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Abstract—Recent advancement in combining trajectory op-
timization with function approximation (especially neural net-
works) shows promise in learning complex control policies for
diverse tasks in robot systems. Despite their great flexibility, the
large neural networks for parameterizing control policies impose
significant challenges. The learned neural control policies are
often overcomplex and nonsmooth, which is inconsistent with
the fact that optimal control policies are smooth with respect to
state for most robotic systems. Therefore, they often yield poor
generalization performance in practice. To address this issue,
we propose adVErsarially Regularized pOlicy learNIng guided
by trajeCtory optimizAtion (VERONICA) for learning smooth
control policies. Specifically, our proposed approach controls the
smoothness (local Lipschitz continuity) of the neural control
policies by stabilizing the output control with respect to the
worst-case perturbation to the input state. Our experiments on
robot manipulation show that our proposed approach not only
improves the sample efficiency of neural policy learning but also
enhances the robustness of the policy against various types of
disturbances, including sensor noise, environmental uncertainty,
and model mismatch.

I. INTRODUCTION

Robust and generalizable motion planning enables robotic
systems to handle various uncertainties and accomplishes
diverse tasks. However, learning a dynamically consistent
neural control policy (i.e., a neural-network control policy)
and executing it reliably remain challenging. First, the function
approximators used to model the policy can be highly complex
and non-smooth, causing poor generalization performance.
Second, the dynamics models involved often have some mis-
match between the physical robot and the environment, leading
for the need to learn a robust policy.

The authors of [7, 5] take advantage of both trajectory
optimization (TO) and policy search by training a robot
control policy supervised by optimized trajectory samples, and
meanwhile adapting TO to the learned policy. The work in
[7] observes that the derivatives of a neural control policy can
behave irregularly even when the policy matches the optimal
trajectory baseline. This is because neural networks have high
complexity and flexibility, which makes them highly non-
smooth — a small change in the networks’ input can cause a
large variation in the output.

To alleviate these issues, we propose a new approach:
adVErsarially Regularized pOlicy learNIng guided by
trajeCtory optimizAtion (VERONICA). Specifically, our ap-
proach improves the local Lipschitz continuity of the neural

control policy via adversarial regularization. Our motivation
for promoting smoothness in policy stems from the fact that
many robotics systems are naturally governed by differential
equations with high-order continuity. Namely, similar states
should lead to similar optimal controls. We show that VERON-
ICA produces a smooth neural control policy, which improves
generalization performance for inputs not seen during training.

We further observe that besides promoting policy smooth-
ness, adversarial regularization improves the robustness of
the policy against modeling errors and perturbations in the
environment. We verify that the VERONICA framework pro-
duces stable robot behaviors under sensor noise, environmental
uncertainty, and model mismatch.

Conventionally, adversarial regularization involves a min-
max game, which is solved by alternating gradient descent-
ascent. During training, neither of the players can be advan-
tageous, such that the generated perturbations can be over-
strong and hinder model generalization. To resolve this issue,
we employ Stackelberg adversarial regularization (SAR) [12],
which formulates adversarial regularization as a Stackelberg
game. In SAR, the policy (i.e., the leader) has a higher priority
than the perturbation (i.e., the follower). The leader procures
its advantage by considering how the follower will respond
after observing the leader’s decision, such that the leader
anticipates the predicted move of the follower when optimizing
its strategy. We note that prioritizing the policy optimization is
reasonable and beneficial because we target the performance
of the learned policy, instead of the adversary.

Our contributions are: I) We propose VERONICA, an
adversarial regularization method for learning smooth neural
control policies guided by TO. This improves the generaliza-
tion performance of the learned policy; II) We show that the
learned policy achieves better robustness under disturbances
such as sensor noise, environmental uncertainty, and model
mismatch; III) We reformulate adversarial regularization as
a Stackelberg game, which further improves generalization
and robustness of the policy compared with the conventional
formulation.

II. METHOD

We introduce VERONICA, our proposed adversarially reg-
ularized approach which combines the strength of policy
learning and trajectory optimization. First, we define an ad-
versarial regularizer and explain how it improves smoothness



and robustness of neural control policies; Second, we de-
scribe an ADMM-based algorithm that solves the full joint
optimization problem; Third, we develop an extension to our
proposed adversarial regularization approach — Stackelberg
adversarial regularization. We consider the neural control
policy learning process guided by N optimal trajectories
{X,U} = {Xi,Ui | i = 1, · · · , N}, and each optimal
trajectory {Xi,Ui} consists of T state-control pairs {xti ∈
Rdx ,uti ∈ Rdu | t = 1, · · · , T}, where xti and uti denote
the robot state and the control, respectively. In this study, the
robot state corresponds to the joint positions, velocities and
task parameters such as goal configurations, while the control
corresponds to the joint torque. Moreover, let π(·|W) denotes
the neural control policy, where W denotes the associated
parameters.
A. Adversarial Regularization for Neural Control Policy

To promote smoothness of the neural control policy, we
consider the following adversarial discrepancy measure:

radv(x,W) = max
‖δ‖≤ε

r(x,W, δ)

= max
‖δ‖≤ε

‖π(x|W)− π(x+ δ|W)‖2,

where ‖ · ‖ denotes the `2 norm, δ ∈ Rdx is the adversarial
perturbation injected to the state vector x, and ε > 0 is the
perturbation strength. Such an adversarial discrepancy measure
radv(x,W) essentially computes the maximal deviation of
the neural control policy output at state x given an input
perturbation δ whose `2 norm is bounded by ε.

We then apply the adversarial discrepancy measure to con-
trol the smoothness of the neural control policy. Specifically,
we solve the following joint optimization problem:

min
X,U,W

N∑
i=1

L(Xi,Ui) +QBC(X,U,W) + αRadv(X,W),

(1)

where L(Xi,Ui) denotes the loss function of the trajectory
optimization (TO) for the ith trajectory, QBC(X,U,W) de-
notes the loss function for policy learning:

QBC(X,U,W) =
1

N

∑
i,t

||π(xti|W)− uti||2,

Radv(X,W) is the adversarial regularizer for controlling the
smoothness of the policy:

Radv(X,W) =
1

N

∑
i,t

radv(x
t
i,W)

=
1

N

∑
i,t

max
‖δt

i‖≤ε
‖π(xti|W)− π(xti + δti |W)‖2,

and α is the regularization coefficient weighting between the
QBC(X,U,W) and Radv.

Solving the optimization problem in Eq. (1) learns a neural
control policy that not only minimizes the TO loss and the
behavior cloning loss, but also encourages the adversarial

discrepancy measure of the policy to be small at every state
of the optimal trajectories.

(I) Adversarial Regularization Improves Generalization:
Existing methods usually train neural control policies by
only minimizing the trajectory optimization loss and behavior
cloning loss. Due to the high capacity of deep neural networks,
the learned neural control policies are often over-complex and
highly non-smooth. This is inconsistent with observations that
many optimal control policies for robots are smooth, which
requires a small perturbation to the state vector x to only
yield a small change to the policy output. Such a property
can improve generalization of the learned policy.

VERONICA naturally promotes the desired smoothness by
imposing a high penalty when the adversarial perturbation δ
yields a large deviation to the policy output. More precisely,
radv(x,W) essentially upper bounds the deviation of the
policy output due to the adversarial perturbation δ with respect
to the state x, and therefore can be viewed as a measure of
the local Lipschitz constant within a small neighborhood of
x, i.e., Cx = sup‖δ‖≤ε

‖π(x|W)−π(x+δ|W)‖
‖δ‖ . Accordingly, our

proposed adversarial regularizer penalizes the average discrep-
ancy measures of the neural control policy at all trajectory
points, which enforces its local Lipschitz continuity.

(II) Adversarial Regularization Gains Robustness: Robot
systems measure their states from sensors, which are prone to
stochastic or systematic sensor errors. VERONICA naturally
gains robustness against such disturbances. Specifically, the
adversarial perturbation in VERONICA can be viewed as a
proxy to the errors. Therefore, our approach does not require
prior knowledge of them. In comparison, existing methods for
handling such errors usually assume specific forms, e.g., inde-
pendent Gaussian noise, which can be restrictive in practice.

Moreover, as suggested in [1], the Lipschitz continuity
is essential to robustness, especially for control and rein-
forcement learning problems. This is because for policies
without the Lipschitz continuity property, a small error in
sensor measurement or state transition potentially leads to
a drastic change to the policy output. Due to the dynamic
nature of the control problem, it will further yield significant
error compounding during policy roll-out. As the VERONICA
approach can effectively control the local Lipschitz continuity
of the neural control policy, such an issue can be mitigated.
B. Combined Trajectory Optimization and Adversarially Reg-
ularized Policy Learning

We apply ADMM [10, 11] to solve the optimization prob-
lem in Eq. (1). Specifically, we reparameterize Eq. (1) into
a decomposable form by introducing two auxiliary sets of
state and control variables: (XTO,UTO) represents the trajec-
tory samples generated by trajectory optimization (TO), and
(XPL,UPL) are copies of (XTO,UTO) for policy learning.
Accordingly, the optimization problem in Eq. (1) is reformu-
lated as:

min
XTO,PL,UTO,PL,W

N∑
i=1

L(XTO
i ,UTO

i )

+QBC(X
PL,UPL,W) + αRadv(X

PL,W)

s.t. XTO = XPL,UTO = UPL. (2)



ADMM splits the above optimization problem into N individ-
ual TO problems and a policy learning problem to be solved
in an iterative manner. Note that the ADMM update for policy
learning at the pth iteration, as seen in Eq. (3), is a min-max
optimization problem, which is solved via alternating gradient
descent/ascent:

Wp+1 = argmin
W

QBC(X
PL,p,UPL,p,W)

+Radv(X
PL,p,W). (3)

C. Stackelberg Adversarial Regularization

One major limitation of the adversarial regularizer in Eq. (3)
is that it solves a min-max-game-based optimization, where
neither of the players can be advantageous. This is problem-
atic because the adversarial player may generate over-strong
perturbations that hinder generalization. To mitigate this issue,
we employ Stackelberg adversarial regularization [12] to solve
the policy update in Eq. (3) through a Stackelberg game
formulation. In a Stackelberg game, there are two players,
a leader (the policy) and a follower (the perturbations). The
leader acknowledges the strategy of the follower, such that it is
always in an advantageous position. This effectively eliminates
the over-strong perturbations.

To simplify the notation, we omit the indices on the trajec-
tory sample points x. We solve

min
W
QSAR(W) = QBC(X,U,W) +

α

N

∑
r(x,W, δK),

(4)

s.t. δK(W) = UK ◦ UK−1 ◦ · · · ◦ U1(δ0).

The policy parameter W in Eq. (4) is the leader, and the
perturbation δ(W) is the follower. Here, ◦ denotes opera-
tor composition, i.e., f(·) ◦ g(·) = f(g(·)). Each Uk for
k = 1, · · · ,K represents the kth step update operator for the
follower’s strategy. The operators are defined by pre-selected
optimization algorithms such as stochastic gradient descent
(SGD) or Adam [4].

In Stackelberg adversarial training, the leader acknowledges
the strategy of the follower by treating the perturbations (the
follower) as a function of the policy parameters (the leader).
Correspondingly, we solve for the policy parameters using
gradient descent, where the Stackelberg gradient is

dQSAR(W)

dW
=

dQBC(X,U,W)

dW
+ α

∂r(x,W, δK)

∂W︸ ︷︷ ︸
leader

+α
∂r(x,W, δK)

∂δK
dδK

dW︸ ︷︷ ︸
leader-follower interaction

. (5)

In comparison, the conventional adversarial regularization
in Eq. (3) uses only the leader term and does not consider the
leader-follower interaction.

This Stackelberg gradient can be efficiently computed using
deep learning libraries, such as PyTorch [9]. Please refer to
[12] for more details.

III. RESULTS & FUTURE WORKS

The VERONICA framework is evaluated on Kuka arm
manipulation tasks in simulation. The simulation environment
is implemented in PyBullet [2]. We use Crocoddyl [6] as
the TO solver. The adversarially regularized policy learning
algorithm described in Sec.II-A is implemented using Py-
Torch [9] and Higher [3]. We compare generalization and
robustness of policies trained with Gaussian perturbations,
conventional adversarial regularization (VERONICA-AR), and
SAR (VERONICA-SAR). As seen in Figure 1, the adversar-
ially regularized policies consistently outperform the policy
trained with no perturbation or Gaussian perturbation. Further-
more, VERONICA-SAR leads to stable and near-optimal robot
motions across all attempts, even under a strong sensor noise,
while a small percentage of policy roll-outs for VERONICA-
AR results in unstable robot motion. This confirms our hypoth-
esis that VERONICA-SAR helps enhance numerical stability
comparing to VERONICA-AR.
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Fig. 1. Cost percentile plot for 3-DOF arm reaching task with 100 different
initializations and under disturbances on sensor measurement. Disturbances
are drawn from a uniform distribution bounded by ζ. Policies trained with no
perturbation, Gaussian perturbation, VERONICA-AR, and VERONICA-SAR
are compared against an undisturbed TO baseline. The plot is capped at 2
times the maximum baseline cost. A cost curve that exceeds the plotting cap
indicates that a percentage of policy roll-outs lead to unstable robot motion.

We investigate how the performance of VERONICA-SAR
scales to higher state and control dimensions by evaluating
the task errors of manipulator reaching tasks for 3, 5, and
7-DOF Kuka arms. Table I shows the average task errors
over 100 initializations. The task error increases with the
dimensionality of the problem, but not significantly. Note that
the 5 and 7-DOF experiments involve manipulation in the 3-
D space, which lead to much higher problem complexity than
the planar 3-DOF Kuka arm configuration, and require larger
neural control policies.

TABLE I
TASK ERRORS FOR M -DOF MANIPULATOR (Unit: m)

M = 3 M = 5 M = 7

6.39e-2 1.23e-1 1.32e-1

Our future work will (i) evaluate the performance of
VERONICA in the presence of more types of perturbations
and uncertainties, such as varying link moment of inertia and
kinematic parameters; (ii) extend VERONICA to solve more
complex manipulation problems involving physical contact
and enhance robustness to contact uncertainties. We will
employ a smoothed contact solver similar to the one in [8]
to circumvent the discontinuity due to contact phenomena
and leverage the smoothness merit induced by the adversarial
regularization.
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