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Abstract—Safe and autonomous locomotion for legged robots
in real-world environments requires generating motion strategies
that are robust to uncertainty in the terrain. Current trajectory
optimization methods rely on specifying the geometry and friction
properties of the terrain; however, errors in the terrain model
can lead to failure through slipping and falling. Here we develop
a trajectory optimization approach that explicitly incorporates
parametric uncertainty in the terrain model. We demonstrate
that our method produces a spectrum of robust trajectories: the
method produces robust trajectories when uncertainty is large
and the nominal optimal trajectories when uncertainty is small.
Our study represents a step towards generating safe locomotion
behaviors which are robust against uncertainty in the terrain.

I. INTRODUCTION

Designing safe and autonomous locomotion behaviors for
bipedal robotics poses a challenge for deploying these systems
in real-world environments. Safely traversing a terrain to a goal
requires avoiding slipping and falling on the terrain, in addi-
tion to avoiding obstacles. Current contact-implicit trajectory
optimization methods typically require precisely specifying
terrain geometry and friction characteristics which in real-
world scenarios are prone to uncertainty [5, 4]. Previous works
have addressed model uncertainty by perturbing individual
model parameters, resulting in an ensemble of trajectories [3].

Our work focuses on explicitly reasoning about uncertainty
in the environment. In particular, we aim to encode uncertainty
about the terrain geometry and the friction characteristics into
robust objectives for trajectory optimization. The goal of our
study is to demonstrate that the robust objectives produce
robust trajectories when the terrain uncertainty is large and
non-robust optimal trajectories when the uncertainty is small.

II. ROBUST TRAJECTORY OPTIMIZATION

Contact-implicit trajectory optimization has been used in
recent years to compute the contact forces while the trajectory
is optimized [5], and traditionally takes the form:

min
z=(q,q̇,u,λ)

∫ T

0

L(z)dt (1a)

s.t.


M(q)q̈ + C(q̇, q) = B(q)u+ J>c (q)λ (1b)
0 ≤ λN ⊥ φ(q) ≥ 0 (1c)
0 ≤ λT ⊥ γ + JT q̇ ≥ 0 (1d)
0 ≤ γ ⊥ µλN − e>λT ≥ 0 (1e)
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Fig. 1. Comparison of the ERM cost landscape for low uncertainty (left)
and high uncertainty (right). Axes represent the forces λ and the expected
value ḡ of the uncertain constraint. When uncertainty σ is small, the ERM
cost landscape resembles the solution set for the complementarity constraint.

where z is the set of decision variables, L is the running cost,
(1b) represents the dynamics, φ(q) is the normal distance to the
terrain, γ is a slack variable related to sliding velocity, µ is the
coefficient of friction and e> = [1, ..., 1]. The complementarity
conditions (1c)-(1e) can be expressed as 0 ≤ λ ⊥ g(z) ≥ 0,
where g represents an exact model of the terrain.

In general, solutions to (1a) are sensitive to the contact
model encoded in the constraints. Our study encodes un-
certainty in the terrain by employing stochastic complemen-
tarity constraints in place of the deterministic constraints.
Specifically, we assume Gaussian uncertainty in the fric-
tion coefficient and in the contact distance. Then, following
previous developments [6], we derived an expected residual
minimization (ERM) cost to represent the uncertain contact:

E[‖ψ(λi, g(zi))‖2] = λ2i − σ(λi + ḡ)p(λi)

+ (σ2 + ḡ2 − λ2i )P (λi) (2)

where ψ is the min function, g(zi, ω) ∼ N (ḡ, σ2) is the
constraint with Gaussian uncertainty, and p(λi) and P (λi) are
the Gaussian probability and cumulative distribution functions.
The ERM costs are then added to the running cost:

min
q,q̇,u,λ

N−1∑
i=0

(
L(zi) + βE[‖ψ(λi, g(zi))‖2]

)
(3)

Previous developments in the theory of stochastic comple-
mentarity problems have shown that solutions to the ERM
problem are robust to variations in the uncertain parameters
[2, 1]. The present study explores the robustness of ERM
solutions in the context of trajectory optimization problems,
and also explores the behavior of the solutions under different
amounts of uncertainty. Moreover, our work shows that, as
the uncertainty decreases, the ERM problem converges to the
deterministic complementarity problem (Figure 1).
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Fig. 2. Comparison of trajectories generated by the reference, non-ERM
method and the ERM method for the sliding block example. (Left) Optimized
controls from the reference trajectory optimization problem (top) and the ERM
problem (bottom). (Right) Position trajectories simulated using the optimized
controls under different friction coefficients on the terrain.

III. SIMULATION EXPERIMENTS

We explored robustness to uncertainty in friction coefficients
in a sliding block simulation. We assumed the friction coef-
ficient was normally distributed and derived the ERM cost
for the friction cone. Compared to the non-ERM reference
control, the control generated with the ERM was nonzero for
a shorter period of time and its amplitude was larger (Figure 2).
The position trajectories generated by simulating the controls
forward showed smaller final position variation with respect
to changing terrain friction coefficients for the ERM controls
compared to the non-ERM controls.

We tested robustness to uncertainty in the contact distance
in a simulation experiment where a cart must pedal across
a frictionless rail via a two-link pendulum that can contact
the ground (Figure 3(b)). We assumed the terrain normal
vector was known but that the contact distance was normally
distributed and we derived an ERM cost on the normal
distance. Compared to the non-ERM reference trajectory,
trajectories generated with the ERM cost and contact distance

uncertainties σ ≥ 0.1 showed increased foot clearance height
(Figure 3b,c). For uncertainties σ < 0.01, the ERM trajectories
converged to the reference trajectory with little error.

IV. DISCUSSION

In contrast to previous work [6], which presented ERM as a
smoothing method for contact, we presented ERM as a method
for robust optimization in the face of parametric uncertainty
in the terrain model. Specifically, our work demonstrated that
the ERM produces shorter sliding durations under friction
uncertainty and greater foot clearances under contact location
uncertainty. The ERM controls in the sliding example also
produced less terminal position variation compared to non-
ERM controls in simulation, demonstrating that the controls
can inherit robustness from the ERM solution.

One advantage of the ERM method is that the robustness
is adjustable through the uncertainty σ. As we demonstrated,
increasing the uncertainty leads to more robust solutions, while
decreasing the uncertainty leads to more optimal solutions.
However, robustness does not always increase with uncer-
tainty; if the uncertainty is too large, the ERM cost ceases to
represent the discontinuous contact conditions and the result-
ing solution could be physically infeasible. In future work, the
uncertainty could be made variable across the terrain, biasing
the system away from regions where terrain information is
poor and towards regions where terrain information is known.

The ERM method we presented here represents a step
towards contact-implicit trajectory optimization that is robust
against uncertainty in the terrain model. More work is required
to generalize our results to uncertainty in the geometry of the
terrain and to demonstrate that the results hold in systems with
more complex dynamics. Given the probabilistic framework
underlying the ERM method, future studies could fuse the
ERM method with data collected during run-time locomotion
experiments to update the uncertainty and robustness online.
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Fig. 3. Illustration of the relationship between contact uncertainty and locomotion foot clearance height. (a) Illustration of the complementarity relationship
between normal distance φ and normal force λN . In this example, the normal distance φ is uncertain. (b) Selected configurations of the contact-driven cart
under different values of uncertainty, where the cart is constrained along a horizontal track. For σ < 0.1, the configurations are indistinguishable from one
another and from the non-ERM reference trajectory. (c) The normal distance between the endpoint of the contact-driven cart and the terrain over the entire
trajectory. As uncertainty increases, the distance increases until the second link flips over, decreasing the distance again. (d) Mean-squared difference between
the ERM solutions and the non-ERM reference. As uncertainty decreases, the ERM trajectories converge to the reference with little error. Colors in (b) and
(c) represent solutions at different levels of uncertainty and a legend is given in the lower right corner.
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