds to execute with no failures across 10 tri-

als. During that time, for one run, the robot executed 34 behaviors and 148 actions and

re-planned two times.

5.6.2 Categorical Object Perception

For the aforementioned task, a small dataset for Mask R-CNN was created to identify the

relevant objects in the electrical task. However, more work could be done to further expand

the electrical dataset for more generic tasks.

An attempt was made to fully train the keypoint network in simulation, but the method

failed to transfer to the real world after much experimentation. Keypoint data collection on

hardware was completed using a predefined funnel trajectory that retrieves depth and image

data around the desired object(s). Open3D was used to label keypoints in object regions of
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Figure 5.6: Demonstration of a multi-object and multi-tool assembly task. The robot uses a
nut driver to unfasten and fastens bolts. A two finger gripper moves the module and inserts
each connector. Tool changing was used to swap capabilities. Additional tasks could be
added that include a suction gripper.

interest.

We collected our own datasets for the three electrical connector categories in the task:

D-Sub, IEC 60320, and BNC connectors. In order to generalize across multiple different

connectors, the dataset used 10 different connectors per category. Lastly, the network was

trained using a set of 89,000 images for each connector category.

Table 5.3: Experimental results from the keypoint dataset for the different connectors used
in the demonstration. Values are the average across the 5 connector variations. Camera was
held 20cm from the connector for consistency in pixel accuracy.

Object Pixel Error Average Depth Average Keypoint
Error (px) Error (mm) Error (mm)

IEC Connector 4.6 2.6 1.8
D-Sub Connector 3.7 2.4 1.9
BNC Connector 5.1 2.8 2.1
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A set of 5 female and male D-Sub connectors and IEC connectors, as listed in Ta-

ble 5.3, with various pinouts and geometry, were used to test the generalizability of the

perception pipeline. Accuracy was important, since connector features are typically only a

few millimeters in width or length. For all connectors, the keypoint method was capable of

detecting keypoints with millimeter accuracy.

5.6.3 Connector Insertion

To demonstrate the repeatability of the insertion, the system repeated 50 test insertions and

removals without the BTs overhead. This would test the success of the insertion skill with-

out the need for higher level fallback help. Table 5.4 shows the success rate and time spent

in each phase of a connector insertion. An acceptable search position tolerance for each

connector was estimated using the ratio of connector diagonals, where IEC, D-Sub, and

BNC could tolerate offsets of 50% their diagonal length. This tolerance was empirically

tested using consistently larger diameter randomized distributions. While not rigorously

or guaranteed, this 50% boundary of robustness demonstrates the ability of the system to

handle deviations in object estimation.

Model based methods typically require more tuning compared to learning methods, but

do tend to offer more consistent results. Model based insertion method do heavily rely on

a compliance controller to handle model discrepancies. However, it should be reiterated

that our skill framework allows developers to easily replace the implemented methods with

learned policies.
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Table 5.4: Connector insertion success rate and phase times averaged across 50 trials. Tim-
ing was cumulative for each insertion, which could repeat phases based on the contact
state.

Meet Search Embed Lock Unlock

D-Sub 2.5s 6.2s 6.7s N/A N/A
100% 100% 100% N/A N/A

IEC 2.2s 4.1s 6.9s N/A N/A
100% 100% 100% N/A N/A

BNC 3.1s 11.0s 13.8s 22.4s 22.7s
100% 96% 100% 96.8% 100%
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CHAPTER 6

CONCLUSIONS

Robots have been a tremendous asset to mankind in many dull, dirty, and dangerous tasks.

Thanks to recent advances in computing and algorithms, there has been more of a push to

get robots away from ideal environments with few unknowns or difficulties. There is much

to gain by doing this. For example, the United States Postal Service (USPS) managed the

transportation of over 6 billion packages in 2018 [96]. A large portion of the cost can be

attributed to the last mile of the delivery process, a crucial component to delivery [97].

Legged robots have been proposed as a potential solution to solving this problem because

of their ability to climb stairs, step over hazardous objects, and handle the disturbance

of packages and people. In addition, NASA is further exploring how robots can operate in

space to complete tasks [98]. Deep space habitats are of particular interest because a human

crew may not always be present to maintain the habitat. Instead, robots would be needed

to complete tasks like checking critical sensors, maintaining experiments, or assembling

critical hardware components.

This thesis examined the integration of Behavior Trees into Full-Stack robot control

architectures for Task and Motion Planning. Two separate frameworks, one for locomotion

and the other manipulation, integrated behavior trees as a core component of their opera-

tion. A variety of low-level motion planners and controllers were explored to eventually

give Cassie the ability to walk over 1m/s on hardware and upwards of 2m/s in simula-

tion. The footstep planner, tracking controller, and trajectory optimization showed excep-

tional robustness when foot contact worked as expected. In particular, the ability to execute

crossed-leg maneuvers showed a dramatic increase in disturbance rejection. The manipula-

tion framework showed a complete pipeline manipulating a variety of electrical connectors

and executing drilling tasks to assemble an electromechanical module. Integrating Behav-
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ior Trees allow the arm to do these tasks in a robust way provided in can detect deviation

from the original plan. I believe that this work shows the potential for Behavior Trees to be

integrated into a wide variety of robotic systems to help them leave structured environments

and solve tasks in the real world.
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