
SAFETY-GUARANTEED TASK PLANNING FOR BIPEDAL NAVIGATION IN
PARTIALLY OBSERVABLE ENVIRONMENTS

A Thesis
Presented to

The Academic Faculty

By

Jonas Warnke

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

December 2021

© Jonas Warnke 2021

SAFETY-GUARANTEED TASK PLANNING FOR BIPEDAL NAVIGATION IN
PARTIALLY OBSERVABLE ENVIRONMENTS

Thesis committee:

Dr. Ye Zhao
Department of Mechanical Engineering
Georgia Institute of Technology

Dr. Sam Coogan
Department of Electrical Engineering
Georgia Institute of Technology

Dr. Jonathan Rogers
Department of Aerospace Engineering
Georgia Institute of Technology

Date approved: 11/24/21

Dedicated to my loving parents who have cultivated my intellectual curiosity and whose

unwavering support made this work possible.

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee for their help in preparation

of this work. I would like to extend my sincere thanks to Prof. Ye Zhao for his guidance

and expertise throughout my graduate studies, his enthusiasm for the potential of our work

kept me motivated. I am also grateful to Prof. Sam Coogan for many discussions on

collaborative robotics. I would like to thank my collaborators Aziz Shamsah, Michael Cao,

and Yingke li, who helped shape my research and allowed me to extend my work to have

more impact. I would also like to acknowledge Suda Bharadwaj and Ufuk Topcu for their

discussions on belief space planning.

I cannot begin to express my gratitude to my friends and family who supported me

during my time at Georgia Tech. I am thankful to my parents Gilla and Peter who encour-

aged me to pursue my interests without letting anything stand in my way, and who, along

with my sisters Lena and Louisa, offered their unwavering support. I am extremely grate-

ful to my girlfriend Shweta, who’s sympathetic ear and backing helped me push through

and finish my thesis. Lastly, special thanks to all my friends who offered me company

and encouragement during my studies, you made enduring graduate school during a global

pandemic bearable: Ben, Eric, Dilip, and Luke to name a few.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

List of Acronyms . xiii

Chapter 1: Introduction and Background . 1

1.1 Related Work . 6

1.2 Thesis Structure . 8

Chapter 2: Preliminaries . 9

2.1 Phase-space planning . 9

2.1.1 Reduced-order Locomotion Planning 9

2.1.2 Locomotion Keyframe . 11

2.1.3 Locomotion Safety Criteria . 12

2.1.4 Keyframe Decision Maker for Waypoint Tracking 15

2.2 Reactive Synthesis . 17

Chapter 3: Task Planning via Belief Abstraction 20

3.1 Navigation Planner Design . 21

v

3.2 Action Planner Design . 21

3.3 Capturing Low-level Constrains in the High-level Planner 23

3.4 Task Planner Synthesis . 24

3.4.1 Belief Space Planning in Partial Observable Environment 25

3.5 Belief Tracking of Multiple Obstacles . 29

3.6 Results . 30

3.6.1 LTL Task Planning Implementation 30

3.6.2 Nominal Motion Plan for Pick and Place Task 32

3.6.3 Safe Recoverability and Replanning 33

3.6.4 Belief Space Planning . 37

3.6.5 Discussion and limitations . 38

Chapter 4: Heterogeneous Multi-agent Collaboration for Environment Assump-
tion Violation Resolution at Runtime 39

4.1 problem formulation . 40

4.2 Controller Synthesis . 41

4.3 Coordination Layer Design . 43

4.3.1 Environment Characterization . 43

4.3.2 Safe Action Replanning . 43

4.3.3 Violation Resolution . 44

4.3.4 Task Replanning . 44

4.3.5 Resynthesis Method . 44

4.3.6 Non-resynthesis Method . 45

4.4 Results . 46

vi

4.4.1 Case Study 1: Opening A Door . 49

4.4.2 Case Study 2: Scouting Ahead . 52

4.4.3 Case Study 3: Chain of Conflicts 54

Chapter 5: Conclusion . 56

Appendices . 60

Appendix A: Analytical Solution for PIPM Dynamics 61

Appendix B: Proof of Theorem 2.1.1 . 63

Appendix C: Proof of Theorem 2.1.2 . 64

References . 65

vii

LIST OF TABLES

1.1 Key performance classifications of this thesis. 5

3.1 Successful motion plan results for the pick and place task 33

3.2 Nominal PSP parameters values . 33

3.3 Success rate of perturbed OWS transitions 36

viii

LIST OF FIGURES

1.1 A snapshot of the simulation environment for the proposed TAMP frame-
work. The walking robot is deployed to accomplish safe navigation tasks.
The environment contains static and dynamic obstacles, and uneven terrains. 2

1.2 Block diagram of the proposed locomotion planning framework. The task
planner employs a linear temporal logic approach to synthesize actions. At
the low-level, the keyframe decision-maker generates the keyframe states
sent to the motion planner. Locomotion specifications from the low-level
will be incorporated into the task planner. 3

1.3 A conceptual illustration of a heterogeneous multi-agent team of robots
completing diverse tasks in an indoor logistics environment (Special Credit
to Yuki Yoshinaga for sharing this simulation). 4

2.1 Reduced-order modeling of Cassie robot as a 3D prismatic inverted pendu-
lum model with all of its mass concentrated on its CoM and a telescopic leg
to comply to the varying CoM height. ∆y1 is the relative lateral distance
between lateral CoM apex position and the high-level waypointw, and ∆y2

is the lateral distance between the CoM lateral apex position and the lateral
foot placement. 10

2.2 Phase-space safety region for steering walking: (a) shows three consec-
utive keyframes with a heading angle change (∆θ) between the current
keyframe and the next keyframe. The CoM trajectory and its projection on
the sagittal-lateral space is represented by the blue surface. The direction
change introduces a new local coordinate, where the dashed black line is
the sagittal coordinate before the turn, and the red dashed line is the sagittal
coordinate after the turn. Subfigures (b) and (c) show the sagittal and lateral
phase-space plots respectively, both satisfying the safety criteria proposed
in Theorem 2.1.2. The subscripts p, c and n denote the previous, current,
and next walking steps, respectively. 13

ix

3.1 Illustration of fine-level steering walking within one coarse cell. Discrete
actions are planned at each keyframe allowing the robot to traverse the fine
grid toward the next coarse cell. The waypoint transitions nondeterministi-
cally following the turn. A set of locomotion keyframe decisions are also
annotated. 23

3.2 Conceptual Visualization of biped tracking the believed location of a nonv-
visible mobile robots. 26

3.3 Simulation showing how the navigation planner’s belief evolves when the
dynamic obstacle leaves the visible range for several turns. 6 colored belief
regions are shown, as well as the robot (blue circle), the dynamic obstacle
(orange circle) and static obstacles (red cells). Black cells represent non-
visible cells believed to be obstacle free while white cells are visible. The
planner believes the obstacle could be in any colored cell depicted, and can
therefore reason where the obstacle could and could not reappear, allowing
the planner to determine which navigation actions are safe. 27

3.4 3D simulation of the Cassie robot dynamically navigating in the partially
observable environment while avoiding collisions with two mobile robot.
Trajectories of Cassie CoM and the moving obstacle, Cassie foot place-
ments as well as high-level abstraction are supeimposed in subfigure (a).
Subfigure (b) shows the tested enviroment in 3D. 32

3.5 Illustration of online updating the high-level waypoint to maintain lateral
tracking at the middle-level motion planner. The high-level waypoint is
also required to keep a safe distance away from the adjacent coarse cell to
avoid collisions with static or dynamic obstacles. In this run, we set the
safety boundary to be 6 fine cells as shown in light blue. 34

3.6 Results of OWS robust PSP. (a) shows a 15 random keyframe transitions
with bounded disturbances, where TOWS = (0.416 m, [0.45, 0.7] m/s). (b)
Composition of controllable regions of OWS. Here, we demonstrate that
the synthesized controller is able to handle the perturbed CoM trajectory,
shown as a black solid line, inside the superimposed controllable regions
and successfully complete multiple steps when controllable regions are
composed as proposed in in [41] . 35

x

3.7 Safe recovery from a large perturbation. (a) shows the sagittal phase-space
plan, where a position guard is used to determine a safe replanned foot lo-
cation to recover from the perturbation. (b) shows the CoM trajectory in
Cartesian space and the online integration of the high-level action planner
and the middle-level PSP for a waypoint modification. (c) shows a fragment
of the synthesized action planner automaton capturing modeled nondeter-
ministic transitions (with the associated flag tnd). For each next state of the
environment (eHL), there is a set of game states corresponding to all pos-
sible tnd. Blue transitions capture the replanned execution when the robot
CoM is perturbed forward while red transitions depict a nominal execution
without any perturbation. Numerical values for eHL and aHL index distinct
environment state and robot action sets in the algorithm implementation. . 36

3.8 A snapshot of the coarse-level navigation grid during a simulation where
the robot (blue circle) is going between the two goal states (green cells),
while avoiding a static obstacle (red cells) and a dynamic obstacle (orange
circle). White cells are visible while grey and black cells are non-visible.
Gray cells represent the planner’s belief of potential obstacle locations. The
closest the obstacle could be to the robot, as believed by the planner, is
depicted by the pink circle. 37

4.1 Block diagram of collaborative task and motion planning framework. A
coordination layer verifies that the desired actions generated by an offline-
synthesized navigation planner are still safe based on environment infor-
mation observed at runtime. If an environment assumption is violated, the
navigation planner replans its current action to ensure the system enters a
safe state while the coordination layer determines if the violation can be re-
solved by any other agent. The resolution is encoded and the plan progresses. 42

4.2 Execution of case study 1 leveraging Cassie’s higher strength and manipu-
lation abilities to open up the path for the quadcopter. Cassie’s objective is
to patrol the left room, while the quadcopter’s objective is to deliver some-
thing to the right room. However, the quadcopter discovers a closed door
separating the two rooms at runtime, prompting Cassie to come over and
open it so that both agents are able to complete their objectives. 50

4.3 3D rendering of case study 1 in Drake simulation [51]. The quadcopter
approaches an unknown door obstacle preventing it from achieving its goal.
The quadcopter requests assistance from Cassie. Accordingly, Cassie opens
the door and both agents resume their original task. 51

xi

4.4 Partial execution of case study 2 leveraging the quadcopter’s more powerful
sensory capabilities to find a traversable path for Cassie. The quadcopter’s
objective is to patrol the left room, while Cassie’s objective is to deliver
something to the right room. However, Cassie encounters an uncertain re-
gion, prompting the quadcopter to observe the region and determine that it
is nontraversable. 52

4.5 Latter half of the execution of case study 2. The quadcopter and Cassie
are executing their original objectives when Cassie encounters another un-
certain region. The quadcopter observes the new uncertainty, this time de-
termining that the region is traversable, thus allowing both agents to fully
complete their original objectives. 53

4.6 Execution of case study 3 showcasing the capabilities of both agents and
how they must each contribute in order to ensure a successful mission.
Cassie’s objective is to patrol the left and center rooms while the quad-
copter is tasked with patrolling the right room. However, Cassie is unsure
whether it is able to pass into the left room, prompting the quadcopter to
fly towards the region in question. On the way, the quadcopter encounters
a closed door, which Cassie must open before the quadcopter can continue. 54

xii

LIST OF ACRONYMS

aHL high-level action

aLL high-level action

eHL robot state in action planning environment

AP atomic propositions

BDD binary decision diagram

CEGAR counter example guided abstraction refinement

CoM center-of-mass

DoF Degrees of Freedom

EC Environment Characterization

FSM Finite State Machine

GR(1) General Reactivity of Rank 1

HL high-leve

LL low-level

LTL Linear Temporal Logic

MPC model predictive control

NP Navigation Planner

OWS One Walking Step

PIPM Prismatic Inverted Pendulum Model

PSP phase-space planning

ROM Reduced Order Model

TR Task Replanner

VR Violation Resolution

xiii

SUMMARY

Bipedal robots are becoming more capable as basic hardware and control challenges are

being overcome, however reasoning about safety at the task and motion planning levels has

been largely underexplored in the field. My work makes key steps towards guaranteeing

safe locomotion in cluttered environments in the presence of humans or other dynamic ob-

stacles by designing a hierarchical task planning framework that incorporates multi-level

safety guarantees. This layered planning framework is composed of a coarse high-level

symbolic navigation planner and a lower-level local action planner. A belief abstraction

at the global navigation planning level enables belief estimation of non-visible dynamic

obstacle states and guarantees navigation safety with collision avoidance. Both planning

layers employ linear temporal logic (LTL) for a reactive game synthesis between the robot

and its environment while incorporating lower-level safe locomotion keyframe policies into

formal task specification design. The synthesized task planner commands a series of loco-

motion actions, including walking step length, step height, and heading angle changes, to

a motion planner which generates a center of mass trajectory and foot placements.

The modularity of the planning framework allows it to be applied to a diverse selec-

tion of robot agents such as bipedal robots, mobile robots, or quadcopters. Each type of

robot simply requires a modified local action planner to generate actions and navigation

waypoints that take the robot’s dynamic limitations into account. The high-level symbolic

navigation planner has been extended to leverage the capabilities of a team of heteroge-

neous agents to resolve unmodeled environmental conflicts that appear at runtime. When

an environment assumption that was used to synthesize a given navigation planner is vio-

lated at runtime, the navigation strategy loses its safety and task completion guarantees and

becomes invalid. Modifications in the navigation planner in conjunction with a coordina-

tion layer allow each agent to guarantee immediate safety and eventual task completion in

the presence of an assumption violation if another agent exists that can resolve the said vio-

xiv

lation, e.g., a door is closed that another dexterous agent can open. This is achieved in four

steps: 1) The environment is characterized at runtime, and it is verified whether the next

state in the controller automaton would satisfy or violate any safety specifications based on

runtime observations, 2) the immediate control action is replanned by backtracking states

in the automaton and replacing unsafe actions with known safe actions, 3) a resolution is

identified and assigned to another agent, 4) involved agents replan to eliminate the viola-

tion.

The planning framework leverages the expressive nature and formal guarantees of LTL

to generate provably correct controllers for complex robotic systems. The use of belief

space planning for dynamic obstacle belief tracking and heterogeneous robot capabilities to

assist one another when environment assumptions are violated allows the planning frame-

work to reduce the conservativeness traditionally associated with using formal methods for

robot planning.

xv

CHAPTER 1

INTRODUCTION AND BACKGROUND

Robots are increasingly being integrated in real-life scenarios as they can provide a plethora

of physical, economic, and societal benefits when deployed correctly. Robots are able to

complete physical tasks that humans can’t or don’t want to perform, they provide busi-

nesses with novel solutions to automate tasks from logistics to maintenance, and have the

capability of operating in environments that are unsafe for humans, such as performing

search and rescue operations. Legged robots specifically present the most utility potential

in complex workspaces as they have the capability of operating in environments designed

for humans, outperforming wheeled robots at negotiating uneven terrain such as debris or

stairs. However, many problems still need to be solved before legged robots can be fully

integrated into our society.

Navigation in real-life workspaces presents the challenge of task and motion planning

as the environments may contain dynamic obstacles such as humans or other autonomous

robots. Dynamic obstacles may be adversarial or, more likely, may be oblivious to an au-

tonomous legged robot and will therefore not necessarily attempt to avoid collision with

such a robot. The burden of collision avoidance must lie on the robot planner to enable

such a robot to be safely inserted into existing environments. Collision avoidance with

dynamic obstacles is further complicated by static obstacles as they can occlude a robot

sensor’s view of the environment, making it challenging to safely navigate around them,

this can bee seen in Figure 1.1. In the context of dynamic legged locomotion, maintaining

dynamic balancing, i.e., avoiding a fall [1, 2, 3], becomes an additional essential safety

criterion beyond avoiding collisions. Reasoning about safety from both levels has been

largely under-explored in the field. As one closely-related line of research, Wieber’s recent

studies [4, 5] proposed a model predictive control (MPC) method to address safe naviga-

1

Figure 1.1: A snapshot of the simulation environment for the proposed TAMP framework.
The walking robot is deployed to accomplish safe navigation tasks. The environment con-
tains static and dynamic obstacles, and uneven terrains.

tion problems for bipedal walking robots in a crowded environment. Nevertheless, their

work mainly focused on passive safety, i.e., the robot comes to a stop for collision avoid-

ance. Their MPC optimization weighs the safety criteria and lacks formal guarantees on

navigation safety.

Formal guarantees on safe task completion in complex environment has been gaining

interest in recent years [6, 7, 8], however the literature for multi-level guarantees for under-

actuated legged robots in a dynamic environments remains lacking. An intrinsic challenge

of multi-level formal guarantees for bipedal systems, is guaranteeing viable execution of

discretized high-level commands and generating continuous motion plans for the inher-

ently complex bipedal dynamics. This study explicitly addresses this challenge by encod-

ing low-level physics-consistent safety criteria into the high-level task specification design.

This strategy ensures that, on top of collision avoidance, the task planner commands ac-

tions that can be safely executed by a low-level planner. The high level planning method

presented here takes one step towards using a symbolic planning method to design active

2

Figure 1.2: Block diagram of the proposed locomotion planning framework. The task
planner employs a linear temporal logic approach to synthesize actions. At the low-level,
the keyframe decision-maker generates the keyframe states sent to the motion planner.
Locomotion specifications from the low-level will be incorporated into the task planner.

navigation decisions for safety guarantees, i.e., the robot steers its walking direction to

avoid collisions besides the coming-to-a-stop strategy. A proposed integrated hierarchical

framework seen in Figure 1.2 provides multi-layer formal safety and navigation guarantees

for underactuated bipedal system operating in dynamic, cluttered, and partially observable

environments. The work presented here is a continuation of prior work [9], with extensions

toward formal guarantees on low-level motion plans, non-determistic high-level transitions,

and joint-belief abstractions for tracking the belief state of multiple dynamic obstacles to

generate safe reactive plans for the 20 Degrees of Freedom (DoF) Cassie bipedal system

[10].

A major challenge of reactive synthesis methods for formal guarantees on a system

is that they require an explicit model of the environment’s capabilities and are not in-

herently robust to unexpected changes in these capabilities encountered at runtime [11].

For example, an unmodeled obstacle that interferes with the operation of the system may

unexpectedly appear. General Reactivity of Rank 1 (GR(1)) is a fragment [12] of Lin-

ear Temporal Logic (LTL), a common and suitable specification language for designing

correct-by-construction robot controllers due to its expressiveness and relative computa-

tional efficiency. GR(1) specifically relies on an assumption guarantee structure where the

3

Figure 1.3: A conceptual illustration of a heterogeneous multi-agent team of robots com-
pleting diverse tasks in an indoor logistics environment (Special Credit to Yuki Yoshinaga
for sharing this simulation).

system behavior is only guaranteed when the environment assumptions used during con-

troller synthesis hold true at runtime. Ensuring that the system’s operation is robust to envi-

ronmental changes is therefore a challenging yet important consideration when designing

a reactive task and motion planner [13].

It is particularly important for task and motion planning to be robust to common unpre-

dictable obstructions that are unreasonable and unnecessary to explicitly and completely

model within the environment assumptions, such as physically obstructed hallways and

doorways, or changes in terrain estimation confidence due to new debris that may affect

traversability. We envision that teams of heterogeneous multi-agent systems with distinct

mobility capabilities are deployed to cooperatively solve a larger variety of tasks than those

consisting of heterogeneous agents [14, 15]. An illustration of such collaboration can be

seen in Figure 1.3. To achieve autonomous team behaviors such as the multi-room pa-

trolling, a common approach is to automatically synthesize a controller for each agent that

contains a decomposed component of a global task. The task and motion planning frame-

4

Table 1.1: Key performance classifications of this thesis.

Performance Navigation planner Action planner Multi agent coordination
index (chapter 3) (chapter 3) layer (chapter 4)

Navigation safety
Static and dynamic Guarantee desired

navigation transitions
via LTL synthesis

Static & dynamic
obstacle collision avoidance
guarantees via LTL synthesis

obstacle collision avoidance
guarantees via LTL synthesis

Locomotion safety N/A

Commanded actions
guaranteed to meet

safety criteria encoded in
LTL specifications

(To be explored)

Computational
tractability

Joint belief
space planning (To be explored)

Online resynthesis
at coarse abstraction

only

Robustness
Belief tracking over

approximates possible
obstacle movement

Online action replanning Multi agent collaborative
conflict resolutionfor disturbances

& imperfect tracking

work created for bipedal planning is amenable to synthesizing controllers for a diverse set

of robots as specific robot dynamics considerations are contained within the action planning

layer, a single interchangeable component within the high level task planner. Utilizing a

cohesive framework for a set of heterogeneous agents allows for a unified solution for inter-

agent collaboration. The proposed solution focuses on leveraging each agent’s individual

capabilities to resolve broken environment assumptions that prevent another agent from

achieving its objective. Formally, we consider scenarios in which the broken environment

assumption causes an agent’s specification to become unrealizable, yet another agent has

the ability to fix the violation.

The planning framework proposed in this work leverages the expressive nature and

formal guarantees of LTL to generate provably correct controllers for complex robotic sys-

tems. Low level continuous dynamics are captured in abstract discrete high level transition

specifications to create a reactive and provably safe task planner for bipedal locomotion

navigation in partially observable environments. The use of belief space planning for dy-

namic obstacle belief tracking and heterogeneous robot capabilities to assist one another

when environment assumptions are violated allows the planning framework to reduce the

conservativeness traditionally associated with using formal methods for robot planning.

Table 1.1 shows a summary of the performance benefits of each component proposed in

this framework.

5

1.1 Related Work

Formal synthesis methods have been well established to guarantee high-level robot behav-

iors in dynamic environments [16, 17, 18, 19, 20]. Collision-free navigation in the presence

of dynamic obstacles has been achieved via multiple approaches such as local collision

avoidance controllers in [21], incrementally expanding a motion tree in sampling-based

approaches [22], and Velocity Obstacle Sets generated by obstacle reachability analysis in

[23]. Collision avoidance and task completion become more challenging to guarantee when

the environment is only partially observable as such an environment has a strategic advan-

tage in being adversarial. Navigating through partially known maps with performance

guarantees has been achieved through exploring [24], updating the discrete abstraction,

and re-synthesizing a controller at runtime in [25]. To avoid the computational costs of on-

line re-synthesis, others have proposed patching a modified local controller into an existing

global controller when unmodeled non-reachable cells, i.e. static obstacles, are discovered

at runtime [26, 27]. The authors in [25] have proposed a satisfaction metric of specification

to meet the specification as closely as possible when run-time discovered environment con-

straints render the specification unsatisfiable. Lastly, the work of [28] proposes a receding

horizon planning method for efficient synthesis of short-horizon plans. As unmodeled ob-

stacles appear in the planning horizon, a goal generator re-computes a path to a satisfying

state. These approaches above are better suited for guaranteeing successful navigation and

collision avoidance in environments that are uncertain only with respect to static obstacles

as they can not reason about when and where a dynamic obstacle may appear.

Collision avoidance with dynamic obstacles in partially observable environments has

been achieved through approaches such as POMDPs [29], Probabalistic velocity obstacle

modeling [30], and object occlusion cost metrics [31]. The authors in [32] guarantee pas-

sive motion safety by avoiding braking Inevitable Collision States (ICS) at all times via a

braking ICS-checking algorithm. While these solutions provide collision avoidance guar-

6

antees, they assume dynamic obstacles could appear at any time and result in an overly

conservative strategies. Our method investigates belief-space planning to provide the con-

troller additional information on when and where dynamic obstacles may appear in the

robot’s visible range to inform the synthesized strategy if navigation actions are guaran-

teed to be safe, even when static obstacles occlude the robot’s view adjacent environment

locations. We have devised a variant of the approach in [33] to explicitly track a belief of

which non-visible environment locations are obstacle free, reducing the conservativeness

of a guaranteed collision-free strategy. This belief tracking method is then integrated into

our hierarchical TAMP framework.

A major challenge of reactive synthesis methods is that they require an explicit model

of the environment’s capabilities and may not be robust to unexpected changes in these ca-

pabilities encountered at runtime [11]. For example, an unmodeled obstacle that interferes

with the operation of the system may unexpectedly appear. Ensuring that the system’s oper-

ation is robust to environmental changes is therefore an important area of research. To this

end, multiple lines of research have been proposed in the literature, such as online synthesis

of local strategies which are further patched to the original controller [26], offline analysis

of counter-strategies to resolve unrealizable specifications [34], controller synthesis that

can tolerate a finite sequence (up to N steps) of environmental assumption violations [35],

or robust metric automata design such that the system state is maintained within a bounded

ε-distance from the nominal state under unmodeled disturbances [36]. There also exist

robustness methods that allow the system to identify specific broken environment assump-

tions [37]. However, none of these works studied the strategy of employing other agents

to resolve the environmental conflict, which will be the focus of the planning framework

extension presented in this paper, as little has been explored in this direction. For exam-

ple, the authors in [38] have studied the correction of broken assumptions, but focus on

the cases where the broken assumption is due to unexpected behaviors by another agent

operating within the workspace, which is resolved by changing that agent’s behavior.

7

1.2 Thesis Structure

This work proposes a novel planning framework that utilizes reactive synthesis methods

for safe collision free locomotion navigation with guarantees on task completion. The

Framework has been extended to handle collaborative agent solvable assumption violations

that occur at runtime. The structure of this thesis is organized as follows.

First, an introduction to the GR(1) fragment of LTL used for reactive controller syn-

thesis, and the fundamentals of motion planning for bipedal locomotion using a Reduced

Order Model (ROM) will be provided in chapter 2.

Next the hierarchical task planning framework will be outlined in chapter 3. The task

planner is split into two layers with different environment abstractions, a global navigation

planner and a local action planner. The details of the navigation planner’s obstacle belief

tracking are expounded for single and multiple obstacle scenarios, and the planners efficacy

is demonstrated.

Extensions to the planning framework to allow for multi-agent collaboration in the

presence of runtime environment assumption violations are described in chapter 4. This

is achieved through four steps: environment characterization, safe action replanning, vi-

olation resolution, and task replanning. We refer to these components collectively as the

“coordination layer” that interacts with the other elements of the planner. Three case stud-

ies highlighting the opperation of this solution in 2D gridworld simulations are presented.

Finally, an overview of the presented work is given in chapter 5 and opportunities for

future extensions are discussed.

8

CHAPTER 2

PRELIMINARIES

This chapter will explain the preliminaries required for constructing a high level task plan-

ner for bipedal locomotion navigation with formal correctness guarantees, namely the dy-

namic constraints by which the high level planner needs to adhere and the details of the

GR(1) fragment of LTL used for reactive synthesis are introduced.

2.1 Phase-space planning

First the dynamics of a reduced order Prismatic Inverted Pendulum Model (PIPM) [39] are

derived. Then, the phase-space planning approach to generate the center-of-mass (CoM)

trajectories of the reduced order model [40] are summarized. In addition, the locomotion

keyframe state, a discretized state of our phase-space planning (PSP) approach, used as a

connection between the high-level planner layer and phase-space planner layer is defined.

Finally the locomotion safety criteria used to inform the high level task planning strategy

are detailed.

2.1.1 Reduced-order Locomotion Planning

This subsection first introduces mathematical notations of our reduced-order model. As

shown in Figure 2.1, the CoM position pcom = (x, y, z)T is composed of the sagittal, lateral,

and vertical positions. We denote the apex position as papex = (xapex, yapex, zapex)T , the

foot placement as pfoot = (xfoot, yfoot, zfoot)
T , and hapex is the relative apex CoM height

with respect to the stance foot height. vapex denotes the CoM velocity at papex. ∆y1 is the

lateral distance between CoM and the high-level waypointw1 at apex. ∆y2 := yapex−yfoot

is defined to be the lateral CoM-to-foot distance at apex. This parameter will be used to

1The high-level discrete representation of the robot location.

9

Figure 2.1: Reduced-order modeling of Cassie robot as a 3D prismatic inverted pendulum
model with all of its mass concentrated on its CoM and a telescopic leg to comply to the
varying CoM height. ∆y1 is the relative lateral distance between lateral CoM apex position
and the high-level waypoint w, and ∆y2 is the lateral distance between the CoM lateral
apex position and the lateral foot placement.

determine the allowable steering angle in subsection 2.1.3.

PIPM has been widely explored in the literature [39]. Here we reiterate for complete-

ness the derivation of the centroidal dynamics of such model. The centroidal momentum

dynamics are formalized for our single contact case using moment balance along with lin-

ear force equilibrium as such

(pcom − pfoot)× (f com +mg) = −τ com (2.1)

where τ com is the angular moment of the modeled flywheel on the CoM, and g is the

gravitational vector. For nominal planning we set τ com = 0. Formulating the dynamics

(Equation 2.1) for qth walking step as hybrid control system

p̈com,q = Φ(pcom,q,uq) =

ω2
q (x− xfoot,q)

ω2
q (y − yfoot,q)

aω2
q (x− xfoot,q)

 (2.2)

where the asymptote slope ω =
√
g/hapex. The hybrid control input is uq = (ωq,pfoot,q),

10

with pfoot,q being the hybrid input2.

When the CoM motion is constrained within a piece-wise linear surface parameterized

by h = a(x − xfoot) + hapex, where h denotes the CoM height from the stance foot, the

reduced-order model becomes linear and an analytical solution exists. Detailed derivations

are elaborated in Appendix A.

Summary of Phase-space Planning: In PSP, the sagittal planning takes precedence over

the lateral planning. The decisions for the planning algorithm are formulated in the sagittal

phase-space, like step length and CoM velocity. On the other hand, the lateral phase-space

parameters are searched for to adhere to the sagittal phase-space plan. In this paper we build

on our previous work on PSP [39, 9], by formulating safety guarantees for sagittal planning

in order to achieve successful transition between keyframe states in case of perturbation

in subsection 2.1.3. Moreover, we employ an optimization algorithm based on the lateral

apex states that selects the next sagittal apex velocity that would allow the lateral dynamics

to comply to high-level waypoint tracking in subsection 2.1.4.

2.1.2 Locomotion Keyframe

PSP uses keyframe states for non-periodic dynamic locomotion planning[39]. Our study

generalizes the keyframe definition in our previous work by introducing diverse navigation

actions in 3D environments.

Definition 2.1.1 (Locomotion keyframe state). A keyframe state of our reduced-order model

is defined as k = (d,∆θ,∆zfoot,vapex, zapex) ∈ K, where

• d := xapex,n − xapex,c is the walking step length3;

• ∆θ := θapex,n − θapex,c is the heading angle change at two consecutive CoM apex

states;
2Hereafter, we will ignore the subscript q for notation simplicity. We will instead use ·c and ·n denoting

the current and next walking steps, respectively
3while in straight walking d represents the step length, this step length during steering walking is adjusted

to reach the next waypoint on the new local coordinate.

11

• ∆zfoot := zfoot,n − zfoot,c is the height change for successive foot placements;

• vapex is the CoM sagittal apex velocity;

• zapex is the global CoM height at apex.

The keyframe state is composed of a high-leve (HL) action (aHL) and a low-level (LL)

action (aLL). The HL action is defined as aHL = (d,∆θ,∆zfoot,) ∈ AHL, which is de-

termined by the navigation policy to be designed in the task planner. The parameters d,

∆θ, and ∆zfoot are expressed in the Cartesian space as the high-level way-points w. On

the other hand, the LL action is aLL = (vapex, zapex) ∈ ALL, which is determined in the

low-level phase-space planner. The keyframe parameters are sent from the high-level task

a planner to the phase-space planner online as shown in Figure 1.2.

2.1.3 Locomotion Safety Criteria

As bipedal robots become increasingly integrated in dynamic workspaces, safe operation in

presence of unexpected perturbation is critical. In this section we propose safe locomotion

criteria and navigation guarantees based on the locomotion keyframe state, which includes

both high-level action (aHL) and high-level action (aLL), thus providing safety guarantees

for our integrated framework. In this subsection we present locomotion safety theorems

based on PIPM introduced in subsection 2.1.1.

As a general principle of balancing safety, the sagittal CoM position should be able to

cross the sagittal apex with a positive CoM velocity while the lateral CoM velocity should

be able to reach the zero lateral velocity threshold at the next apex state. Ruling out the fall

situations provides us upper and lower bounds of the balancing safety region.

First, we study the constraints between apex velocities of two consecutive walking steps

and propose the following theorems and corollaries.

Theorem 2.1.1. For safety-guaranteed straight walking, given d and ω, the apex velocity

12

Figure 2.2: Phase-space safety region for steering walking: (a) shows three consecutive
keyframes with a heading angle change (∆θ) between the current keyframe and the next
keyframe. The CoM trajectory and its projection on the sagittal-lateral space is represented
by the blue surface. The direction change introduces a new local coordinate, where the
dashed black line is the sagittal coordinate before the turn, and the red dashed line is the
sagittal coordinate after the turn. Subfigures (b) and (c) show the sagittal and lateral phase-
space plots respectively, both satisfying the safety criteria proposed in Theorem 2.1.2. The
subscripts p, c and n denote the previous, current, and next walking steps, respectively.

for two consecutive walking steps ought to satisfy the following velocity constraint:

−ω2d2 ≤ v2
apex,n − v2

apex,c︸ ︷︷ ︸
apex velocity square difference

for two consecutive steps

≤ ω2d2 (2.3)

where d2 = (xapex,n − xapex,c)(xapex,c + xapex,n − 2xfoot,c). Notably, d is equal to the step

length in Def. 2.1.1, i.e., d = xapex,n − xapex,c, during a straight walking where xapex,c =

xfoot,c. The proof of this criterion can be seen in Appendix B.

Another consideration for safety is to limit the maximum allowable velocity of the

CoM. Since the maximum velocity occurs at the foot switching juncture, we explicitly

enforce an upper velocity bound to this switching velocity vswitch to avoid jerky motions

magnified by the ground impact dynamics from the real system. Through the analytical

solution of the reduced-order model in Appendix A, we solve for the sagittal CoM velocity

at the switching juncture vswitch = Ψ(vapex,c, vapex,n, d). Therefore, we set an upper bound

on vswitch to limit the maximum allowed CoM velocity, i.e., vswitch ≤ vmax.

Similar to Theorem 2.1.1, vswitch provides a nonlinear relationship between sagittal

13

apex velocities for two consecutive apex states. Combining the boundary conditions in

Theorem 2.1.1 and the limit of vswitch allows us to quantify the viable region of vapex,n

given vapex,c, d, and ω to achieve locomotion safety.

The steering case however, requires a more restrictive criterion. A fall will occur when

vapex,c is out of a safety range such that either the lateral CoM velocity cannot reach zero at

the next apex state or the sagittal CoM can not climb over the next sagittal CoM apex.

Theorem 2.1.2. For safety-guaranteed steering walking, the current sagittal CoM apex

velocity vapex,c in the original local coordinate should be bounded by

∆y2,c · ω · tan ∆θ ≤ vapex,c ≤
∆y2,c · ω
tan ∆θ

(2.4)

Figure 2.2 shows a steering walking trajectory and phase-space plot that satisfy The-

orem 2.1.2. Namely, the CoM in the sagittal and lateral phase-space should not cross the

asymptote line of the shaded safety region as seen in Figure 2.2. This criterion is specific

to steering walking, as the heading change (∆θ) introduces a new local frame, which yields

the current state ξc to no longer be an apex state in the new coordinate. As such, it has

non-apex sagittal and lateral components, i.e., vy,c 6= 0, and xapex,c 6= xfoot,c.

Corollary 1. For steering walking in Theorem 2.1.2, given d, ∆θ, ∆y2,c and ω, two con-

secutive apex velocities ought to satisfy the following velocity constraint:

−ω2d2 ≤ v2
apex,n − (vapex,c cos ∆θ)2 ≤ ω2d2

+ (2.5)

where d2
+ = d2 + 2∆y2,cd sin ∆θ.

Corollary 2. For steering walking in Theorem 2.1.2, similarly, given d, ∆θ, ∆y2,c, and ω,

two consecutive apex velocities ought to satisfy the following velocity constraints,

−ω2d2 ≤ v2
apex,n − (vapex,c cos ∆θ)2 ≤ ω2d2

− (2.6)

14

where d2
− = d2−2∆y2,cd sin ∆θ. Note that, parameters vapex,n, d, and ∆θ in Equation 2.3-

Equation 2.6 are the keyframe states.

The aforementioned safety theorems provide quantification bounds on next keyframe

selection that leads to viable transitions under nominal conditions. These theorems are

used to generate locommotion keyframe transitions that ensure locomotion safety based on

controllable regions and sequential composition to provide guarantees on the progression

of the system states ξ adhering to Theorems 2.1.1- 2.1.2 under bounded disturbance.

Definition 2.1.2 (Locomotion safety). Safety for a locomotion process is defined as a

formally-guaranteed successful transition between consecutive locomotion keyframe states

k ∈ K while the robot maintains its balance, i.e., avoids a fall.

2.1.4 Keyframe Decision Maker for Waypoint Tracking

In the previous section, we defined safety theorems that guarantees locomotion safety as

defined in Def. 2.1.2. Now we turn our focus on another consideration for safe task com-

pletion by ensuring tracking of the high-level waypoints. The lateral phase-space plan is

determined based on the sagittal phase-space plan, as the lateral dynamics transition be-

tween two apex states needs to obey a consistent timing as that of the sagittal dynamics

transition. Therefore, the lateral dynamics depend on sagittal apex velocities and sagittal

step length. In previous work [39], the lateral foot placement is solved through a Newton-

Raphson search method, such that the lateral CoM velocity is bounded and equal to zero at

the next lateral CoM apex. While our previous method achieved stable walking and turning,

it lacks the consideration of high-level navigation task accomplished through tracking of

the high-level waypoints. Therefore, it provides no guarantee that the lateral CoM motion

will be able to track the high-level waypoint. In my work [9] we proposed a heuristic based

policy that restricted the allowable keyframe transitions to achieve waypoint tracking for

specific locomotion plans. In [41], we extend our previous work by adding an algorithm

15

that manipulates the sagittal phase-space plan to allow high-level waypoint tracking. First

let’s define the viable ranges for ∆y2 and ∆y1.

Definition 2.1.3 (Viable range for lateral apex CoM-to-waypoint distance). R∆y1
..=

{∆y1|∆y1 +∆y2 ≤ bsafety}, where bsafety denotes the safety boundary around the waypoint.

Definition 2.1.4 (Viable range for lateral apex CoM-to-foot distance). Given the safety cri-

terion for steering walking defined in Theorem 2.1.2, the viable range for lateral CoM-

to-foot distance at apex is defined as R∆y2
..= {∆y2|vapex,max · tan ∆θ/ω ≤ ∆y2 ≤

(vapex,min)/(ω · tan ∆θ)}.

R∆y1 is defined in such a manner to limit the lateral deviation of the robot’s CoM

and foot location from the high-level waypoint, in order to avoid collisions with obstacles.

Given Defs. 2.1.3-2.1.4, we can track the high-level waypoint as follows.

Proposition 2.1.3. Viable lateral tracking of the high-level waypoint is achieved only if

(i) ∆y2 and ∆y1 are bounded within their respective viable ranges, i.e., ∆y1 ∈ R∆y1 and

∆y2 ∈ R∆y2 , and (ii) sign(∆y1,k+1 + ∆y2,k+1) = −sign(∆y1,k + ∆y2,k), where k indices

the kth walking step.

Proposition 2.1.3 requires that the sign of the sum of ∆y1 and ∆y2 alternates between

consecutive keyframes in order to guarantee that the high-level waypoint and lateral CoM

are contained between the lateral foot placement for One Walking Step (OWS).

The analytical solutions of ∆y1,n and ∆y2,n are highly nonlinear and depend on multi-

ple parameters including the step length d, heading angle change ∆θ, current and next apex

velocities vapex,c, vapex,n and the current lateral state of the system ∆y1,c and ∆y2,c. How-

ever, (d,∆θ) ∈ aHL are determined by the navigation policy designed in the high-level task

planner, and vapex,c, ∆y1,c and ∆y2,c are fixed from the previous step. Therefore, we manip-

ulate vapex,n to adjust the sagittal phase-space plan and subsequently the lateral phase-space

plan. To this end, we sample a set of equidistant values vapex,n ∈ [vapex,min, vapex,max] and

16

calculate a cost λ, which penalizes deviation of ∆y1,n and ∆y2,n from their respective de-

sired values ∆y1,d and ∆y2,d meeting Proposition 2.1.3 and selected by the designer4.

After the sampling, we set vapex,n to the optimal next apex velocity vapex,opt that results in

the minimum cost. This procedure is presented in algorithm 1.

Algorithm 1: Optimal Next Apex Velocity for Waypoint Tracking
Input: d, vapex,c, ∆y1,c, ∆y2,c, and a velocity sampling increment vinc;
Set: vapex,n = vapex,min, cost λ←∞, ∆y1,d ∈ R∆y1 and ∆y2,d ∈ R∆y2 , and cost
weights c1 and c2;

while vapex,n ≤ vapex,max do
tFHWS, tSHWS← sagittal PSP with (d, vapex,c, vapex,n);
∆y1,n, ∆y2,n← Newton-Raphson Search [39];
λnew = c1(∆y1,d −∆y1,n) + c2(∆y2,d −∆y2,n);
if λnew < λ then

λ← λnew;
vapex,opt ← vapex,n;

end
vapex,n ← vapex,n + vinc;

end
Output: vapex,n = vapex,opt;

2.2 Reactive Synthesis

Straightforward robotic tasks in simple environments may be addressed by a manually

designed state machine that models a set of robot-environment state combinations and en-

codes the correct high-level actions. However, as the task complexity, the number of inputs,

or the number of decision variables increases, manually modeling all the combinations is

no longer feasible to guarantee correct execution of the system. Reactive synthesis methods

have been studied for automatic high-dimensional state machine generation from high-level

symbolic specifications [42]. Specifically LTL allows system constraints and desired prop-

erties to be expressed in a mathematically precise yet intuitive manner. Once system char-

acteristics and desired behaviors have been captured in LTL specifications, off-the-shelf

4The middle value of the viable range as the desired value in the implementation.

17

solvers can be used to synthesize a state machine that is able to output a correct high-level

action for any modeled environment behavior guaranteed to meet safety and task specifica-

tions. LTL is a systematic approach to design a robot task planner and makes the resulting

controller modular, allowing the planner to be adapted to changing task requirements with

minimal modification to the controller specification design. The use of symbolic language

further facilitates the implementation of a tailored LTL planning structure as it is human-

interpretable [43], allowing the task planner do be understood by non-technical specialists.

This customizability lowers the cost of deploying a robotic sorting solution in intricate new

scenarios, lowering the barriers of entry to autonomous robotic solutions for complex tasks.

To formally guarantee goal tasks are achieved infinitely often while the safety specifi-

cations are met, we use GR(1) [44], a fragment of LTL. The GR(1) formula, in particular,

allows for reactive synthesis algorithms that have favorable polynomial complexity while

retaining the ability to encode a large variety of specifications [45, 46, 47]. GR(1) allows us

to design temporal logic formulas (ϕ) with atomic propositions (AP) that can either be True

(ϕ ∨ ¬ϕ) or False (¬True). With negation (¬) and disjunction (∨) one can also define the

following operators: conjunction (∧), implication (⇒), and equivalence (⇔). There also

exist temporal operators “next” (©), “eventually” (♦), and “always” (�).

GR(1) mission specifications are of the form:

(ϕe
i ∧ ϕe

t ∧ ϕe
g)⇒ (ϕs

i ∧ ϕs
t ∧ ϕs

g) (2.7)

The specification is an implication between a set of assumptions and a set of guarantees.

On the left hand side of Equation 2.7 we have the environment initialization assumption

(ϕe
i), the environment transition (safety) assumption (ϕe

t), and the environment liveness

assumption (ϕe
g). On the right hand side we have the system initialization guarantees (ϕs

i),

the system transition (safety) guarantees (ϕs
t), and the system liveness guarantees (ϕs

g).

Initial conditions are free from temporal operators and simply dictate the initial state of the

system and environment. Safety conditions are to always be satisfied and dictate how the

18

APs of the system may evolve between the current and next time step of the execution.

Finally the liveness conditions are to be satisfied infinitely often and are of the form �♦ψ.

Known properties of the environment in which a system is intended to operate are encoded

in the assumptions, while desired behavior the system guaranteed to satisfy are captured in

the guarantees. If a mission specification is realizable the system ensures the guarantees

are satisfied only when the environmnet assumptions hold true. Further details of GR(1)

can be found in [12]. Our implementation uses the SLUGS reactive synthesis tool [48] to

design specifications with APs and natural numbers, which are automatically converted to

ones using only APs.

19

CHAPTER 3

TASK PLANNING VIA BELIEF ABSTRACTION

This section will employ the locomotion keyframe properties from chapter 2 for the high-

level task specification design. The goal of our temporal-logic-based task planner is to

achieve safe locomotion navigation in a partially observable environment with dynamic

obstacles as defined below

Definition 3.0.1 (Navigation Safety). Navigation safety is defined as dynamic maneuver-

ing over uneven terrain without falling while avoiding collisions with static and dynamic

obstacles.

To achieve safe navigation, the task planner evaluates observed environmental events at

each walking step and commands a safe action set to the middle-level phase-space planner

as shown in Figure 1.2 while guaranteeing goal positions to be visited in order and infinitely

often. In particular, we study a pick-up and drop-off task while guaranteeing static and

dynamic obstacle collision avoidance.

We design our task planner using formal synthesis methods to ensure locomotion ac-

tions guarantee navigation safety and task completion. The discrete abstraction granularity

required to plan walking actions for each keyframe is too fine to synthesize plans for large

environment navigation. Therefore, we have split the task planner into two layers: A high-

level navigation planner that plays a navigation and collision avoidance game against the

environment on a global coarse discrete abstraction, and an action planner that plays a lo-

cal game on a fine abstraction of the local environment (i.e., one coarse cell). The action

planner generates action sets at each keyframe to progress through the local environment

to achieve the desired coarse-cell transition in the navigation game after multiple walking

steps.

20

3.1 Navigation Planner Design

A top-down projection of the navigation environment is discretized into a coarse two-

dimensional grid as shown in Figure 3.8. Each time the robot enters a new cell, the navi-

gation planner evaluates the robot’s discrete location (lr,c ∈ Lr,c) and heading (hr,c ∈ Hr,c)

on the coarse grid, as well as the dynamic obstacle’s location (lo ∈ Lo), and determines a

desired navigation action (na ∈ Na). The planner can choose for the robot to stop, or to

transition to any reachable safe adjacent cell. Lr,c and Lo denote sets of all coarse cells the

robot and dynamic obstacle can occupy, while Hr,c represents the four cardinal directions

in which the robot can travel on the coarse abstraction. The dynamic obstacle moves un-

der the following assumptions: (a) it will not attempt to collide with the robot when the

robot is standing still, (b) it’s maximum speed only allows it to transition to an adjacent

coarse cell during one turn of the navigation game, and (c) it will eventually move out of

the way to allow the robot to pass. Assumption (c) prevents a deadlock [49]. Static obstacle

locations are encoded as safety specifications. Given these assumptions, the task planner

in section 3.4 will guarantee that the walking robot can achieve a specific navigation goal

while preventing collisions with static and dynamic obstacles.

3.2 Action Planner Design

The local environment, i.e., one coarse cell, is further abstracted into a fine discretization.

At each walking step, the action planner evaluates the robot state in action planning en-

vironment (eHL)1 consisting of the discrete waypoint location (lr,f ∈ Lr,f) and heading

(hr,f ∈ Hr,f) on the fine grid, as well as the robots current stance foot index (ist), and de-

termines an appropriate action set (aHL) defined in Def. 2.1.1. The action planner generates

a sequence of locomotion actions guaranteeing that the robot eventually transitions to the

next desired coarse cell while ensuring all action sets are safe and achievable based on eHL

1We use the symbol eHL to represent the robot state, since this symbol represents the second player in the
game, i.e., the environment player.

21

and aHL. Note that, the fine abstraction also models the terrain height for each fine-level

cell, allowing the action planner to choose the correct step height ∆zfoot for each keyframe

transition.

During locomotion, the nominal robot state transitions are deterministically modeled

within the action planner based on the current game state and system action, however, the

nominal transition is not guaranteed. To account for this, we model additional necessary

nondeterministic transitions to handle the following cases:

• The robot location is far enough from the centroid of a cell that the same geometric

cell transition puts the robot in a different cell at the next step than expected. This

occurs because infinite number of continuous locations are captured in one discrete

cell.

• Not all the robot states can be captured in the discrete abstraction, such as the robot

CoM velocity, which, however, may still affect transitions.

• The robot may be perturbed externally while walking, altering the foot location at

the next walking step.

We have encoded nondeterministic transitions, and associated transition flags (tnd), to cap-

ture these cases into action planner’s environment assumptions. This flag variable tnd is

encoded as a special automaton state that will be used to replan the foot location of the next

walking step. An example of addressing a sagittal perturbation will be shown in Figure 3.7

(c).

An example of modeled nondeterministic transitions can be seen in Figure 3.1. The

CoM trajectory sometimes imperfectly tracks the waypoints due to accumulated differences

in the continuous keyframe state represented by the same discrete state eHL. The reduced-

order motion planner identifies when the waypoint needs to be shifted from the lateral

case and informs the action planner, which verifies the updated waypoint is allowed by the

non-deterministic transition model and continues planning from the new waypoint.

22

Figure 3.1: Illustration of fine-level steering walking within one coarse cell. Discrete ac-
tions are planned at each keyframe allowing the robot to traverse the fine grid toward the
next coarse cell. The waypoint transitions nondeterministically following the turn. A set of
locomotion keyframe decisions are also annotated.

3.3 Capturing Low-level Constrains in the High-level Planner

To ensure the action planner only commands safe and feasible actions, we must take into

account the underlying Locomotion Safety. This is achieved by capturing low-level con-

straints in the high-level planner specifications. Action planner state transition limitations

based on straight walking step length constraints in Theorem 2.1.1, and kinematic con-

straints from the Cassie leg, are directly encoded in the action planner specifications. Loco-

motion safety is guaranteed when the combination of apex velocity, heading angle change,

and foot placement meets Theorems 2.1.1- 2.1.2. These constraints are not able to be

directly captured as the action planner does not reason about CoM velocity and the dy-

namic equations of motion can not be encoded in symbolic specifications. Instead, they are

captured by generating a library of permissible turning sequences based on discrete robot

states that are known to meet the above constraints (see Table 3.2). For example, given

ω = 3.15 rad/s, ∆y1,c = 0.14 m (equals to ∆y1,d in algorithm 1), and an allowable vapex

range [0.2, 0.7] m/s, Theorem 2.1.2 results in ∆θ ≤ 24.40◦. Any turning angle larger

than this value will results in a high-level action that is not executable by the middle-level

23

motion planner. Thus we choose ∆θ = 22.5◦ such that we can complete a 90◦ turn in 4

consecutive walking steps. A safe turning sequence can be seen in Figure 3.1.

To ensure that collision avoidance in the abstract game translates to collision-free lo-

comotion in the continuous domain, we guarantee the location lr,f stays far enough away

from any obstacles. algorithm 1 ensures that the distance between lr,f and the robot’s de-

sired foot placement does not exceed bsafety as detailed in subsection 2.1.4. The action

planner guarantees lr,f is never in a cell that is less than a distance bsafety away from the

neighboring coarse cell that may contain static or dynamic obstacles via safety specifica-

tions. The planner guarantees this distance even after non-deterministic sagittal and lateral

transitions, ensuring collision avoidance.

3.4 Task Planner Synthesis

To formally guarantee that the goal locations are reached infinitely often while the safety

specifications are met, we use GR(1), a fragment of LTL.

A navigation game structure is proposed by including robot actions in the tuple G :=

(S, sinit, TN) with

• S = Lr,c × Lo ×Hr,c ×Na is the augmented state;

• sinit = (linit
r,c , l

init
o , hinit

r,c , n
init
a) is the initial state;

• TN ⊆ S × S is a transition relation describing the possible moves of the robot and

the obstacle.

To synthesize the transition system TN , we define the rules for the possible successor state

locations which will be further expressed in the form of LTL specifications ψ. The suc-

cessor location of the robot is based on its current state and action succr(lr,c, hr,c, na) =

{l′r,c ∈ Lr,c|∃l′o, h′r,c((lr,c, lo, hr,c, na), (l
′
r,c, l

′
o, h
′
r,c, n

′
a)) ∈ TN}. We define the set of possi-

ble successor robot actions at the next step as succna(na, lr,c, l
′
r,c, lo, l

′
o, hr,c, h

′
r,c) = {n′a ∈

Na|((lr,c, lo, hr,c, na), (l
′
r,c, l

′
o, h
′
r,c, n

′
a)) ∈ TN}. We define the set of successor locations of

24

the obstacle. succo(lr,c, lo, na) = {l′o ∈ Lo|∃l′r,c, h′r,c.((lr,c, lo, hr,c, na), (l
′
r,c, l

′
o, h
′
r,c, n

′
a)) ∈

TN}. Later we will use a belief abstraction inspired by [33] to solve our synthesis in a

partially observable environment.

The task planner models the robot and environment interplay as a two-player game.

The robot action is Player 1 while the possibly adversarial obstacle is Player 2. The synthe-

sized strategy guarantees that the robot will always win the game by solving the following

reactive problem.

Reactive synthesis problem: Given a transition system TN and linear temporal logic spec-

ifications ψ, synthesize a winning strategy for the robot such that only correct decisions are

generated in the sense that the executions satisfy ψ.

The action planner is synthesized using the same game structure as the navigation plan-

ner, with possible states and actions corresponding to section 3.2. Nondeterministic robot

location transitions are captured in the robot successor function succr,f (lr,f , hr,f ,aHL) =

{l′r,f ∈ Lr,f , h
′
r,f ∈ Hr,f |((lr,f , hr,f ,aHL), (l′r,f , h

′
r,f ,a

′
HL)) ∈ TA}, where TA is the tran-

sition relation in the action planner. Compared to the transition relation TN , TA does not

have the obstacle location lo but includes locomotion actions aHL. Given the current robot

state and action, succr,f provides a set of possible locations at the next turn in the game.

Obstacle avoidance is taken care of in the navigation game the obstacle location Lo and

successor function succo are not needed for action planner synthesis. Since reactive syn-

thesis is used for both navigation and action planners, and the action planner guarantees the

robot transition in the navigation game, the correctness of this hierarchical task planner is

guaranteed.

3.4.1 Belief Space Planning in Partial Observable Environment

The navigation planner above synthesizes a safe game strategy that is always winning but

only in a fully observable environment. We relax this assumption by assigning the robot

a visible range only within which the robot can accurately identify a dynamic obstacle’s

25

Figure 3.2: Conceptual Visualization of biped tracking the believed location of a nonv-
visible mobile robots.

location. To reason about where an out-of-sight obstacle could be, we devise an abstract

belief set construction method based on the work in [33]. Using this belief abstraction, we

explicitly track the possible discrete locations of a dynamic obstacle, rather than assuming

it could be in any non-visible cell. The abstraction is designed by partitioning regions of the

environment into sets of discrete belief regions (Rb) and constructing a powerset of these

regions (P(Rb)). We choose smaller partitions around static obstacles that may block the

robot’s view as this allows the planner to guarantee collision-free navigation for a longer

horizon like the scenario depicted in Figure 3.3. It is also possible to start with a coarse

partition and automatically refine the abstraction using counter example guided abstraction

refinement (CEGAR) [50] until a guaranteed winning strategy can be synthesized. We

index each set in P(Rb) to represent a belief state bo ∈ Bo that captures non-visible regions

potentially with a dynamic obstacle.

The fully observable navigation game structure is modified to generate a partially ob-

servable belief-based navigation game with an updated state Sbelief and transition sys-

tem Tbelief In addition to the obstacle location lo ∈ Lo, Sbelief captures the robot’s be-

26

(a) Environment divided into belief regions (b) Obstacle before leaving visible range

(c) Obstacle not visible to robot (d) Obstacle not visible to robot

(e) Obstacle not visible to robot (f) Obstacle reappears in visible range

Figure 3.3: Simulation showing how the navigation planner’s belief evolves when the dy-
namic obstacle leaves the visible range for several turns. 6 colored belief regions are shown,
as well as the robot (blue circle), the dynamic obstacle (orange circle) and static obstacles
(red cells). Black cells represent non-visible cells believed to be obstacle free while white
cells are visible. The planner believes the obstacle could be in any colored cell depicted,
and can therefore reason where the obstacle could and could not reappear, allowing the
planner to determine which navigation actions are safe.

lief of the obstacle bo ∈ Bo. A visibility function vis : Sbelief → B is added such

that it maps the state (lr,c, lo) to the Boolean as True if and only if lo is a location in

the visible range of lr,c. We do not need to modify succna since the dynamic obstacle

only affects the possible one-step robot action if it is in the visible range. succr also re-

mains the same as the relationship between the robot’s actions and its state is not changed

by the belief. The set of possible successor beliefs of the obstacle location, b′o, is de-

fined as succbo = {b′o ∈ Bo|((lr,c, bo, lo), (l′r,c, b′o, lo)) ∈ Tbelief} where b′o indexes ∅ when

vis(lr,c, l
′
o) = True and b′o indexes a nonempty set in P(Rb) when vis(lr,c, l′o) = False.

27

There are four classes of belief transitions, shown in Figure 3.3, that need to be defined

for accurate and meaningful belief tracking:

• Visible to visible: as in the fully observable case, the obstacle may transition to any

adjacent visible cell.

• Visible to belief: if the obstacle is not visible after its turn, the belief state represents

the set of regions containing non-visible cells adjacent to the obstacle’s previous

location.

• Belief to belief: during the current turn the obstacle could be in any non-visible (or

newly visible2) cell represented by the current belief, at the next turn the obstacle

can move to any adjacent cell, therefore the next belief state represents the regions

encompassing all adjacent cells captured by the current belief state

• Belief to visible: similar to the previous case the obstacle may be in any non-visible

or newly visible cell represented by the planner’s belief, and may move to any adja-

cent cell, which defines the visible cells it could appear in at the next time step.

This method of belief tracking guarantees that all real transitions the obstacle can make

during its turn are captured in the planner’s belief. When the obstacle can enter cells in a

new belief region, the planner believes it could be anywhere in that region at the next step,

therefore the belief is an over-approximation of possible obstacle locations. We guarantee

that the obstacle is within the regions captured by the belief state, therefore we can guar-

antee that the obstacle can only appear in a visible cell when there is a modeled transition

from the current belief state to that cell. This allows us to guarantee that with some beliefs,

the obstacle can not enter the visible range in front of the robot. Since both the action plan-

ner and the allowable navigation actions remain the same for the partially observable game,

2Due to the turn based nature of the game, an obstacle may be in the robot’s visible range after the robot
makes a move, but the obstacle may move from this newly visible cell before the robot reevaluates its new
visible range.

28

the game still incorporates the low-level safety constraints using the same specifications,

but allows for a larger set of navigation options than would be possible without explicitly

tracking the belief of the dynamic obstacle’s location.

3.5 Belief Tracking of Multiple Obstacles

Our task planning framework is extensible to environments with multiple dynamic obsta-

cles. It is possible to directly add any number of additional obstacles and their associated

beliefs to the navigation planning game, however, the synthesis has polynomial time com-

plexity. To improve computational tractability, we merge all non-visible obstacles’ believed

states into one combined belief region. Reasoning about a combined belief region still al-

lows the planner to guarantee collision-free navigation without the complexity of tracking

each obstacle individually.

To model a combined belief state we must separate the obstacles’ state from it’s be-

lief. Each obstacle’s state is either a visible cell on the grid, or and index representing

the obstacle is not visible (lo,i,c ∈ Lo,i,c|Lo,i,c = Lo + Inv). The joint belief state consists

of the powerset of belief regions, including the empty set when all obstacles are visible.

(boj ∈ B|B = P(Rb)).

We generate a new multi-obstacle game structure Gcombined−belief :=

(Sbelief , s
init
belief , Tbelief , vis) with

• Sbelief = Lr,c × Lo,i,c × Bo ×Hr,c ×Na;

• sinit
belief = (linit

r,c , l
init
o,i,c, {binit

o }, hinit
r,c , n

init
a) is the initial location of the obstacle known a

priori;

• Tbelief ⊆ Sbelief × Sbelief are possible transitions where ((lr,c, lo,i,c, bo, hr,c, na),

(l′r,c, l
′
o,i,c, b

′
o, h
′
r,c, n

′
a)) ∈ Tbelief ;

• vis : Sbelief → B is a visibility function that maps the state (lr,c, lo,i) to the boolean

as True iff lo,i is a real location in the visible range of lr,c.

29

This game requires new specifications that govern succo,i(lr,c,

lo,i,c, b) and succb(lr,c, lo,i,c, b), the allowable successor obstacle state and joint belief state,

all other successor functions remain the same. Even though the belief can represent multi-

ple obstacles, the possible belief-to-belief transitions are the same as when the belief state

represents a single obstacle. The key specifications to be changed are those governing

succbo when an obstacle enters or exits the visible range. These changes can be made in

the specifications defining the successor belief state succbo .

3.6 Results

This result section evaluates the performance of (i) the high-level task planner by assessing

its task completion, collision avoidance, and safe action execution; (ii) the middle-level

motion planner by employing our designed keyframe decision maker to choose proper

keyframe states and generating safe locomotion trajectories; and (iii) recoverability against

perturbations using the reachability-based synthesized controller; The results are simu-

lated using the Drake toolbox [51], and the open-source code can be found here https:

//github.com/GTLIDAR/safe-nav-locomotion.git. A video of the simulations is viewable

here https://youtu.be/w-SrjuUbO78.

3.6.1 LTL Task Planning Implementation

The task planner is evaluated in an environment with multiple static and dynamic obsta-

cles, and two rooms with different ground heights connected by a set of stairs as seen

in Figure 3.4. To generate the navigation planning abstraction, the environment is dis-

cretized into a 10 × 5 coarse grid, with a 2.7 × 2.7 m2 cell size. Lr,c is the set of all

accessible discrete cells,Hr,c is the set of cardinal directions, and Na is a set of navigation

actions in those cardinal directions (N, E, S, W). Each coarse cell is further discretized

into a finer 26 × 26 grid for local action planning. We model the possible actions as

step length d ∈ {small1, small2,medium1,medium2, large1, large2}, heading change

30

https://github.com/GTLIDAR/safe-nav-locomotion.git
https://github.com/GTLIDAR/safe-nav-locomotion.git
https://youtu.be/w-SrjuUbO78

∆θ ∈ {left,none, right}), and step height ∆zfoot ∈ {zdown2, zdown1, zflat, zup1, zup2}. The

possible heading changes ∆θ ∈ {−22.5◦, 0◦, 22.5◦}, are constrained by the minimum

number of steps needed to make a 90◦ turn, and the maximum allowable heading angle

change that results in viable keyframe transitions as defined in Theorem 2.1.2. We choose

∆θ = ±22.5◦ so that a 90◦ turn can be completed in four steps as shown in Figure 3.1.

Completing the turn in fewer steps is not feasible as it would overly constrain vapex, as can

be seen in Figure 2.2(b). Due to the allowable heading change of ±22.5◦, Hr,f contains a

discrete representation of the 16 possible headings the robot could have.

A set of specifications is designed to describe the allowable successor locations and

actions in the transition system. Here, we only show a few specifications as examples:

�
(
(hr,f = Hr,c ∧ ((ist = left ∧∆θ = right)

∨ (ist = right ∧∆θ = left))⇒©(d = medium2)
)
, (3.1)

�
(
(hr,f = Hr,c ∧ ((ist = left ∧∆θ = left)

∨ (ist = right ∧∆θ = right))⇒©(d = small2)
)
, (3.2)

which govern the allowable step length during the first step of a turning process.

Both navigation and action planners are constructed by combining environment as-

sumptions and system specifications generated by the successor functions described in sec-

tion 3.4 and section 3.5 into a transition system and using the LTL synthesis tool SLUGS

to generate a winning strategy. Synthesis occurs offline, and the winning strategy is effi-

ciently encoded in a binary decision diagram (BDD) [52] which can be accessed online by

interfacing the controller directly with SLUGS. At each turn of the game, the controller

computes the new abstracted environment state and passes it to SLUGS which returns the

corresponding system action.

31

CoM trajectory

high-level waypoint

stance foot positionpick and place locations

belief region

static obstacle

visible range

(a) top view (b) 3D view

Figure 3.4: 3D simulation of the Cassie robot dynamically navigating in the partially ob-
servable environment while avoiding collisions with two mobile robot. Trajectories of
Cassie CoM and the moving obstacle, Cassie foot placements as well as high-level ab-
straction are supeimposed in subfigure (a). Subfigure (b) shows the tested enviroment in
3D.

3.6.2 Nominal Motion Plan for Pick and Place Task

The middle-level motion planner is able to generate CoM trajectories of the ROM for a pick

and place task infinitely often that include traversing stairs, steering, stopping, and avoid-

ing dynamic obstacles. The keyframe decision maker, detailed in subsection 2.1.4, selects

the optimal next keyframe for waypoint tracking. The action planner interfaces with the

middle-level motion planner online to pass the action set for the next keyframe. In the case

when the keyframe decision maker cannot satisfy the lateral tracking of high-level way-

points in Proposition 2.1.3, a new non-deterministic transition from the action planner is

selected based on the modified lateral phase-space plan online. The action planner receives

the updated waypoint which allows the planner to chose the correct transition to the next

game state. Our simulation shows that the robot successfully traverses uneven terrain to

complete its navigation goals while steering away from dynamic obstacles when they ap-

pear in the robot’s visible range. The robot’s navigation trajectory is shown in Figure 3.4.

The tracking results for multiple plans with different obstacle paths are detailed in Table 3.1

using PSP parameters given in Table 3.2. Waypoint correction only occurs in the last step

of a turning sequence due to the complexity of lateral tracking during steering scenarios.

32

Table 3.1: Successful motion plan results for the pick and place task

Steps turns waypoint correction
200 9 4
260 17 12
500 29 22

Table 3.2: Nominal PSP parameters values

parameter value parameter value
vapex,min 0.20 m/s vapex,max 0.70 m/s
hapex 0.985 m ∆zfoot {0,±0.1,±0.2} m

∆y1,d
0.10 m

∆y2,d 0.14 m
(0.0 m for steering)

c1
1.0

c2
1.0

(7 for steering) (4 for steering)
∆θ {0◦,±22.5◦} bsafety 0.52 m

d
{0.21, 0.28, 0.31,

vinc 0.01 m/s0.38, 0.42, 0.43,
0.47, 0.52} m

12 out of 260 steps3 result in alternative discrete state transitions in the lateral direc-

tion, all of which were seamlessly handled by the action planner as shown in Figure 3.5.

This result show that the integration of the high-level planner and the middle-level motion

planner in an online fashion allows for successful and safe TAMP.

3.6.3 Safe Recoverability and Replanning

The proposed sequential composition of controllable regions and reachability analysis in

[41] allows our middle-level motion planner to be robust against perturbations exerted on

the CoM in the sagittal space. Given a keyframe transition for OWS, the synthesized con-

troller is able to guarantee that the CoM state reaches the targeted state within OWS,

thus successfully completing a OWS safely. In Figure 3.6(b) we show the composition

of controllable regions for multiple walking step and demonstrate that the CoM trajectory

is recoverable when employing the synthesized controller. Table 3.3 shows the success

3the step count refers to the number of high-level actions received by the middle-level motion planner,
which includes stopping actions

33

Figure 3.5: Illustration of online updating the high-level waypoint to maintain lateral track-
ing at the middle-level motion planner. The high-level waypoint is also required to keep a
safe distance away from the adjacent coarse cell to avoid collisions with static or dynamic
obstacles. In this run, we set the safety boundary to be 6 fine cells as shown in light blue.

rate for randomly generated keyframe transitions, where the step length is d1 = 0.312 m,

d3 = 0.416 m and d3 = 0.52 m. The data is generated using ROCS [53] with 1000 runs

for each desired keyframe transition, a randomly selected ξc ∈ Ξc and the applied dis-

turbance bound Ξ̃applied is uniformly distributed within [−2, 2] m for CoM position and

[−5, 5] m/s for CoM velocity. The controllable regions are synthesized with state space

granularity of (0.002 m, 0.004 m/s), a control input ω ∈ [2.8, 3.5] rad/s with a granular-

ity of 0.02 rad/s, and the added noise bound at synthesis Ξ̃synthesis is uniformly distributed

within [−0.01, 0.01] m for CoM position and [−0.02, 0.02] m/s for CoM velocity. In Fig-

ure 3.6(a), we show 15 successful random keyframe transitions where vapex,n = [0.45, 0.7]

m/s and d = 0.415 m.

Large perturbations can push the system state outside of the controllable regions and

the synthesized controller cannot recover to Tswitch. To safely recover from such large

perturbations, we employ a variant of the capture point formulation [39, 54] to redesign the

34

0.8

1

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.700 0.1 0.2 0.3 0.4

perturbation perturbation

0.8

1

0.2

0.4

0.6

(a) (b)

Figure 3.6: Results of OWS robust PSP. (a) shows a 15 random keyframe transitions with
bounded disturbances, where TOWS = (0.416 m, [0.45, 0.7] m/s). (b) Composition of con-
trollable regions of OWS. Here, we demonstrate that the synthesized controller is able to
handle the perturbed CoM trajectory, shown as a black solid line, inside the superimposed
controllable regions and successfully complete multiple steps when controllable regions
are composed as proposed in in [41]

next foot position xfoot,n while maintaining the desired vapex,n via the following formula:

xfoot,n = xswitch +
1

ω
(ẋ2

switch,dist + v2
apex,n)1/2 (3.3)

where xswitch is determined analytically based on the nominal transition, and ẋswitch,dist is

the post-disturbance sagittal CoM velocity at switch instant and computed through a po-

sition guard x = xswitch shown as the vertical dashed line in Figure 3.7 (a). The nominal

foot position is determined by the high-level waypoint. In case that the new foot location

lands in a different fine cell, the online integration mechanism between the high-level and

middle-level will update the action planner for a new waypoint location as shown in Fig-

ure 3.7(b) and (c). The action planner reacts to to the perturbation by replanning d and ∆θ

in aHL, which further induces a waypoint change at the next walking step. In particular, the

nondeterministic transition flag tnd = {nominal, forward,backward} indicates the pertur-

bation direction. The automata shown in Figure 3.7 (c) is a fragment from the larger action

planner consisting of 21447 nodes. The navigation planner automaton has 20545 nodes.

35

Table 3.3: Success rate of perturbed OWS transitions

vapex,n margin
Success Rate

d1 d2 d2

[0.2, 0.45] m/s 90.2% 91.6% 92.5%
[0.45, 0.7] m/s 91.8% 92.2% 93.6%

Online resynthesis of these planner automata is computationally intractable, and thus we

incorporate the nondeterministic transition flag tnd into the automaton offline synthesis and

employ them online for action replanning.

(a) Sagittal phase-space

(b) CoM trajectory

(c) Navigation Automaton Fragment with Replan-
ning

Figure 3.7: Safe recovery from a large perturbation. (a) shows the sagittal phase-space plan,
where a position guard is used to determine a safe replanned foot location to recover from
the perturbation. (b) shows the CoM trajectory in Cartesian space and the online integration
of the high-level action planner and the middle-level PSP for a waypoint modification. (c)
shows a fragment of the synthesized action planner automaton capturing modeled nonde-
terministic transitions (with the associated flag tnd). For each next state of the environment
(eHL), there is a set of game states corresponding to all possible tnd. Blue transitions capture
the replanned execution when the robot CoM is perturbed forward while red transitions de-
pict a nominal execution without any perturbation. Numerical values for eHL and aHL index
distinct environment state and robot action sets in the algorithm implementation.

36

3.6.4 Belief Space Planning

The belief abstraction in the navigation planner is successful in tracking and bounding

nonvisible obstacles as can be seen in Figure 3.3. The tracked belief enables the robot to

navigate around static obstacles while guaranteeing that the dynamic obstacles are not in

the immediate non-visible vicinity. Figure 3.8 depicts a snapshot of a simulation where

the robot must navigate around such an obstacle to reach its goal states. The gridworld

environment is abstracted into 6 distinct belief regions resulting in 64 possible belief states.

A successful strategy can be synthesized only when using a belief abstraction. Without

explicitly tracking possible non-visible obstacle locations, the task planner believes the

obstacle could be in any non-visible cell when it is out of sight, including the adjacent vis-

ible cell in the next turn of the game. That means the planner can not guarantee collision

avoidance and is not able to synthesize a strategy that would allow the robot to advance.

Figure 3.8b depicts a potential collision that could occur in pink. This comparison under-

lines the significance of the belief abstraction approach.

(a) With explicit belief tracking (b) No explicit belief tracking

Figure 3.8: A snapshot of the coarse-level navigation grid during a simulation where the
robot (blue circle) is going between the two goal states (green cells), while avoiding a static
obstacle (red cells) and a dynamic obstacle (orange circle). White cells are visible while
grey and black cells are non-visible. Gray cells represent the planner’s belief of potential
obstacle locations. The closest the obstacle could be to the robot, as believed by the planner,
is depicted by the pink circle.

The belief abstraction provides additional information for deciding long-horizon nav-

igation actions beyond guaranteeing immediate collision avoidance. In the simulation

shown in Figure 3.4, it is challenging to navigate around the vision occluding static ob-

stacles at the lower-level (including the walls and a multi-stair platform). The synthesized

37

strategy reacts to the additional information about the dynamic obstacle provided by belief

tracking in three distinct ways. Based on the belief, the robot either (i) continues on the

most direct route to the goal location; (ii) loops around to the right and positions itself to be

able to go around either side of the static obstacle; or (iii) stops and waits until the dynamic

obstacle disappears (see the result in the simulation video). The planner can choose any

of these three strategies as long as all safety specifications are met. This nondeterministic

mechanism offers the task planner flexibility in choosing safe navigation actions.

Generating global navigation task planners for two dynamic obstacles using a joint be-

lief abstraction requires only 40% of the synthesis time as that of independently tracking the

belief state of each obstacle. Specifically, synthesizing a strategy for the scene in Figure 3.4

with two dynamic obstacles took 34 mins using joint

3.6.5 Discussion and limitations

Belief tracking expands the guaranteed safe navigation actions available to the navigation

planner. Merging the belief of multiple dynamic obstacles into one abstract state captures

less information than individual obstacle tracking by design. This reduces computational

complexity while providing the same guarantees of capturing dynamic obstacle locations.

One path to enhance the proposed framework in the future is to model small obstacles in

the action planner so that an entire coarse cell containing such obstacles are still accessible

to the robot in the navigation game. Additionally, the library of turning sequences can be

expanded to incorporate more aggressive navigation decisions while obeying the safety cri-

teria proposed in subsection 2.1.3 and to include fine-level obstacle avoidance maneuvers.

38

CHAPTER 4

HETEROGENEOUS MULTI-AGENT COLLABORATION FOR ENVIRONMENT

ASSUMPTION VIOLATION RESOLUTION AT RUNTIME

The planning framework discussed in chapter 3 relies on environment assumptions to

strictly hold true to guarantee a correct run for the system using the synthesized automaton.

It is not possible to always ensure that assumptions used during offline synthesis hold true

at runtime, in fact it is preferable to relax the assumptions if possible to enable for more ro-

bust planning. Others have studied how to directly relax the assumptions in the synthesized

controller and use a metric of satisfaction to meet the specifications as closely as possible

[25]. Such an approach is favorable when a single agent is operating in an environment and

completes a task to the best of its abilities. However, when multiple heterogeneous agents

are operating in the same environment it is possible to utilize capabilities of one agent to fix

environment assumption violations for another agent to allow the continued execution of

it’s automaton when the agent that is being helped can not do so themselves. For example

if a door that was assumed to be open blocks the path for a quadcopter another agent with

manipulation capabilities can open the door, or if liquid is spilled on the floor that prevents

a bipedal robot from safely traversing an area that was assumed to be traversable a mo-

bile robot could clean up the spill. The planning framework presented here is particularly

amenable to such solutions as the dynamics of a specific robot are taken into account only

in the action planner, meaning a new action planner can be synthesized and swapped into

the framework to safely plan for a number of different types of agents.

Here we will study a particular control synthesis problem where the environment vi-

olates an assumption at runtime preventing an agent in a heterogenous multi-agent team

from complete its tasks. Formally, this occurs because an unmodeled environment be-

havior causes the specification to become unrealizable. We are specifically interested in

39

scenarios where the broken environment assumption results in the specification of an agent

to become unrealizable, i.e. there exist no valid transitions in the automata that eventually

result in the objective being met, and therefore requires that the broken assumption be fixed

before the system can continue operation. The work presented here has been outlined in

[55].

4.1 problem formulation

Let P denote the set of heterogeneous agents in a multi-agent team. When synthesizing a

multi-agent controller, each agent p ∈ P within the team is given its own set of goal and

safety specifications, denoted as ϕp
o and ϕp

s, respectively.

At the high-level, the environment is modeled using a coarse abstraction that divides the

workspace into a set of N discrete regions L = {l0, l1, ..., lN−1}. As low-level controllers

are responsible for planning agent actions within each coarse region, they can be swapped

in and out to accommodate different agent types without largely affecting the high-level

actions.

The set of known, static irresolvable obstacles O ⊂ L are accounted for as the set of

safety specifications

ϕp
s :=

∧
s∈O

�¬l. (4.1)

To account for the heterogeneity of the system, each agent p ∈ P is also modeled with

an a priori known finite set of capabilities Cp = {cp0, cp1, cp2, ...}. Examples of capabilities

include “open doors”, “inspect regions for hazards”, or “climb stairs”.

Static obstacles that are resolvable but not known a priori are modeled as another subset

R ⊂ L. Each resolvable obstacle r ∈ R has an associated action cr and set of states Sr

within which that action may be performed in order to resolve the obstacle and remove it

40

from the environment. These properties are such that

cr ∈
⋃
p∈P

Cp, Lr ⊂ (L \ O). (4.2)

Thus, an agent p is considered to be capable of resolving an obstacle r if cr ∈ Cp. It follows

that any instance of an agent encountering an obstacle that it does not have the capability

to resolve is considered a safety violation. We introduce an “augmented” set of safety

specifications ϕp
a, which contains the same specifications as ϕp

s but in addition contains all

of the additional safety specifications originating from unknown, resolvable obstacles:

ϕp
a := ϕp

s

∧
r∈R | cr /∈Cp

�¬r (4.3)

Given the necessary preliminaries above, we can now formally define the problem state-

ment.

Problem Statement: Assume a set of given controllers synthesized using ϕp
s, and a set

of “actual” environment specifications ϕp
a such that one or more ϕp

o are unrealizable under

ϕp
a. Once the system is detected to violate ϕp

a at runtime, we aim to create a generalizable

formulation that can assign an agent p to resolve and remove the conflicting specification

in ϕp
a such that the original synthesized controller satisfies ϕp

a.

4.2 Controller Synthesis

To leverage the formal guarantees afforded by LTL, we synthesize navigation planners for

each agent based on the planning framework detailed in [9]. In this section, we provide an

overview of the task and motion planners, which serve as the foundation that the proposed

coordination layer will be built on. In subsequent sections, we augment the high-level

navigation planning structure to further encode collaborative behaviors that are able to

resolve environment assumption violations at runtime.

The approach from [45, 46, 47] adopted here is summarized as follows. To synthe-

41

Figure 4.1: Block diagram of collaborative task and motion planning framework. A coordi-
nation layer verifies that the desired actions generated by an offline-synthesized navigation
planner are still safe based on environment information observed at runtime. If an environ-
ment assumption is violated, the navigation planner replans its current action to ensure the
system enters a safe state while the coordination layer determines if the violation can be
resolved by any other agent. The resolution is encoded and the plan progresses.

size task planners, we construct two-player games between each agent and an abstracted

environment. We automatically encode a variety of propositions about how the game may

evolve within LTL specifications: we encode initialization assumptions, environment safety

assumptions, system safety guarantees, and system liveness properties. We synthesize an

automaton that guarantees the agent will always win the game as long as all the environ-

ment assumptions hold true at runtime. The automaton is represented as a Finite State

Machine (FSM). At runtime the current environment state is an input to the FSM, which

outputs an action for the agent. Each action provided by the FSM is guaranteed to meet the

safety specifications while bringing the agent closer to completing its task.

In this work we synthesize planners for a bipedal robot Cassie [10] and a quadcopter to

study heterogeneous autonomous multi-agent navigation. When constructing a two-player

game between each agent and its environment, we treat other agents as part of a partially

observable environment and encode the possible moves each agent can expect the others to

make in environment safety specifications. Deadlock resolution becomes a challenge when

guaranteeing collision avoidance and task completion in the presence of other agents. In

42

this study, we circumvent this challenge by assuming that the quadcopter is going to fly

above Cassie at all times, so we do not encounter deadlock, which allows us to focus on

mission replanning for assistive behaviors at runtime. Deadlock resolution techniques such

as the one presented in [49] are implementable in our planning framework.

4.3 Coordination Layer Design

In this section, we introduce the coordination layer on top of the synthesized controllers,

containing the elements which enable agents to identify new safety specifications at run-

time, replan actions when necessary, identify and assign other agents to resolve obstacles,

and adjust the behavior of each agent to execute the conflict resolution. An overview of the

proposed planning framework is depicted in Figure 4.1.

4.3.1 Environment Characterization

At runtime, the Environment Characterization (EC) block passes the game state abstracted

from the environment to the Navigation Planner (NP) block and requests a navigation ac-

tion. The EC block determines new safety specifications based on the observed environ-

ment and verifies if the navigation action would violate these specifications. This block is

the main component responsible for observing the specifications in ϕp
a that were not known

during synthesis. We assume that the agent has adequate sensing capabilities to determine if

any states reachable by the possible current navigation actions are safe. If a safety violation

occurs, the EC block signals the NP block to replan its current action.

4.3.2 Safe Action Replanning

The safe action replanning occurs within the NP block. At each step, the current environ-

ment state is fed to the FSM to generate a correct system action. When the replanning flag

is raised, the navigation planner backtracks to the previous state in the FSM and extracts a

new system action to avoid the safety violation. The new action is passed to the EC block,

43

which passes it on to the lower-level planners if deemed safe.

4.3.3 Violation Resolution

When the EC block determines that the safety specifications based on the observed envi-

ronment do not match the safety specifications used during offline synthesis, it also passes

the details of the violation to the Violation Resolution (VR) block, including the action(s)

cr required, as well as the state(s) Lr at which those actions must be performed in to resolve

the obstacle. The VR block then identifies which agent p ∈ P has the capability to resolve

the obstacle, i.e., any agent p such that cr ∈ Cp. This component then broadcasts a request

for an appropriate agent to come to assist.

4.3.4 Task Replanning

The Task Replanner (TR) block receives incoming requests for assistance in the form of

updated system goals and is responsible for adjusting the agent’s strategy to assist the agent

in need. This can be accomplished either by resynthesizing the automaton based on the

new system goals or by augmenting the initially synthesized controller with an additional

runtime-assignable objective, which can then be assigned to the appropriate obstacle as

needed. A more detailed elaboration of these two strategies is provided in the following

subsections.

4.3.5 Resynthesis Method

Once a violation has been detected and assisting agents have been assigned, the TR block

can trigger a resynthesis of each of the affected agent’s controllers with their new objec-

tives. After the controller detects that the obstacle has been resolved, another resynthesis is

triggered, returning the agents to their original objectives.

This method is achieved recursively by storing previous objectives in a stack; if a new

resolvable obstacle is encountered while resolving a known obstacle, the resynthesis targets

44

the new obstacle and pushes the previous set of objectives onto the stack. Once an obstacle

is resolved, the top set of objectives in the stack is popped off, and controllers are resyn-

thesized to these objectives. Beyond changing the target locations in the original objective,

any number of new goal tasks or locations can be encoded in the new specifications to

assist another agent that has encountered an assumption violation. Additionally, the agent

that has encountered an obstacle that it cannot resolve on its own can be assigned a new

task to complete while it waits for the obstacle to be resolved. A detailed pipeline of this

process is shown in algorithm 2.

Algorithm 2: Resynthesis for Conflict Resolution
for p ∈ P do

ϕp
o ← initial objectives;

end
ϕstack ← ∅;
synthesize controllers;
while system active do

execute controllers;
if resolvable obstacle r encountered by agent pr at lo then

if cr /∈ Cpr
then

push all of current ϕp
o onto ϕstack;

change ϕpr
o to safe behavior;

for p ∈ P do
if cr ∈ Cp then

add state in Sr to ϕp
o;

synthesize controllers;
break;

end
continue;

else if r ∈ ϕpr
o then

resolve obstacle r;
pop ϕp

o off of ϕstack;
synthesize controllers;
continue;

end
end

end

4.3.6 Non-resynthesis Method

For the targeted collaborative behavior, resynthesis is not strictly necessary if a resolution

does not require a completely new task to be specified for the assisting agent. Instead, the

45

agent is just required to visit one additional location. This allows the system to remain

in continuous operation rather than halting for a period of time to allow for controller

resynthesis. Assistance is achieved by including an additional runtime-assignable goal

location in the assisting agent’s liveness specifications. This behavior is described in more

detail in algorithm 3.

Algorithm 3: Non-resynthesis for Conflict Resolution
for p ∈ P do

ϕp
o ← initial objectives + runtime assignable objective;

end
synthesize controllers;
while system active do

execute controllers;
if resolvable obstacle r encountered by agent pr at so then

if cr /∈ Cpr then
push all of current ϕp

o onto ϕstack;
change ϕpr

o to safe behavior;
for p ∈ P do

if cr ∈ Cp then
assign runtime objective to state in Sr;
break;

end
continue;

else
resolve obstacle r;
continue;

end
end

end

4.4 Results

In this paper, we implement and evaluate the framework described in section 4.2, which

was primarily built to synthesize controllers for the bipedal walking robot platform Cassie,

designed by Agility Robotics [10]. We consider a second quadcopter agent in the envi-

ronment that has dramatically different capabilities in both mobility and manipulation. A

quadcopter, which lacks the ability to manipulate objects, is instead able to perform maneu-

vers that are unavailable to Cassie, such as backward movement or 180◦ turns in a single

region. In this study, the quadcopter is assumed to fly above Cassie at all times, so that

46

collision is not a concern. Additionally, we preserve the belief space planning framework

proposed in [9, 33], allowing Cassie to infer the quadcopter location if it is not within

Cassie’s visible range. Cassie’s locomotion planner is designed based on the phase-space

planning framework in [39].

Resolvable obstacles are also implemented within the simulated environment. We recall

from section 4.1 that each resolvable obstacle r has an associated state Lr where an action

cr must be performed by an agent p for which cr ∈ Cp in order to resolve the obstacle and

remove it from the environment. These properties are directly inserted into the simulation

environment.

The set of resolvable obstaclesR and the set of agents and their capabilities Cp are im-

plemented as separate dictionary data structures. As such, this framework is generalizable

as one would simply need to add the appropriate agent capabilities and obstacle resolutions

to each dictionary.

To represent the potential for obstacles to appear at runtime, two separate simulated

environments are initialized, one of which does not contain the resolvable obstacles that

will need to be resolved. This instance of the environment, representing ϕp
s, is used for

the initial synthesis, and then the resulting controller is applied to the environment instance

containing the resolvable obstacles, which corresponds to ϕp
a. At runtime, if an agent en-

ters a state containing a resolvable obstacle r that it is unable to resolve (i.e., violates ϕp
a),

the controller is able to check that a violation has happened in the simulated environment,

and sends this information to the simulation to assign new objectives to each agent accord-

ingly, such that the agent p tasked with resolving the obstacle fulfills cr ∈ Cp. Thus, the

simulation running each of the controllers is responsible for the VR and TR blocks of the

coordination layer, while the separate simulated environment instances simulate the EC

component. The Safe Action Replanner is built directly into the NP block.

Three case studies utilizing the synthesized controllers are presented to evaluate the

proposed approach. For each case study, an environment is created where a quadcopter and

47

Cassie are each running on their own controller and have their own task objectives to com-

plete. The environment is abstracted into a 7×13 coarse set of regions L = {l0, l1, ..., l90}

such that l0 is the northwestern-most region and increments following English reading ori-

entation (i.e. incrementing left to right, then starting at the leftmost region on the next row).

This setup can be seen in Figure 4.2-Figure 4.6.

For each case study, we consider a team of agents consisting of P = {quadcopter,

Cassie} with unique capabilities Cquad := {sense}, CCassie := {push}. These do not

represent the full capabilities of each agent, but only represent the ones that are relevant for

solving the conflict resolution.

Resolvable obstacles that may appear within a region si in the environment consist of

two types: r = door and r = uncertainty. A resolvable obstacle of type r = door, if

found in si, has properties

Lr = {li}, cr = push, (4.4)

and represents physical doors that the quadcopter cannot fly through, but are able to be

opened by Cassie. Resolvable obstacles of type r = uncertainty have the properties

Lr = {lnorth, least, lsouth, lwest}, cr = sense, (4.5)

and represent regions in which Cassie is uncertain about its capabilities to safely traverse

through the environment, but the quadcopter is able to scout them by visiting any adjacent

region.

We design a set of objective specifications for each agent p ∈ P such that the agent

alternates between visiting two regions in the environment lA, lB ∈ L, with an AP scout

unique to each agent, which initializes to False, to track which region the agent should

48

head towards. The set of objective specifications is thus given as

Patrolp(lA, lB) =�♦(lA ∧ ¬scoutp) (4.6)

∧�((lA ∧ ¬scoutp)⇒©scoutp)

∧�♦(lB ∧ scoutp)

∧�((lB ∧ scoutp)⇒©¬scoutp)

Each implementation of these case studies utilizes the resynthesis method detailed

in subsection 4.3.5 due to its overall lower synthesis time, but it should be noted that

case study 1 is fully implementable using the non-resynthesis method outlined in subsec-

tion 4.3.6. As case studies 2 and 3 require multiple locations to be visited and resolved,

additional work is required to enable the non-resynthesis method to work in these cases.

Additionally, while the figures in this section mainly feature abstractions of the environ-

ment in order to easily illustrate the behaviors of each agent, the computed control actions

are applicable to a real 3D simulation environment, as shown in Figure 4.3. Those two

subfigures show the real-world interactions resulting from the behavior in case study 1.

4.4.1 Case Study 1: Opening A Door

The first case study leverages Cassie’s manipulation capability in the environment with

higher dexterity and power than the quadcopter. The quadcopter is tasked with patrolling

between lhomeQ and lawayQ, where lhomeQ is a region in the left room and lawayQ is in the

right room. Cassie is tasked with patrolling between lhomeC and lawayC, where both lhomeC

and lawayC are in the left room:

ϕquad
o := Patrolquad(lhomeQ, lawayQ), (4.7)

ϕCassie
o := PatrolCassie(lhomeC, lawayC).

49

(a) Initial Configuration (b) The quadcopter’s con-
troller encounters a door,
so instead it elects to have
the quadcopter wait in the
preceding region until it is
opened.

(c) Cassie opens the door and
the original objectives are re-
instated. Both agents are now
able to complete their objec-
tives.

Figure 4.2: Execution of case study 1 leveraging Cassie’s higher strength and manipulation
abilities to open up the path for the quadcopter. Cassie’s objective is to patrol the left room,
while the quadcopter’s objective is to deliver something to the right room. However, the
quadcopter discovers a closed door separating the two rooms at runtime, prompting Cassie
to come over and open it so that both agents are able to complete their objectives.

At runtime, the quadcopter discovers an obstruction at ldoor = l47 while in lsafe = l46

that prevents it from accomplishing its objective in the form of a closed door that cannot

be flown through but can be opened by Cassie. A resynthesis of objectives is triggered,

where the quadcopter is now tasked with hovering outside the door, and Cassie is tasked

with visiting one of its initial patrol points and the closed door:

ϕquad
o := Patrolquad(lsafe, lsafe), (4.8)

ϕCassie
o := PatrolCassie(lhomeC, ldoor).

Once Cassie visits the door, it is considered open and the obstacle is removed from the en-

vironment, triggering another resynthesis which returns both agents to their original target

objectives. A walkthrough of the execution of this case study is shown in Figure 4.2. For

this case study, we also used low-level planners to generate safe motions for the quadcopter

and Cassie, including CoM trajectories and foot placements. The 3D visualization can be

50

seen in Figure 4.3.

(a) Cassie opening the door for the quadcopter

(b) A bird’s eye view of Cassie’s and the quadcopter’s trajectories

Figure 4.3: 3D rendering of case study 1 in Drake simulation [51]. The quadcopter ap-
proaches an unknown door obstacle preventing it from achieving its goal. The quadcopter
requests assistance from Cassie. Accordingly, Cassie opens the door and both agents re-
sume their original task.

51

(a) Initial Configuration (b) Cassie’s controller en-
counters an uncertain region,
so instead Cassie’s controller
elects to have Cassie wait in
the preceding region until it is
resolved.

(c) The quadcopter senses
that the region is actually an
immovable obstacle, resolv-
ing it, and original objectives
are reinstated.

Figure 4.4: Partial execution of case study 2 leveraging the quadcopter’s more powerful
sensory capabilities to find a traversable path for Cassie. The quadcopter’s objective is
to patrol the left room, while Cassie’s objective is to deliver something to the right room.
However, Cassie encounters an uncertain region, prompting the quadcopter to observe the
region and determine that it is nontraversable.

4.4.2 Case Study 2: Scouting Ahead

The second case study involves Cassie encountering several states and not knowing whether

each state is safe to traverse on foot, requiring the help of the quadcopter’s heightened

sensing capabilities. To this end, the quadcopter is set to patrol between lhomeQ and lawayQ,

where lhomeQ and lawayQ are in the left room, while Cassie must patrol between lhomeC and

lawayC, where lhomeC is a region in the left room and lawayC is in the right room:

ϕquad
o := Patrolquad(lhomeQ, lawayQ), (4.9)

ϕCassie
o := PatrolCassie(lhomeC, lawayC).

At runtime, Cassie encounters region luncertain1 = l34 while at lsafe1 = l33, and it is unsure

about its ability to traverse this region. A resynthesis is triggered, where the quadcopter is

tasked with observing the uncertain region by visiting any of the adjacent regions (in this

52

(a) Cassie’s controller en-
counters another uncertain re-
gion, so again Cassie’s con-
troller elects to have Cassie
wait in the preceding region
until it is resolved instead.

(b) The quadcopter senses
that this region is traversable
by Cassie.

(c) Original objectives are
again reinstated, with both
agents now able to meet their
objectives.

Figure 4.5: Latter half of the execution of case study 2. The quadcopter and Cassie are exe-
cuting their original objectives when Cassie encounters another uncertain region. The quad-
copter observes the new uncertainty, this time determining that the region is traversable,
thus allowing both agents to fully complete their original objectives.

case, we select the region luncertain1W directly west of luncertain1):

ϕquad
o := Patrolquad(lhomeQ, luncertain1W), (4.10)

ϕCassie
o := PatrolCassie(lsafe1, lsafe1).

Once the quadcopter observes the unknown region, the resolvable obstacle is removed from

the environment. If the quadcopter senses that the region is not traversable by Cassie, then

the region is added to O and will be considered as an immovable obstacle during future

synthesis. In this specific case study, luncertain1W is found to be untraversable.

The two agents are returned to their original objectives, outlined in (Equation 4.9), be-

fore Cassie encounters another uncertain state at luncertain2 = l60 while in lsafe2 = l59, where

the process repeats. The quadcopter is tasked with visiting luncertain2W, directly west of

luncertain2, while Cassie is instructed to stay at lsafe2. The uncertain region is found to be

traversable by Cassie, and both agents are returned to their original objectives, now able

to fulfill them. A walkthrough of the execution of this case study is shown in Figure 4.4

and Figure 4.5.

53

(a) Initial Configuration (b) Cassie’s controller en-
counters an uncertain region,
so it elects to have Cassie wait
in the preceding region until it
is resolved.

(c) On the way to sense the
region that Cassie is uncer-
tain about, the quadcopter en-
counters a closed door and
waits on the other side.

(d) Cassie opens the door for
the quadcopter, allowing it to
come sense the uncertain re-
gion.

(e) The quadcopter senses
that the region is passable by
Cassie.

(f) Original objectives are
now reinstated, with both
agents now able to meet their
objectives.

Figure 4.6: Execution of case study 3 showcasing the capabilities of both agents and how
they must each contribute in order to ensure a successful mission. Cassie’s objective is
to patrol the left and center rooms while the quadcopter is tasked with patrolling the right
room. However, Cassie is unsure whether it is able to pass into the left room, prompting the
quadcopter to fly towards the region in question. On the way, the quadcopter encounters a
closed door, which Cassie must open before the quadcopter can continue.

4.4.3 Case Study 3: Chain of Conflicts

The third case study merges the previous two and requires both agents to resolve an ob-

stacle. For this case study, the quadcopter encounters a door while on its way to resolving

an uncertain region encountered by Cassie, requiring Cassie to first open the door, thus

demonstrating the coordination layer’s ability to handle multiple resolvable obstacles in a

chain when required.

Initially, Cassie is tasked with patrolling between lhomeC in the leftmost room and lawayC

in the center room, while the quadcopter is tasked with patrolling between lhomeQ and

54

lawayQ, both in the rightmost room:

ϕquad
o := Patrolquad(lhomeQ, lawayQ), (4.11)

ϕCassie
o := PatrolCassie(lhomeC, lawayC)

Cassie encounters an uncertain state at luncertain = l43 while in lsafeC = l43, triggering a

resynthesis requiring the quadcopter to sense the true traversibility of that state by visiting

luncertainE = l44:

ϕquad
o := Patrolquad(lhomeQ, luncertainE), (4.12)

ϕCassie
o := PatrolCassie(lsafeC, lsafeC)

However, the quadcopter encounters a closed door at ldoor = l47 while in lsafeQ = l48 on its

way to resolve Cassie’s uncertainty, triggering another resynthesis where Cassie is tasked

with opening the door:

ϕquad
o := Patrolquad(lsafeQ, lsafeQ), (4.13)

ϕCassie
o := PatrolCassie(lsafeC, ldoor)

Once the door is opened and resolved, the quadcopter travels to the uncertain state and

resolves that obstacle as well, resulting finally in both agents being able to accomplish

their objectives. A walkthrough of the execution of this case study is shown in Figure 4.6.

55

CHAPTER 5

CONCLUSION

The proposed task and motion planning framework in this thesis takes the first step towards

locomotion task and motion planning that incorporates multi level safety guarantees. A

reduced order PIPM is used to derive centroidal dynamics that govern trajectories between

consecutive walking steps. Continuous trajectories between temporally discrete keyframes

are planned by adhering to analytically derived safety theorems by one walking step phase

space planning. At each keyframe a high-level task planner generates a action set that is

safe with respect to both balancing and navigation safety and is guaranteed to lead to the

eventual completion of the system’s navigation goal. The high level planner uses two layers

of abstraction to generate coarse global reactive navigation plans in partially observable en-

vironments in the presence of possibly adversarial dynamic obstacles and local action plans

to ensure safe motion planning between keyframes. Safety is not only reasoned about at

each planning level but is ensured between the layers of this hierarchical framework. To the

author’s knowledge this is the first work that captures low-level locomotion dynamics in the

high-level specification design to formally guarantee navigation safety while maintaining

balancing safety. Phase space planning constraints are directly and indirectly encoded en-

forced in the action planner through the use of turning sequence libraries and specification

design. The action planner guarantees the desired transitions in the coarse global naviga-

tion game by design and accounts for collision avoidance with obstacles in adjacent coarse

cells by capturing bsafety.

Capturing a detailed model and set of constraints in the action and navigation plan-

ners makes it challenging to synthesize strategies that meet all safety and task completion

requirements. Belief space planning and relaxed action planner state transitions are used

to address these challenges. Allowing for state transitions in the action planner to not

56

be deterministically set by a given action set relaxes the initial state-based constraints on

turning sequences. Belief space planning method is designed and used in the global nav-

igation planner to explicitly track the evolution of abstract dynamic obstacle belief states,

this expands the set of navigation actions that are guaranteed safe for a given navigation

game state, making it possible to synthesize strategies that meet all requirements that would

otherwise not be possible. This belief tracking methodology is refined for multi-obstacle

tracking with reduced computational complexity when compared to directly scaling the

individual obstacle belief tracking method.

The effectiveness of the hierarchical framework has been demonstrated by simulating

the system completing a pick and place task in a logistics environment with non-flat terrain

in the presence of two mobile robots that are assumed to be adversarial. The navigation

planner assumes the responsibility of collision avoidance and commands safe navigation

actions based on the location of visible obstacles and its belief of non-visible obstacles.

The action planner generates actions at each keyframe that the phase space planner is able

to safely execute, the online integration allows the action planner to update the waypoint

at several instances and reactively plan new locomotion actions. The pick and place task is

successfully completed while maintaining navigation and balancing safety, and it is shown

that in certain environments a successful planner can not be synthesized without the use of

belief tracking.

The bipedal locomotion planning framework is extensible to other types of agents from

mobile robots to drones, this can be done by swapping the action planner to plan appropri-

ate actions for a given agent. While this work does not specifically create action planners

for many agent types that consider agent’s dynamics it uses this extensibility to increase the

robustness of the global navigation planner via multi-agent collaboration. The presented

approach specifically addresses the issue of environments mismatching the model and as-

sumptions used for control strategy synthesis at runtime. This is achieved in four steps:

1) The environment is characterized at runtime and it is verified whether the next state in

57

the controller automaton would satisfy or violate any safety specifications based on runtime

observations, (2) the immediate control action is replanned by backtracking states in the au-

tomaton and replacing unsafe actions with known safe actions, 3) a resolution is identified

and assigned to another agent, 4) involved agents replan to eliminate violation via online

resynthesis or goal substitution. This approach maintains all planning guarantees afforded

by the bipedal locomotion planning framework yet extends it’s robustness. This solution is

unique to existing literature as it uses the capabilities of a team of agents to resolve envi-

ronment anomalies at runtime, allowing agents to continue their tasks when they otherwise

would not physically be able to. The successful operation of this method has been demon-

strated in three case studies, including chained conflict resolution, and has been shown to

integrate with the overall locomotion planning framework in a 3D simulation.

There are multiple possible directions to further improve the solutions detailed in this

work. The current framework only considers static and dynamic obstacles in the navigation

planner, however it should be possible to take obstacles into account when locally planning

actions. A separate fine abstraction and associated action planner can be constructed for

each coarse cell that captures detailed obstacle locations, an additional layer would be

needed to correctly switch between action planners on the fly. To reason about dynamic

obstacles at the local level it may be possible to utilize concepts from [31] to calculate

occlusion cost metrics and guarantee local collision avoidance only when navigation plan-

ner’s belief is such that it is possible for a dynamic obstacle to appear locally. Lastly further

work can be done to expand the action planning turning library to include maneuvers be-

yond 90-deg turns and to include more non-deterministic action planner state transitions

to account for perturbations. Heterogeneous multi-agent collaboration can be extended by

further developing the non-resynthesis solution to enable more complex runtime-assignable

behaviors, and cataloguing a comprehensive library of robots and capabilities, such as

multi-quadcopter teaming to deliver a battery for Cassie charging and Cassie long-duration

navigation for package delivery.

58

In conclusion, the planning framework presented here leverages the expressive nature

and formal guarantees of LTL to generate provably correct controllers for complex robotic

systems. The use of belief space planning for dynamic obstacle belief tracking and hetero-

geneous robot capabilities to assist one another when environment assumptions are violated

allows the planning framework to reduce the conservativeness traditionally associated with

using formal methods for robot planning.

59

Appendices

APPENDIX A

ANALYTICAL SOLUTION FOR PIPM DYNAMICS

When the CoM motion is constrained within a piece-wise linear surface parameterized by

h = a(x−xfoot)+hapex, the reduced-order model becomes linear and an analytical solution

exists:

p(t) = Aeωt +Be−ωt + pfoot (A.1)

ṗ(t) = ω(Aeωt −Be−ωt) (A.2)

where ω =
√

g
hapex

, A = 1
2
((p0 − pfoot) + ṗ0

ω
, B = 1

2
((p0 − pfoot) − ṗ0

ω
. manipulate Equa-

tion A.1-Equation A.2 gives

p+
ṗ

ω
− pfoot = 2Aeωt (A.3)

which renders

t =
1

ω
log(

p+ ṗ
ω
− pfoot

2A
) (A.4)

To find the dynamics, ṗ = f(p), which will lead to the switching state solution, remove

the t term by plugging Equation A.4 into Equation A.1.

1

2
(p− ṗ

ω
− pfoot) =

2AB

p+ ṗ
ω
− pfoot

(A.5)

(p− pfoot)
2 − (

ṗ

ω
)2 = 4AB (A.6)

which yields

ṗ = ±
√
ω2((p− pfoot)2 − (p0 − pfoot)2) + ṗ2

0 (A.7)

61

If the apex height is constant, then ω is constant. According to the constrain that sagittal

velocity should be continuous, the saggital switching position is obtained by

xswitch =
1

2
(

C

xfoot,n − xfoot,c

+ (xfoot,c + xfoot,n)) (A.8)

where

C =(xapex,c − xfoot,c)
2 − (xapex,n − xfoot,n)2

+
v2

apex,n − v2
apex,c

ω2

(A.9)

62

APPENDIX B

PROOF OF THEOREM 2.1.1

Proof. First, the sagittal switching position can be obtained from the analytical solution in

Appendix Appendix A:

xswitch =
1

2
(

C

xfoot,n − xfoot,c

+ (xfoot,c + xfoot,n)) (B.1)

where C = (xapex,c− xfoot,c)
2− (xapex,n− xfoot,n)2 + (ẋ2

apex,n− ẋ2
apex,c)/ω

2. This walking

step switching position is required to stay between the two consecutive CoM apex positions,

i.e.,

xapex,c ≤ xswitch ≤ xapex,n (B.2)

which introduces the sagittal apex velocity constraints for two consecutive keyframes as

follows.

ω2(xapex,n − xapex,c)(xapex,c + xapex,n − 2xfoot,n)

≤ v2
apex,n − v2

apex,c ≤

ω2(xapex,n − xapex,c)(xapex,c + xapex,n − 2xfoot,c)

(B.3)

Given this bounded difference between two consecutive CoM apex velocity squares,

the corresponding safe criterion for straight walking can be expressed as Equation 2.3.

63

APPENDIX C

PROOF OF THEOREM 2.1.2

Proof. First, for the sagittal phase-space, the sagittal velocity is required to be above the

asymptote:

ẋapex,c ≥ ω · xfoot,c (C.1)

Initiating a heading angle change introduces a new local sagittal coordinates as seen in Fig-

ure 2.2. Therefore Equation C.1 becomes

vapex,c · cos ∆θ ≥ ω ·∆y2,c · sin ∆θ (C.2)

As for the lateral phase-space, the lateral velocity is required to be below the asymptote in

the new coordinate as follows

vapex,c · sin ∆θ ≤ ω ·∆y2,c · cos ∆θ (C.3)

Combining Equation C.2-Equation C.3 results in the steering safety criterion in Equa-

tion 2.4.

64

REFERENCES

[1] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based
analysis and control of legged locomotion, part 1: Theory and application to three
simple gait models,” The international journal of robotics research, vol. 31, no. 9,
pp. 1094–1113, 2012.

[2] S. Heim and A. Spröwitz, “Beyond basins of attraction: Quantifying robustness of
natural dynamics,” IEEE Transactions on Robotics, vol. 35, no. 4, pp. 939–952,
2019.

[3] J. Luo, Y. Su, L. Ruan, Y. Zhao, D. Kim, L. Sentis, and C. Fu, “Robust bipedal
locomotion based on a hierarchical control structure.,” Robotica, vol. 37, no. 10,
pp. 1750–1767, 2019.

[4] N. Bohórquez, A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Safe navigation strate-
gies for a biped robot walking in a crowd,” in IEEE-RAS International Conference
on Humanoid Robots, 2016.

[5] A. Pajon and P.-B. Wieber, “Safe 3d bipedal walking through linear mpc with 3d cap-
turability,” in International Conference on Robotics and Automation, IEEE, 2019,
pp. 1404–1409.

[6] V. Vasilopoulos, W. Vega-Brown, O. Arslan, N. Roy, and D. E. Koditschek, “Sensor-
based reactive symbolic planning in partially known environments,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 1–5.

[7] O. Arslan and D. E. Koditschek, “Sensor-based reactive navigation in unknown con-
vex sphere worlds,” The International Journal of Robotics Research, vol. 38, no. 2-3,
pp. 196–223, 2019.

[8] V. Vasilopoulos, G. Pavlakos, S. L. Bowman, J. D. Caporale, K. Daniilidis, G. J.
Pappas, and D. E. Koditschek, “Reactive semantic planning in unexplored seman-
tic environments using deep perceptual feedback,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 4455–4462, 2020.

[9] J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion navigation in
partially observable environments with uneven terrain,” in 2020 59th IEEE Confer-
ence on Decision and Control (CDC), IEEE, 2020, pp. 958–965.

[10] A. Robotics, Cassie simulators.

[11] K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Correct high-level robot behavior in
environments with unexpected events,” in Robotics: Science and Systems, 2014.

65

[12] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,” in Verifica-
tion, Model Checking, and Abstract Interpretation, Springer, 2006, pp. 364–380.

[13] T. Wongpiromsarn, U. Topcu, and R. Murray, “Synthesis of control protocols for
autonomous systems,” Unmanned Systems, vol. 01, pp. 21–39, Jul. 2013.

[14] Y. Emam, S. Mayya, G. Notomista, A. Bohannon, and M. Egerstedt, “Adaptive task
allocation for heterogeneous multi-robot teams with evolving and unknown robot
capabilities,” in IEEE International Conference on Robotics and Automation, 2020,
pp. 7719–7725.

[15] J. L. Kit, A. G. Dharmawan, D. Mateo, S. Foong, G. S. Soh, R. Bouffanais, and
K. L. Wood, “Decentralized multi-floor exploration by a swarm of miniature robots
teaming with wall-climbing units,” in International Symposium on Multi-Robot and
Multi-Agent Systems, 2019, pp. 195–201.

[16] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning in belief
space,” The International Journal of Robotics Research, vol. 32, no. 9-10, pp. 1194–
1227, 2013.

[17] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive
mission and motion planning,” IEEE transactions on robotics, vol. 25, no. 6, pp. 1370–
1381, 2009.

[18] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning
for mobile robots,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, IEEE, 2005, pp. 2020–2025.

[19] Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task and motion planning
for robust whole-body dynamic locomotion in constrained environments,” arXiv
preprint arXiv:1811.04333, 2018.

[20] S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, “Temporal logic guided
locomotion planning and control in cluttered environments,” in American Control
Conference, IEEE, 2020.

[21] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit, “Collision-
free reactive mission and motion planning for multi-robot systems,” in Robotics re-
search, Springer, 2018, pp. 459–476.

[22] E. Plaku and S. Karaman, “Motion planning with temporal-logic specifications:
Progress and challenges,” AI communications, vol. 29, no. 1, pp. 151–162, 2016.

66

[23] A. Wu and J. P. How, “Guaranteed infinite horizon avoidance of unpredictable, dy-
namically constrained obstacles,” Autonomous robots, vol. 32, no. 3, pp. 227–242,
2012.

[24] S. Sarid, B. Xu, and H. Kress-Gazit, “Guaranteeing high-level behaviors while ex-
ploring partially known maps,” Jul. 2012.

[25] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y. Vardi, “It-
erative temporal motion planning for hybrid systems in partially unknown environ-
ments,” in Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control, ser. HSCC, Association for Computing Machinery, 2013,
pp. 353–362.

[26] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking temporal logic
synthesis for uncertain environments,” in 2012 IEEE International Conference on
Robotics and Automation, IEEE, 2012, pp. 5163–5170.

[27] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray, “Patching task-level
robot controllers based on a local µ-calculus formula,” in 2013 IEEE International
Conference on Robotics and Automation, IEEE, 2013, pp. 4588–4595.

[28] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon control for
temporal logic specifications,” in ACM International Conference on Hybrid Systems:
Computation and Control, 2010.

[29] S. Ragi and E. K. Chong, “Uav path planning in a dynamic environment via par-
tially observable markov decision process,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 49, no. 4, pp. 2397–2412, 2013.

[30] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle avoidance in uncer-
tain environment combining pvos and occupancy grid,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, IEEE, 2007, pp. 1610–1616.

[31] W. Chung, S. Kim, M. Choi, J. Choi, H. Kim, C.-b. Moon, and J.-B. Song, “Safe nav-
igation of a mobile robot considering visibility of environment,” IEEE Transactions
on Industrial Electronics, vol. 56, no. 10, pp. 3941–3950, 2009.

[32] S. Bouraine, T. Fraichard, and H. Salhi, “Provably safe navigation for mobile robots
with limited field-of-views in dynamic environments,” Autonomous Robots, vol. 32,
no. 3, pp. 267–283, 2012.

[33] S. Bharadwaj, R. Dimitrova, and U. Topcu, “Synthesis of surveillance strategies
via belief abstraction,” in IEEE Conference on Decision and Control, IEEE, 2018,
pp. 4159–4166.

67

[34] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for synthesis,” in ACM/IEEE
International Conference on Formal Methods and Models for Codesign, IEEE, 2011,
pp. 43–50.

[35] R. Ehlers and U. Topcu, “Resilience to intermittent assumption violations in reac-
tive synthesis,” in International Conference on Hybrid Systems: Computation and
Control, 2014, pp. 203–212.

[36] R. Majumdar, E. Render, and P. Tabuada, “Robust discrete synthesis against unspec-
ified disturbances,” in Proceedings of the 14th international conference on Hybrid
systems: computation and control, 2011, pp. 211–220.

[37] V. Raman and H. Kress-Gazit, “Automated feedback for unachievable high-level
robot behaviors,” in 2012 IEEE International Conference on Robotics and Automa-
tion, 2012, pp. 5156–5162.

[38] K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Resilient, provably-correct, and high-
level robot behaviors,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 936–952,
2018.

[39] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning and control of
non-periodic bipedal locomotion with a centroidal momentum model,” The Interna-
tional Journal of Robotics Research, vol. 36, no. 11, pp. 1211–1242, 2017.

[40] Y. Zhao and L. Sentis, “A three dimensional foot placement planner for locomo-
tion in very rough terrains,” in IEEE-RAS International Conference on Humanoid
Robots, IEEE, 2012, pp. 726–733.

[41] A. Shamsah, J. Warnke, Z. Gu, and Y. Zhao, “Integrated task and motion plan-
ning for safe legged navigation in partially observable environments,” arXiv preprint
arXiv:2110.12097, 2021.

[42] K. He, A. M. Wells, L. E. Kavraki, and M. Y. Vardi, “Efficient symbolic reactive
synthesis for finite-horizon tasks,” in 2019 International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 8993–8999.

[43] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[44] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive
(1) designs,” Journal of Computer and System Sciences, vol. 78, no. 3, pp. 911–938,
2012.

[45] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive switching proto-
cols from temporal logic specifications,” IEEE Transactions on Automatic Control,
vol. 58, no. 7, pp. 1771–1785, 2013.

68

[46] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive
mission and motion planning,” IEEE Transactions on Robotics, vol. 25, no. 6, pp. 1370–
1381, 2009.

[47] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive, high-level
robot control,” IEEE Robotics & Automation Magazine, vol. 18, no. 3, pp. 65–74,
2011.

[48] R. Ehlers and V. Raman, “Slugs: Extensible gr (1) synthesis,” in International Con-
ference on Computer Aided Verification, Springer, 2016, pp. 333–339.

[49] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit, “Reactive
mission and motion planning with deadlock resolution avoiding dynamic obstacles,”
Autonomous Robots, vol. 42, no. 4, pp. 801–824, 2018.

[50] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided ab-
straction refinement,” in International Conference on Computer Aided Verification,
Springer, 2000, pp. 154–169.

[51] R. Tedrake and the Drake Development Team, Drake: Model-based design and ver-
ification for robotics, 2019.

[52] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on computers, vol. 27,
no. 06, pp. 509–516, 1978.

[53] Y. Li and J. Liu, “Rocs: A robustly complete control synthesis tool for nonlinear
dynamical systems,” in Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control, 2018, pp. 130–135.

[54] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger, “Bipedal
walking control based on capture point dynamics,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2011, pp. 4420–4427.

[55] M. E. Cao, J. Warnke, Y. Zhao, and S. Coogan, “Leveraging heterogeneous capabil-
ities in multi-agent systems for environmental conflict resolution,”

69

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction and Background
	Related Work
	Thesis Structure

	2 | Preliminaries
	Phase-space planning
	Reactive Synthesis

	3 | Task Planning via Belief Abstraction
	Navigation Planner Design
	Action Planner Design
	Capturing Low-level Constrains in the High-level Planner
	Task Planner Synthesis
	Belief Tracking of Multiple Obstacles
	Results

	4 | Heterogeneous Multi-agent Collaboration for Environment Assumption Violation Resolution at Runtime
	problem formulation
	Controller Synthesis
	Coordination Layer Design
	Results

	5 | Conclusion
	Appendices
	A | Analytical Solution for PIPM Dynamics
	B | Proof of Theorem 2.1.1
	C | Proof of Theorem 2.1.2

	References

