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Abstract—This study is working towards an integrated task
and motion planning method for dynamic locomotion in partially
observable environments with safety guarantees. This planning
framework is composed of a symbolic task planner and a
reduced-order-model-based motion planner, which are connected
by a mid-level keyframe decision-maker as seen in Fig. 2. The
mid-level keyframe decision maker generates a keyframe plan
via reachability analysis and proposes a robust keyframe policy,
which is used to generate low-level phase-space trajectories. The
high-level task planner employs a linear temporal logic approach
for a reactive game synthesis between the robot and its environ-
ment while incorporating the robust keyframe transition policies
into the formal task specification design. A belief abstraction
method in the task planner enables belief estimation of dynamic
obstacle locations and guarantees safe locomotion with collision
avoidance.

I. INTRODUCTION

Safety scalable to high-dimensional robotic systems be-
comes imperative as legged robots maneuver over uneven
and unpredictable environments (see Fig. 1). In the robot
mobility field, navigation safety is conventionally studied
from the collision avoidance perspective [4, 6, 1]. However,
in the context of dynamic legged locomotion, maintaining
dynamic balancing, i.e., avoiding a fall [7, 5], becomes an
essential safety criterion. Reasoning about safety from both
levels has been largely under-explored in the field with a
few exceptions [3, 9]. Our method takes one step towards
using a symbolic planning method to design active navigation
decisions with safety guarantees. Meanwhile, we incorporate
a belief abstraction approach to enable safe navigation in a
partially observable environment.
Hierarchical planning structure: We employ a high-level,
temporal-logic-based symbolic planner to generate a locomo-
tion action set a ∈ A at each robot keyframe s (more details in
later sections). Taking this action a and the current keyframe
state sc, the mid-level keyframe decision-maker outputs the
next-walking-step keyframe sn for a robust transition. Finally,
the low-level motion planner generates one-walking-step lo-
comotion trajectory based on the keyframe and a Prismatic
Inverted Pendulum Model (PIPM). The integrated, hierarchical
task and motion planning framework is shown in Fig. 2.

II. LOCOMOTION PLANNING

Phase-space planning (PSP) is a general planning frame-
work for dynamic legged locomotion over highly rough terrain
[15, 13, 14]. This planning method is based on a reduced order

Fig. 1: A conceptual illustration of safe locomotion navigation in a cluttered
environment with dynamic mobile obstacles and uneven terrain in Drake [12].

Fig. 2: Block diagram of the proposed locomotion planning framework.

model (PIPM). This PIPM plans center-of-mass (CoM) trajec-
tories with varying heights, which is suitable for rough terrain
locomotion. The PIPM dynamics are shown in Appendix A.
Keyframe Planning: Our PSP method focuses on using
keyframe states to capture essential locomotion dynamics and
makes discrete decisions to achieve non-periodic gaits. This
study generalizes the original keyframe definition in [15] by
introducing diverse navigation actions in 3D environments.

Definition 2.1 (Keyframe State): The keyframe state of our
PIPM model is defined as k = (a, s) ∈ K, where a =
(d,∆θ,∆zfoot, ist, cforward, cstop) ∈ A is an action, d is the
walking step length, ∆θ is the heading angle, ∆zfoot is the
step height, ist is the desired stance foot index, cfwd and
cstop are boolean variables representing step forward or stop
respectively, s = (vapex, zapex) ∈ S, is the state of the CoM
sagittal apex velocity vapex and the apex CoM height zapex in
the global frame.
Robust Keyframe Decision Making: Our decision-making
objective is to design robust keyframe transitions in the pres-
ence of external disturbances. To this end, we use reachability



Fig. 3: Phase-space reachability region computation of one locomotion step.
The green shaded area is IWIN , i.e., the intersection of initial robustness
margin set I (blue region) and the winning set WIN (yellow region).
The black and blue lines are simulated CoM trajectories under bounded
perturbations. The tangent and cotangent manifolds quantify the size of the
robustness margins, i.e., I and the final robustness margin (dashed red region).

analysis to compute feasible alternative keyframe transitions
when the nominal transition becomes infeasible under the
perturbations. As an initial work, we leverage the reachability
analysis method in [16] to investigate the robust keyframe tran-
sitions. Using RObustly Complete control Synthesis (ROCS)
[8], we compute winning sets WIN 1 for feasible keyframe
transitions. To quantify the robustness, we propose and use the
initial winning set IWIN defined as below.

Definition 2.2 (Initial Winning Set): IWIN is the intersec-
tion set of the initial robust margin set I and WIN , i.e.,
IWIN =WIN ∩ I. 2

If the initial winning set IWIN 6= ∅, we define the associated
keyframe transition as viable. This viable transition is used as a
criterion to achieve dynamic balancing safety. Fig. 3 shows the
reachability region computation for one downstairs walking
step with ∆zfoot = −0.2 m. By examining the size of IWIN
in the cases of rough terrain and turning heading angles, we
observe a inverse relation between the size of IWIN and the
value of vapex (see Appendix B). Using the size of IWIN
as an indicator of robustness, we devise a heuristic-based
robust keyframe planning policy in the middle-level keyframe
decision-maker. For instance, for traversing a rough terrain or
steering, the apex velocity is decreased according to the terrain
height variation or heading angle change.

III. TASK PLANNING

The task planner is responsible for achieving robot naviga-
tion goals while guaranteeing collision avoidance. To expand
the set of safe actions the task planner can choose, we employ
belief tracking of the dynamic obstacle. We devise a variant of
the approach in [2] to design a belief-based navigation strategy
in a 2D grid world. The grid is split up into coarse belief
regions that are used to reason about the obstacle’s possible
location when it is out of sight. At each keyframe, the task
planner evaluates the robot’s discrete location (lr ∈ L) and
heading angle (hr ∈ Hr) on the grid, as well as it’s belief of
the dynamic obstacle location (bo ∈ Bo). bo takes a real value

1WIN denotes the keyframe state set satisfying reachability conditions.
2The initial robust margin set I is defined as a robustness region centered

around the nominal initial keyframe state [16].

(a) With belief abstraction (b) Without belief abstraction

Fig. 4: A snapshot of a 2D navigation simulation where the robot (blue circle)
is going between the two goal states (green cells), while avoiding a static
obstacle (red cells) and a dynamic obstacle (orange circle). White cells are
visible while grey and black cells are non-visible. Gray cells represent the
planner’s belief of potential obstacle locations based on the obstacle’s last
known state. The closest the obstacle could be to the robot, as believed by
the planner, is depicted by the pink circle.

in L when the obstacle is visible, and a value indexing a set
of belief regions when the obstacle is out of sight.

To formally guarantee that the robot reaches goal locations
infinitely often while meeting safety specifications, we use
SLUGS [11] to synthesize a planner from General Reactivity
of Rank 1 (GR(1)) specifications [10].

To synthesize a winning navigation strategy, a game struc-
ture is proposed as Gbelief := (Sbelief , sinitbelief , Tbelief) with

• Sbelief = L × Bo ×Hr ×A is the augmented state;
• sinitbelief = (linitr , {binito }, hinitr , ainit) is the initial game state

known a priori;
• Tbelief ⊆ Sbelief×Sbelief are possible transitions in the be-

lief game where ((lr, bo, hr, a), (l′r, b
′
o, h
′
r, a
′
r)) ∈ Tbelief ;

We generate the transition system Tbelief by defining specifica-
tions ψ for how the augmented state can evolve. We capture
motion planning constraints and enforce collision avoidance
guarantees within the transition specifications. Additionally,
specifications are automatically generated to govern how the
belief evolves when the dynamic obstacle is out of sight, and
where the obstacle can re-appear. More details on specification
generation are in Appendix C.

The task planner models the robot and environment inter-
play as a two-player turn-based game between the robot and a
possibly adversarial environment. The synthesized high-level
strategy guarantees that the robot will always win this game.

Fig. 4 depicts a snapshot of a simulation where the planner
is only able to safely initiate a turn when employing belief
reasoning, as without tracking possible non-visible locations
of the dynamic obstacle, the task planner can not guarantee
collision avoidance before the robot can safely stop. This
comparison underlines the significance of belief tracking.

IV. CONCLUSION

The proposed task and motion planning framework gener-
ates locomotion trajectories that safely pilot the robot through
a partially observable environment. This represents a step
towards guaranteeing robust safe locomotion in complex en-
vironments with formal safety guarantees. In future work, we
plan to integrate the robust reachability analysis into the phase-
space planning and embed the computed feasible keyframe
transitions into the task specification design.
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APPENDIX

A. Prismatic Inverted Pendulum Model

The prismatic inverted pendulum model constrains the CoM
path to a piece-wise linear surface [15]. The centroidal dynam-
ics are written as

p̈com =


w2

q(x− xfootq)
w2

q(y − yfootq)

aqw
2
q(x− xfootq) + bqw

2
q(y − yfootq)

 (1)

where pcom = (x, y, z)T is the CoM position, wq =√
g/hapex and hapex = aq ·xfootq +bq ·yfootq +h is the relative

apex height of the CoM with respect to the foot position. h is
a bias constant equal to 0.8 m, while aq and bq are slopes used
to adjust CoM path surface to follow the slopes of the terrain
[13]. xfoot ,yfoot, and zfoot are the foot placement positions at
the qth step.

Fig. 5: Initial winning set variation with respect to different apex velocities.
Three IWIN sets for one walking step with ∆zfoot = −0.2 m at three
different vapex. Teal shaded region is IWIN for vapex = 0.5 m/s, blue
shaded region is IWIN for vapex = 0.6 m/s, and yellow shaded region is
IWIN for vapex = 0.7 m/s.
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B. Initial Winning Set Variation for Different Apex Velocities

The robustness of a keyframe transition depends on the
specific keyframe values. To quantify this robustness, we use
the size of IWIN as an indicator. Fig. 5 shows the relationship
between vapex and the size of IWIN when the robot goes
down a stair step of 0.2 m height. While it is possible to
traverse the step with vapex = 0.6 m/s, the size of IWIN
increases when reducing vapex from 0.6 m/s to 0.5 m/s, which
corresponds to a more robust transition. Examining IWIN for
three different values of apex velocities we observe a trend in
its size. The number of uniformly sampled states in the IWIN
region for vapex = 0.5 m/s, 0.6 m/s, and 0.7 m/s is 769, 358,
and 270, respectively.

C. Belief Space Reasoning

To leverage belief space reasoning for collision avoidance, it
is necessary that the belief over-approximates the possible dy-
namic obstacle locations. We automatically generate transition
rules for the allowable belief state bo. In the reactive synthesis,
bo is modeled as an environment state, allowing transition rules
to be formulated as environment safety specifications. As part
of the turn-based nature of the game, we allow the obstacle to
move one cell in any cardinal direction per walking step. When
the dynamic obstacle is at the boundary of a visible range, bo
can transition to any adjacent visible cell, or to a belief index,
if the obstacle is not visible at the next keyframe. This belief
index represents the set of belief regions the obstacle could
have entered. Once out of sight, the obstacle is believed to be
in any cell represented by the belief index. Therefore, b′o must
represent the current belief region set plus any adjacent belief
regions. Using this method, we can guarantee that the obstacle
location is always in the belief region set, i.e. the belief is an
over-approximation of the possible obstacle locations. With the
ability of reasoning about what non-visible cells the obstacle
could be in, the planner is able to determine where the obstacle
can reenter the visible range. As shown in Fig. 4, the ability
to assure that the obstacle will not appear in front of the robot
can result in safe navigation behavior that would otherwise
not be guaranteed.

D. Safety Guarantees and Reasoning about Conservativeness

Guaranteeing safe navigation behavior is imperative for
locomotion task planning. To guarantee collision avoidance in
an environment with dynamic obstacles, the task planner needs
to anticipate any possible move that the obstacle can make.
Guaranteeing safety in a partially observable environment
results in overly conservative behavior, as the planner accounts
for the possibility that the dynamic obstacle might appear in
front of the robot at any time. Fig. 4b shows a scenario where
the planner can not guarantee collision avoidance over a multi
step turn if the obstacle can appear in front of the robot. Belief
space planning eliminates this conservative behavior when the
belief indicates the obstacle can not appear in front of the robot
as can be seen in Fig. 4a. The conservative behavior may still
exist because the belief is an over-approximation of where the
dynamic obstacle could be, i.e. the planner may believe that

the obstacle could appear in front of the robot at the next step,
when in reality the obstacles could not have moved that far,
given where it was last observed. The belief tracking accuracy
can be improved by reducing the size of each belief region,
however this increases the computational complexity, as the
number of belief regions increases. A compromise between
overly conservative behavior and computational complexity is
made.

From the reachability analysis standpoint, the reachability
controllers are synthesized using a finite-abstraction based
method that over-approximates the dynamics of the continuous
system. In the future, we will use adaptive partitions of the
abstract intervals around the keyframe states to approximate
the reachable set with a fine granularity while maintaining the
computational burden to be tractable. Meanwhile, non-uniform
grids of the robustness margins via the use of locomotion
manifolds will be explored to reduce conservatism by reducing
the number of unnecessary keyframe transitions, which can be
tremendous if a small granularity is used.
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