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Abstract—This study proposes a hierarchically inte-
grated framework for safe task and motion planning (TAMP)
of bipedal locomotion in a partially observable environment
with dynamic obstacles and uneven terrain. The high-level
task planner employs linear temporal logic (LTL) for a
reactive game synthesis between the robot and its envi-
ronment and provides a formal guarantee on navigation
safety and task completion. To address environmental par-
tial observability, a belief abstraction is employed at the
high-level navigation planner to estimate the dynamic ob-
stacles’ location when they are out of the robot’s local field
of view. Accordingly, a synthesized action planner sends
a set of locomotion actions including walking step, step
height, and heading angle change, to the middle-level mo-
tion planner, while incorporating safe locomotion specifica-
tions extracted from safety theorems based on a reduced-
order model (ROM) of the locomotion process. The motion
planner employs the ROM to design safety criteria and a
sampling algorithm to generate non-periodic motion plans
that accurately track high-level actions. To address external
perturbations, this study also investigates safe sequential
composition of the keyframe locomotion state and achieves
robust transitions against external perturbations through
reachability analysis. A set of ROM-based hyperparameters
are finally interpolated to design whole-body locomotion
gaits generated by trajectory optimization and validate the
viable deployment of the ROM-based TAMP to the full-body
trajectory generation for a 20-degrees-of-freedom Cassie
bipedal robot designed by Agility Robotics. The proposed
framework is validated by a set of scenarios in uneven, par-
tially observable environments with dynamical obstacles.

Index Terms—Task and motion planning, bipedal loco-
motion, temporal logic, sequential composition, safety.

[. INTRODUCTION

OBOTS are increasingly being deployed in real-world

environments, with legged robots presenting superior
versatility in complex workspaces. However, safe legged
navigation in real-life workspaces still poses a challenge,
particularly in a partially observable environment comprised
of dynamic and possibly adversarial obstacles as seen in
Fig. (1] While motion planning for bipedal systems in dynamic
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Fig. 1: A snapshot of the simulation environment for the proposed TAMP
framework. The walking robot is deployed to accomplish safe navigation tasks.
The environment contains static and dynamic obstacles, and uneven terrains.

environments has been widely studied [1]-[4], the proposed
solutions often lack formal guarantees on simultaneous loco-
motion and navigation safety, with the exception of a recent
work in [5]. Formal guarantees on safety and task completion
in a complex environment has been gaining interest in recent
years [6]—-[9], however hierarchical planning frameworks with
multi-level safety guarantees for underactuated legged robots
remain lacking. An intrinsic challenge of such multi-level for-
mal guarantees is how to guarantee viable execution of high-
level commands for low-level, full-body motion generation
that involves inherently complex bipedal dynamics.

This study proposes a hierarchically integrated task and
motion planning (TAMP) framework as shown in Fig.
and provides multi-level formal safety guarantees on dynamic
locomotion and navigation in dynamic and partially observable
environments as shown in Fig.[T] A high-level temporal-logic-
based task planner consists of global navigation and local
action planners with formal guarantees on safety and task
completion. A middle-level motion planner is comprised of
a keyframe decision maker that determines the next loco-
motion keyframe, and a phase-space planner that generates
safe center-of-mass (CoM) trajectories. Keyframe states of
reduced-order models (ROMs) are used as interpolated hyper-
parameters of the whole-body motion planner for full-body
trajectory optimization.

Our framework takes safety into account in each layer
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Fig. 2: Block diagram of the proposed TAMP framework. The high-level task planner employs a linear temporal logic approach to synthesize locomotion
actions for navigation tasks. The middle-level motion planner generates a safe motion plan based on a ROM. Then the whole-body motion planner, generates
full-body motion primitives for our Cassie bipedal robot by interpolating hyperparameters extracted from the ROM plan. The high-level task planner and the
middle-level motion planner are integrated in an online fashion as shown by the solid black arrows. The dashed arrows represent offline computations.

of the hierarchical structure, and in how these layers are
interconnected to achieve simultaneous safe locomotion and
navigation. At the middle-level motion planning layer, we
leverage our previous Phase-Space Planning (PSP) method
[10]-[12] to propose a set of ROM-based safety criteria, where
we constrain allowable CoM apex velocity and turning angle
to refine safety specifications in the high-level task planner.
Therefore, the high-level task planner incorporates locomotion
dynamics constraints into the LTL safety specifications thus
guaranteeing safe execution of the high-level actions in the
underlying motion planners. The middle-level motion planner
also employs a sampling-based algorithm to select the optimal
next CoM apex velocity to track the high-level actions. We in-
tegrate the task and the motion planners online for correction-
as-needed execution, in the presence of external perturbations.

Guaranteeing safe navigation of legged robots in the pres-
ence of possibly adversarial obstacles becomes particularly
challenging in partially observable environments. The range
of a robot’s sensor and occlusion caused by static obstacles
give an adversarial agent a strategic advantage when trying to
falsify the bipedal robot’s safety guarantees by moving through
non-visible regions of the environment. Our work is motivated
by the surveillance game literature [13] to track possible non-
visible dynamic obstacle locations via belief space planning.
Belief space planning allows us to model the set of possible
obstacle locations and track how this set evolves, reducing ad-
versarial agents’ strategic advantage and guaranteeing collision
avoidance in a larger set of environments.

Robustness at the motion planning layer is of key impor-
tance, as continuous perturbations (e.g., CoM perturbations)
can be naturally handled at this layer [14], unlike in the
discretized high-level task planner which is unaware of lo-
comotion dynamics. To this end, we formulate the locomotion
gait in the lens of controllable regions [15] and sequential
composition [16] where we sequentially compose controllable
regions to robustly complete a walking step. We employ
ROM-based backward reachability analysis to compute robust
controllable regions, and synthesize appropriate controllers to

safely reach the targeted state.
The main contributions of this study are as follows:

o Design a hierarchically integrated planning framework
that provides formal safety guarantees simultaneously
for the high-level task planner and middle-level ROM-
based motion planner, which enables safe locomotion and
navigation involving steering walking.

o Design safe sequential composition of controllable re-
gions for robust locomotion in the presence of pertur-
bations, and sampling-based keyframe decision maker
for accurate waypoint tracking to facilitate middle-level
navigation safety.

o Synthesize a LTL-based reactive navigation game for safe
legged navigation and employ a belief abstraction method
to expand navigation decisions in partially observable
environments.

e Design a non-periodic whole-body-dynamics-consistent
motion library through trajectory optimization for a 20
Degrees-of-Freedom (DoFs) Cassie bipedal system.

A conference version of the work presented in this paper
was published in [12]. This work includes extensions toward
formal guarantees on middle-level motion plans under external
perturbations, sampling-based keyframe decision maker, non-
deterministic high-level transitions for online replanning, joint-
belief abstractions, and design of whole-body motion plans.

This paper is outlined as follows. Sec. [[] is a literature
review of related work. Sec. [Il] introduces the ROM-based lo-
comotion planning and keyframe definitions. Then safety the-
orems for locomotion planning and reachability-based analysis
for robustness against perturbations are introduced in Sec. [[V]
In Sec. [V] we introduce our sampling-based keyframe decision
maker algorithm for lateral tracking. Sec.[VI|outlines our LTL-
based high-level task planner which guarantees safe navigation
in a partially observable environments. The results of our
integrated framework are shown in Sec. [VII] as well as our
trajectory-optimization-based whole-body motion planner. In
Sec. [VIII] we discuss the limitations, and conclude in Sec. [[X]
Appendix includes supplementary mathematical proofs.



[1. RELATED WORK

Motion planning in complex environments has been exten-
sively studied, with a spectrum of approaches in the literature
[17]-[22]. Reactive methods for motion planning with formal
guarantees are widely studied through the lens of artificial
potential functions [23], with more recent extensions [7], [8],
to name a few. While the work in [7] provides convergence
guarantees and obstacle avoidance, it is limited to environ-
ments with convex obstacles. Along the same line of research,
[8] extends the work in [7] to geometrically complicated
unknown environments. However, the approach detailed in [8]
is restricted to static obstacles, and has only been demonstrated
on a fully actuated particle, or a simple unicycle model for a
quadruped. Whereas the framework we present here is able
to generate safe locomotion plans reacting to environmental
events that include multiple, possibly adversarial, dynamic
obstacles with formal guarantees on task completion and
safety. Moreover, our framework generates whole-body motion
plans for a 20-DOF underactuated bipedal robot Cassie [24].

The concept of capture point [25], and its extension to
N-step capturability [26], represent a powerful method to
characterize and achieve locomotion stability against external
disturbances by computing N-step capture regions, where the
robot can take N walking steps to reach and come to a stop.
An extension to capture regions was introduced in [15] as
controllable regions. The difference of controllable regions
from the capture regions lies in that the target robot state is
not necessarily coming to a stop. The work in [15] is closely
related to our work presented here, where we use controllable
regions and viability theory [27] to guarantee safety and to
achieve non-periodic walking gaits. A resounding difference
is that our framework not only focuses on stability, but uses
linear temporal logic (LTL) to synthesize the high-level task
planner for making decisions on locomotion navigation and
obstacle avoidance. In [26], the foot placements are controlled
to achieve balancing safety or reach a target CoM velocity
as in [15]. On the other hand, in our framework the foot
location decision is determined by not only the low-level
locomotion dynamics but also the high-level navigation goals
of completing tasks and avoiding environmental obstacles.
Since the foot placement is fixed from the high-level planner,
our work focuses on manipulating the CoM apex velocities
of the robot, to track waypoints determined by a specific
high-level navigation task as well as maintaining locomotion
balance.

Formal synthesis methods have been well established to
guarantee high-level robot behaviors in dynamic environ-
ments [28]-[30]. Collision-free navigation in the presence
of dynamic obstacles has been achieved via multiple ap-
proaches such as local collision avoidance controllers in [31],
incrementally expanding a motion tree in sampling-based
approaches [32], and Velocity Obstacle Sets generated by
obstacle reachability analysis in [33]. Collision avoidance
and task completion become more challenging to guarantee
when the environment is only partially observable as such an
environment has a strategic advantage in being adversarial.
Navigating through partially known maps with performance

guarantees has been achieved through exploring [34], updating
the discrete abstraction, and re-synthesizing a controller at
runtime in [35]. To avoid the computational costs of online
re-synthesis, others have proposed patching a modified local
controller into an existing global controller when unmodeled
non-reachable cells, i.e. static obstacles, are discovered at
runtime [36], [37]. The authors in [35] have proposed a
satisfaction metric of specification to meet the specification
as closely as possible when run-time discovered environment
constraints render the specification unsatisfiable. Lastly, the
work of [38] proposes a receding horizon planning method
for efficient synthesis of short-horizon plans. As unmodeled
obstacles appear in the planning horizon, a goal generator re-
computes a path to a satisfying state. These approaches above
are better suited for guaranteeing successful navigation and
collision avoidance in environments that are uncertain only
with respect to static obstacles as they can not reason about
when and where a dynamic obstacle may appear.

Collision avoidance with dynamic obstacles in partially ob-
servable environments has been achieved through approaches
such as POMDPs [39], Probabalistic velocity obstacle model-
ing [40], and object occlusion cost metrics [41]. The authors
in [42] guarantee passive motion safety by avoiding braking
Inevitable Collision States (ICS) at all times via a braking ICS-
checking algorithm. While these solutions provide collision
avoidance guarantees, they assume dynamic obstacles could
appear at any time and result in an overly conservative
strategies. Our method investigates belief-space planning to
provide the controller additional information on when and
where dynamic obstacles may appear in the robot’s visible
range to inform the synthesized strategy if navigation actions
are guaranteed to be safe, even when static obstacles occlude
the robot’s view adjacent environment locations. We have
devised a variant of the approach in [13] to explicitly track a
belief of which non-visible environment locations are obstacle
free, reducing the conservativeness of a guaranteed collision-
free strategy. This belief tracking method is then integrated
into our hierarchical TAMP framework.

Ill. PRELIMINARIES

This section will introduce a phase-space planning (PSP)
approach for CoM trajectory generation based on a reduced-
order model (ROM) [10], [11]. Starting with a derivation of
the dynamics of a Prismatic Inverted Pendulum Model (PIPM),
and then define the locomotion keyframe state, a discretized
feature state of our PSP approach, used as a connection
between the high-level planner and the middle-level motion
planner. Consequently, we define keyframe-based transitions
to achieve safe locomotion. This section builds the basis for
the safe locomotion planning proposed in later sections.

A. Reduced-order Locomotion Planning

This subsection introduces a mathematical formulation
of our ROM. As shown in Fig. the CoM position
Peom = (2,9,2)T is composed of the sagittal, lateral, and
vertical positions. We denote the apex CoM position as

T
Papex = (mapexy Yapex Zapex) P the foot placement as Ptoot =
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Fig. 3: Reduced-order modeling of our Cassie robot as a 3D prismatic inverted pendulum model with all of its mass concentrated on its CoM and a telescopic
leg to comply to the varying CoM height. The CoM motion follows a parameterized CoM path depending on keyframe states. Ay; is the relative lateral
distance between lateral CoM apex position and the high-level waypoint w, and Ays is the lateral distance between the CoM lateral apex position and the
lateral foot placement.

(Zfoot, Ytoot s Zfoot) - » a0d Napex is the relative apex CoM height
with respect to the stance foot height. vapex denotes the CoM
velocity at Papex. Ay; is the lateral distance between CoM
and the high-level waypoint uﬂ at apex. AYs ‘= Yapex —
Yoot denotes the lateral CoM-to-foot distance at apex. This
parameter will be used to determine the allowable steering
angle in Sec. [V-A]

Prismatic Inverted Pendulum Model (PIPM) has been pro-
posed for agile, non-periodic locomotion over rough ter-
rain [11]. Here we reiterate for completeness the derivation of
the centroidal momentum dynamics of this model. The single
contact case using the moment balance equation along with
linear force equilibrium is expressed as

(pcom - pfoot) X (fcom + mg) = —Tcom (1)

where T.op, 1S the angular moments of the torso exerted on the
CoM, and g is the gravitational vector. For nominal planning
we set Teom = 0. Formulating the dynamics in Eq. (1)) for ¢*"
walking step as a hybrid control system

wg(x - xfoot,q)

Wg(y - yfoot,q) (2)

awg (& — Toot,q)

where the asymptote slope w; = 1/¢/hapex,q- The hybrid
control input is u, = (wg, Proot,q)> With Proot,q being the

discrete inpuﬂ The CoM motion is constrained within a piece-
wise linear surface parameterized by h = (& —Zfoot) + hapesxs
where © denotes the CoM height from the stance foot height,
the ROM becomes linear and an analytical solution exists.
Detailed derivations are elaborated in Appendix

Summary of Phase-space Planning: In PSP, the sagittal plan-
ning takes precedence over the lateral planning. The decisions
for the planning algorithm are primarily made in the sagittal
phase-space, such as step length and CoM apex velocity,

pcom,q = (I)(pcom,qa ’U,q) =

IThe high-level discrete representation of the robot location.
2Hereafter, we will ignore the subscript q for notation simplicity. We will
instead use - and -5, denoting the current and next walking steps, respectively.

where we propagate the dynamics forward from the current
apex state and backward from the next apex state until the
two phase-space trajectories intersect. The intersection state
defines the foot stance switching instant. On the other hand,
the lateral phase-space parameters are searched for to adhere
to the sagittal phase-space plan and have consistent timings
between the sagittal and lateral plans. In this paper, we build
on our previous PSP work [11], [12] to derive safety criteria
for sagittal planning in order to achieve successful transitions
between keyframe states in the presence of perturbations in
Sec. Moreover, we employ a sampling algorithm based
on the lateral apex states to select the next sagittal apex
velocity that allows the lateral dynamics to comply to high-
level waypoint tracking in Sec. [V]

B. Locomotion Keyframe for 3D Navigation

PSP uses keyframe states for non-periodic dynamic locomo-
tion planning [11]. Our study generalizes the keyframe defi-
nition in our previous work by introducing diverse navigation
actions in 3D environments.

Definition II1.1 (Locomotion keyframe state for 3D environ-
ment navigation). A keyframe state of our ROM is defined as
k = (d, AO, AZtoot, Vapex, Zapex) € K, where
o d:= Tapex,n — Tapex,c i the walking step lengﬂﬂ'
o AO := Oapex,n — Vapex,c is the heading angle change at
two consecutive CoM apex states;
o AZioot = Zfoot,n — Zfoot,c IS the height change for
successive foot placements;
e Uapex Is the CoM sagittal apex velocity;
o Zapex 18 the global CoM height at apex.

The keyframe state above can be divided into two action
sets: a high-level (HL) action (agr,) and a low-level (LL) ac-
tion (ayr,). The HL action includes apy, = (d, A8, Azgoot) €

3In straight walking d represents the step length. However, during steering
walking d is adjusted to reach the next waypoint on the new local coordinate.
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Fig. 4: Sagittal system state transition for One Walking Step (OWS) without
heading angle change. OWS is shown as the transition between two con-
secutive apex states, . and &,. The system state transition in Def. is
shown as the projection of keyframe state onto the system state &., and d
and Azgoot are used to select the next foot placement psyo,, in the hybrid
control input w. In the discrete keyframe state space we show the transition
between two consecutive keyframe states, where Rows, is the set of current
viable keyframe states that allows a successful system state transition to the
next viable keyframe state set Rows,n-

Agpr, which is determined by the navigation policy to be
designed in the task planner. The parameters d, A#, and
Azgoor are expressed in the Cartesian space as the high-level
waypoints w. On the other hand, the LL action is ar;, =
(Vapexs Zapex) € ‘Arr, which is determined in the middle-
level motion planner. The keyframe parameters are sent from
the high-level task planner to the middle-level motion planner
online as shown in Fig.

C. Keyframe Transition

We now aim to formulate locomotion transition definitions
in terms of the locomotion keyframe state k and describe
the connection between the descritzed keyframe state and the
continuous dynamics of our reduced-order system introduced
in Sec. We will first define locomotion safety.

Definition ITI.2 (Locomotion safety). Safety for a locomotion
process is defined as a formally-guaranteed successful transi-
tion between consecutive locomotion keyframe states k € K
while the robot maintains its balance, i.e., avoids a fall.

Note that, the keyframe state k includes high-level actions
apr, so the control is implicit in the Locomotion Safety.
Based on our keyframe definition in Def. we define One
Walking Step (OWS) as the transition between two consecutive
keyframe states as shown in Fig. ] Therefore, we define the
set of viable keyframe states for OWS as follows.

Definition III.3 (Viable keyframe set for one walking step).
Rows is the set of keyframe states K that results in a
viable transition to the next desired keyframe state through
the continuous PIPM dynamics in Eq. (), thus achieving
locomotion safety for OWS.

The transition between keyframes is hybrid since it includes
a continuous progression of the system states under the PIPM

system states
E , viableset V

Fig. 5: Viable sets and controllable regions for the set of system states =. Any
state within the Viable set V' (dark gray region), is guaranteed to remain inside
V in finite time thus avoiding a fall. While, any state within the controllable
region set C (green region) is guaranteed to reach the target set 7 (red region)
in finite time given an appropriate control input. The red trajectory indicate an
initial state that results in a fall. In general, the viable set V is computationally
difficult to estimate (e.g., for the states composing an OWS but not reaching
T), and thus this study focuses on computing the controllable region C for
safe sequential composition.

dynamics in Eq. (Z), followed by a discrete foot contact
switch. In this study, we aim to provide formal guarantees
that the selected keyframe states are within Rows. Since
quantifying Rows is computationally intractable due to its
high dimensionality, we propose a set of safety theorems to
quantify the viable region when Rows is projected onto a
reduced dimensional parameter space, which is selected as

Sagittal CoM system state: £ = (z,4) € E

The current discrete keyframe state k. € K corresponds
to (i) the continuous system state at apex (£.) and (ii) the
PSP hybrid control input u at the CoM apex in both straight
and steering walking scenarios, where the apex state in the
keyframe Def. is the system state at the CoM ape
and the step length and step height are used to calculate
Proot 10 the hybrid control input w. An illustration of these
variables is shown in Fig. 4] The desired next system state is
always selected to be an apex state &, = (d, Vapex,n), Where
d € ayy, is determined by the high-level planner and v,pex,n
is determined by the keyframe decision maker as detailed in
Sec. Therefore, we can define a system state transition.

Definition II1.4 (System state transition &, = T'(k.)). T is a
system state transition that takes the projection of the current
keyframe state onto the continuous system state at apex and
hybrid control input (€..u), to the desired next system state
&, through PSP of the centroidal dynamics ® in Eq. (2).

In Fig. ] we illustrate the system state transition for OWS.
By projecting k. state onto the &, the centroidal dynamics in
Eq. allows the system state to reach &, based on u.

V. SAFE LOCOMOTION PLANNING

This section will propose a set of safety theorems based on
PSP for the ROM that allows us to select a safe next keyframe
states under nominal conditions. Then in Sec. we define
and compute controllable regions under bounded state distur-
bance by reachability analysis for a set of keyframe transitions
which satisfy the safety theorems introduced in Sec.
Within this controllable region, any state is guaranteed to reach

it = Eapex,c only when Af = 0, otherwise & is a non-apex state as
can be seen in Fig. [6[a).
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Fig. 6: Phase-space safety region for steering walking: (a) shows three consecutive keyframes with a heading angle change (A#) between the current keyframe
and the next keyframe. The CoM trajectory and its projection on the sagittal-lateral plane is represented by the blue surface. The direction change introduces
a new local coordinate, where the dashed black line is the sagittal coordinate before the turn, and the dashed red line is the sagittal coordinate after the turn.
Subfigures (b) and (c) show the sagittal and lateral phase-space plots respectively, both satisfying the safety criteria proposed in Theorem m The CoM
apex state in the original coordinate becomes non-apex in the new coordinate (due to the coordinate change). The subscripts p, ¢ and n denote the previous,

current, and next walking steps, respectively.

a target set (7)) in finite time given a feasible control sequence
as shown in Fig. [5] Accordingly, we sequentially compose
consecutive controllable regions through our hybrid control
input to guarantee locomotion safety and correctness. In addi-
tion to the safety criteria defined only for sagittal locomotion,
safety for lateral tracking of the high-level waypoint is equally
important for 3D locomotion. Therefore, Sec. presents a
sampling-based algorithm that adjusts the sagittal phase-space
plan to allow for lateral waypoint tracking.

A. Locomotion Safety Criteria

In this subsection, we propose safe locomotion criteria based
on the PIPM introduced in Sec. [[lIZA] and provide safety
constraints for the locomotion keyframe state.

As a general principle of balancing safety, the sagittal CoM
position should be able to cross the sagittal apex with a positive
CoM velocity while the lateral CoM velocity should be able
to reach the zero lateral velocity at the next apex. Ruling out
the fall situations provides us the bounds of balancing safety
regions. First, we study the constraints between apex velocities
of two consecutive walking steps and propose the following
theorems and corollaries.

Theorem IV.1. For safety-guaranteed straight walking, given
d and w, the apex velocity for two consecutive walking steps
ought to satisfy the following velocity constraint:

2 52 2 2 2 72
—w'd < Uapex,n - Uapex,c <w d

3)

apex velocity square difference
for two consecutive steps

where d* = (xapex,n - xapex,c)(xapex,c + Tapex,n — 2$f00t,c)~
Notably, d is equal to the step length in Def. ie, d=
Tapex,n — Tapex,c» AUring a straight walking where Tapex,c =
Zfoot,c. The proof of this criterion can be seen in Appendix@

Another consideration for safety is to limit the maximum
allowable velocity of the CoM. Since the maximum velocity
occurs at the foot switching instant, we explicitly enforce an
upper velocity bound to this switching velocity vgwitcn to avoid
over-accelerated motions, which can be further magnified by

the ground impact dynamics in the real system. Through the
analytical solution of the ROM in Appendix |I, we solve for
Uswitch = ¥ (Vapex,c; Vapex,n, d). Therefore, we set an upper
bound on VUswitchs i~e-’ Uswitch < Umax-

Similar to Theorem [[VI} vsywitch provides a nonlinear rela-
tionship between sagittal apex velocities for two consecutive
apex states. Combining the boundary conditions in Theo-
rem [[VI] and the limit of vswitcn allows us to quantify the
viable region of Vapex,n giVeN Vapex,c, d, and w.

The steering case requires a more restrictive criterion. A fall
will occur when the turning angle A is too large such that
Vapex,c i the new local coordinate after the turn is out of a
safety range such that either the lateral CoM velocity cannot
reach zero at the next apex or the sagittal CoM can not climb
over the next apex.

Theorem IV.2. For safety-guaranteed steering walking, the

current sagittal CoM apex velocity Vapex,c in the original local

coordinate should be bounded by

Ay?,c t W
tan Af

The proof of this theorem is shown in Appendix [II]
This theorem provides a bound on the heading angle change
Af given the current apex velocity vapex,c. Fig. |§| shows a
steering walking trajectory and phase-space plot that satisfy
Theorem [[V.2] Namely, the CoM location in the sagittal and
lateral phase-space in the new local coordinate after the turn
should not cross the asymptote line of the shaded safety region
in Fig. [6] This criterion is specific to steering walking, as
the heading change (A#) introduces a new local frame and
yields the current state &. to no longer be an apex in the
new coordinate. As such, it has non-apex sagittal and lateral
components, i.e., Uy 7 0, and Tapex,c 7# .'L'foot’cﬂ

Ay2,c -w - tan Af < Vapex,c < 4)

Corollary IV.3. For steering walking in Theorem given
d, A0, Ays . and w, two consecutive apex velocities ought to
satisfy the following velocity constraint:

22 2 AD)2 2 12
—wd” < Vapexn — (Vapex,c c0s AO)” < wdy

(&)

SIn this study, we use & and v exchangeably to represent the CoM velocity.



where d?. = d? + 2Ays (dsin Af.
Corollary IV4. For steering walking in Theorem sim-

ilarly, given d, AO, Ay, ., and w, two consecutive apex
velocities ought to satisfy the following velocity constraints,

2 32 2
—w’d < vapex;ﬂ

— (Vapex.c cos AO)? < w?d®:  (6)

where d* = d*> — 2Ays .dsin A. Note that, parameters
Vapex,n» d, and AY in Egs. [B)-(6) are the keyframe states.

The aforementioned safety theorems provide quantifiable
bounds on the next keyframe selection that leads to vi-
able transitions under governance of nominal disturbance-free
PIPM dynamics. The next section will focus on definitions
based on controllable regions and sequential composition to
provide guarantees on the safe progression of the continuous
system states £ adhering to Theorems [[V.IHIV.2|under bounded
disturbances Z.

B. Controllable Regions and Sequential Composition

First let us decompose OWS into two half steps at the instant
when the hybrid control input w switches. Therefore, the First
Half Walking Step (FHWS) starts from &, until the foot contact
switching state Eswitch, the Second Half Walking Step (SHWS)
starts with &gwiten until &,,. We start by defining controllable
regions of FHWS and SHWS.

Definition IV.1 (Controllable region of FHWS). Given E
U and Tewiten, a contr‘ollable region of FHWS is de-
fined as Cruws = {€|€(t) = P(&(t) + & u(t)),u(t) €
U, such that 3§(traws) € Tswiteh, traws is finite}, where
& € E represents a bounded state disturbance.

Definition IV.2 (Controllable region of SHWS). Given E
U and Tows, a controllable region of SHWS is defined
as Csuws = {&6(t) = (&) + &ult)),u(t) €
U,such that F¢(tsaws) € Tows, tsmws is finite}, where
& € E represents a bounded state disturbance.

Numerical computation of the controllable region for OWS
is achievable given E., Tows, U, and a bounded disturbance
= through backward dynamic propagation using ROCS [43].
Given the backward propagation nature of ROCS, Cspws is
computed first starting from 7ows, which is selected to be
the set of desired &, at the next apex. Then we set Tiwitch
to be all the states of Csgws that are within the tangent
manifolds of FHWS, where the tangent manifolds represent
the nominal phase-space trajectory given Uapex,mins Vapex,max
and Zfoot,. (see Fig. [11], [44]. Then we compute Cruyws
with Tgwiten being the target set. Note that Tgyicn represents
the set of system states that a foot contact transition can occur
at. Moreover, ROCS also allows us to synthesize a controller
u(t) € U that guarantees that the system state & reaches the
target set Tows as long as the system state remains within the
controllable region. The details of the controllable regions in
Defs. are shown in Fig.

Sequentially composing the controllable regions defined in
Defs. V.2l ie, Towiten # 0, affords a guarantee on
safe task completion for OWS. Controllable regions have a

Fig. 7: Projection of the controllable regions for OWS on the sagittal phase-
space based on Defs. Given &, (green circle) € E. (green dashed
region) C Cruws (green region), the continuous system state is guaranteed
to reach Tgwitch (blue region). Towitcn is bounded by pink tangent manifolds
and Cspgws. Switching from the current foot stance to the next foot stance
(green and yellow stars respectively) at Tswitch guarantees that the continuous
system state will reach &, (yellow circle) € Tows (red region). The red
dashed arrow shows a system state outside of the controllable region and
results in a fall.

“funnel”-type geometry that is guaranteed to reach a target set,
and correct switching between such funnels ultimately leads
to the target set Tows as seen in Fig. [§] A projection of the
composition of the controllable regions on the sagittal phase-
space satisfying Theorem [[V.5]| can be seen in Fig.

The controllable regions in Def. depend on not
only the state of the system, but also the high-level keyframe
state k as it determines the target set 7 as well as the foot
placement in the hybrid control input ps,oy € w. This further
provides safety guarantees within our layered framework.

Theorem IV.5. The controllable regions for OWS are sequen-
tially and safely composable, i.e., CeypwsNCsaws = Tswitch #
(), if the locomotion safety defined in Def. is satisfied, i.e.,
the PSP obeying (i) Theorem (i1) Vswiteh < Umax, and (iii)

Theorem generates a feasible CoM trajectory.

Proof. To guarantee the feasibility of a nominal phase-space
plan generated through forward and backward propagation of
the PIPM dynamics, the following two conditions on vapex,n
need to be satisfied: (i) Ixgwitcn such that Tapex,c < Tswiteh <
Zapex,n,» Which is guaranteed by designing vapex,n that obeys
Theorem [[V.I] given a feasible d and current keyframe state
& € E.; (i1) given a maximum CoM velocity threshold vyax,
Vapex,n 18 chosen such that Vsyitch < Umax through the forward
and backward propagation. The designed vapex,, Mmeeting
the two conditions above will guarantee feasible phase-space
trajectories that safely compose the controllable regions of the
two half walking steps, i.e., Ceaws N Csaws = Tewitch 7 0.
Even in the extreme case of that vgyitch 1S highly close to viax,
we still guarantee Toyiten 7 () since part of the Tgwiten region
is below the the normal phase-space trajectory and guaranteed
to be feasible.

As for the turning case, given the designed vapex,n, con-
dition (iii) constrains the maximally allowable heading angle
change Af for the next walking step. This condition guar-
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Fig. 8: A conceptual illustration of the keyframe transition between two
consecutive keyframes, where starting from the current viable keyframe state
set Rows, e, can be projected to the continuous state space and the dynamics
are then modeled as the hybrid control system in Eq. @) Evolvement of the
continuous state is formulated as a sequential composition of controllable
regions for One Walking Step (OWS) as in Defs. The state of
the system starts from Z. in Cpgws (green funnel). After a finite time
the state reaches 7gwitch (dashed blue region), where the dynamics of the
system switch from Crrws to Csgws (yellow funnel). Finally the state of
the system reaches Tows (red region). The switch between Crpws and
Csuws can occur at any instant within 7gwitcn, and the state would still be
guaranteed to reach Tows. Any k. € Rows is guaranteed to reach Tows
based on Def. m while the states outside Rowg are considered failed state
as shown in the red arrows.

antees that the CoM state in the sagittal and lateral phase-
space in the new local coordinate after the turn will not cross
the asymptote line of the shaded safety region (see Fig. [6).
As such, the controllable region Crrws centering around the
nominal PSP trajectory will exist (in the space between the
nominal PSP and the asymptote line) and interact wtih Csyws
such that Tgwiten # 0. O

According to Theorem [[V3] we can determine a set of
Vapex,ns A0, and d parametersﬂ that satisfy conditions (i)-
(iii) thus guaranteeing that the system state can reach the
desired target set Tows. The selected set are included as safe
locomotion specifications in the high-level planner as shown
in Fig. 2] and detailed in Sec. [VI-C|

Corollary IV.6. To realize safe walking for an arbitrary
number of steps, (i) the target set of the current step is required
to be a subset of the controllable region of the first half
walking step for the next step, i.e., Tows,c C Cruws,n, and
(ii) the applied perturbation during execution does not push
the system state outside of the controllable regions.

Fig. [8|conceptually shows how after a system state transition
&, =T(k.), &, can be projected onto the viable keyframe set
for the next OWS Rows,, to guarantee the viability of next
walking step.

V. KEYFRAME DECISION-MAKING FOR NAVIGATION
WAYPOINT TRACKING

In the previous section, we proposed safety theorems that
guarantee locomotion safety. Now we shift our focus to

6Speciﬁc values of d, vapex, and A6 are included in Table. @ Sec. m

another consideration for safe locomotion by ensuring tracking
of the high-level waypoints. The lateral phase-space plan is
determined based on the sagittal phase-space plan, as the
contact switch timing in the lateral dynamics needs to obey
that of the sagittal dynamics. Therefore, the lateral dynamics
depend on sagittal apex velocities and sagittal step length.
In our previous work [11], the lateral foot placement is
solved through a Newton-Raphson search method, such that
the lateral CoM velocity is equal to zero at the next CoM
apex. While our previous method achieved stable walking and
turning, it lacks the guarantee of accomplishing high-level
navigation through tracking of the waypoints. Therefore, the
lateral CoM motion may not track the desired waypoints. In
[12], we propose a heuristic-based policy that restricts the
allowable keyframe transitions to achieve waypoint tracking
for specific locomotion plans. In this study, we extend our
previous work by designing an algorithm that formally manip-
ulates the sagittal phase-space plan to take into account high-
level waypoint tracking. Particularly, we use Ay; and Ays to
track the lateral distance between the CoM at apex and the
high-level waypoint as seen in Fig. 3] First, let’s define viable
ranges for Ay, and Ays.

Definition V.1 (Viable range for lateral-apex-CoM-to-way-
point distance Ay1). Ray, = {Ayi|Ayr + Ays < beafety }
where bsasety denotes the safety boundary around the waypoint.

Definition V.2 (Viable range for lateral-apex-CoM-to-foot
distance Ays). Given the safety criterion for steering walking
defined in Theorem the viable range for lateral CoM-to-
foot distance at apex is defined as Ry, = {Aya|Vapex, max -
tan Af/w < Ays < (Vapex,min)/(w - tan Af)}.

Ray, and Ry, is defined as such to avoid the lateral
drift of the robot’s CoM and foot location from the high-level
waypoint, and further avoid collisions with obstacles. Given
Defs.[V.IHV.2] we can track the high-level waypoint as follows.

Proposition V.1. Viable lateral tracking of the high-level
waypoint is guaranteed only if (i) Ay and Ay, are bounded
within their respective viable ranges, i.e., Ay, € Ra,, and
Ays € Ray,, and (ii) the sign of (Ay1 + Ays) alternates
between two consecutive keyframes.

Proposition [VI] requires that (i) the distance sign of the
lateral foot stance position relative to the waypoint alternates
between consecutive keyframes and (ii) the waypoints and
CoM trajectory are bounded within the lateral foot placement
width. An example of this trajectory is shown in Fig. [T2]

The analytical solutions of Ay;, and Ay, , are highly
nonlinear functions of multiple parameters including the step
length d, heading angle change A6, current and next apex
velocities Vapex,es Vapex,n and the current lateral state of the
system Ay . and Ays .. Thus, it is difficult to quantitatively
analyze the relationship between Ay;, Ays and other param-
eters aforementioned. Since (d, Af) € ayy, are determined by
the navigation policy designed in the high-level task planner,
and Vapex,c; Ay, and Ays . are fixed from the previous
step, we manipulate vapex,» to adjust the sagittal phase-space



plan and subsequently the lateral phase-space plan through
the updated walking step timing. To this end, we sample a
set of equidistant values Vapex.n € [Vapex,min; Vapex,max] and
calculate a cost A, which penalizes deviation of Ay, and
Ay, from their respective desired values Ay q € Ray,
and Ays 4 € RAy2ﬂ After the sampling, we set Vapex,n 1O
the optimal next apex velocity vapex,opt that results in the
minimum cost. This procedure is presented in Algorithm [T]

Algorithm 1: Optimal Next Apex Velocity Design for
Lateral Waypoint Tracking

1 Input: d, vapex,cs Ayie. Aya,c, and a velocity
sampling increment vipc;

2 Set: Vapex,n ¢ Vapex,min, COSt A <— 00, Ay 4 and
Ays g, and cost weights ¢; and co;

3 while Vapex,n S Vapex,max do

4 traws, tsaws < sagittal PSP with (d, vapex,c,
Uapex,n);

5 Ay n, Ays n < Newton-Raphson Search [11];

6 Anew = C1|AY1.q — Ay n| + c2|Ay2.a — Aya 1|

7 if A\ew < A then

8 A Apews

9 Uapex,opt — vapex;ﬂ

10 end

1 Vapex,n — Vapex,n ~+ Vinc

12 end

13 OUtPUt: Vapex,n = Vapex,opt

Algorithm[T]is robust to different step lengths during straight
walking, however waypoint tracking during a turning sequence
is more complex. In extreme turning cases that Algorithm [I]
fails to find an apex velocity that yields viable waypoint track-
ing in Proposition. [V.I} we will propose an online replanning
mechanism to adjust the waypoint (see Sec. [VI-B).

VI. TASK PLANNING VIA BELIEF ABSTRACTION

This section will expound the high-level task planning
structure, consisting of global navigation and local action
planners that employ linear temporal logic (LTL) to achieve
safe locomotion navigation in a partially observable environ-
ment with dynamic obstacles. Low-level locomotion dynamics
constraints are encoded into LTL specifications to ensure that
high-level actions can be successfully executed by the middle-
level motion planner to maintain balancing safety.

Definition VI.1 (Navigation Safety). Navigation safety is de-
fined as safe maneuvering in partially observable environments
with uneven terrain while avoiding collisions with static and
dynamic obstacles.

To achieve safe navigation, the task planner evaluates ob-
served environmental events at each walking step and com-
mands a safe action set to the middle-level motion planner as
shown in Fig. 2] while guaranteeing goal positions to be visited

7Ay1,d and Ay g are heuristically selected according to our Cassie robot’s
leg kinematics. Exact values of Ay; 4 and Ays 4 are shown in Table. H in

Sec[VTET

in order and infinitely often. In particular, we study a pick-
up and drop-off task while guaranteeing static and dynamic
obstacle collision avoidance.

We design our task planner using formal synthesis methods
to ensure locomotion actions guarantee navigation safety and
liveness, specifically we use General Reactivity of Rank 1
(GR(1)), a fragment of LTL. GR(1) allows us to design
temporal logic formulas (¢) with atomic propositions (AP
(¢)) that can either be True (¢ V =) or False (—True).
With negation (—) and disjunction (V) one can also define
the following operators: conjunction (A), implication (=),
and equivalence («<>). Other temporal operators include “next”
(O), “eventually” ({), and “always” ([J). Safety specifications
capture how the system and environment may transition dur-
ing one step of the synthesized controller’s execution, while
liveness specifications capture which transitions must happen
infinitely often. Further details of GR(1) can be found in [45].
Our implementation uses the SLUGS reactive synthesis tool
[46] to design specifications with Atomic Propositions (APs),
natural numbers, and infix notation, which are automatically
converted to ones using only APs.

The discrete abstraction granularity required to plan walking
actions for each keyframe is too fine to synthesize plans for
large environment navigation. Therefore, we have split the task
planner into two layers: A high-level navigation planner that
plays a navigation and collision avoidance game against the
environment on a global coarse discrete abstraction, and an
action planner that plays a local game on a fine abstraction
of the local environment (corresponding to one coarse cell).
The action planner generates action sets at each keyframe to
progress through the local environment and achieve the desired
coarse-cell transition after multiple walking steps.

A. Navigation Planner Design

A top-down projection of the navigation environment is
discretized into a coarse two-dimensional grid as shown in
Fig. @ Each time the robot enters a new cell, the navigation
planner evaluates the robot’s discrete location (I, € L, .)
and heading (h,. € H,.) on the coarse grid, as well as
the dynamic obstacle’s location (I, € L,), and determines
a desired navigation action (n, € A,). The planner can
choose for the robot to stop, or to transition to any reachable
safe adjacent cell. £, . and L, denote sets of all coarse
cells the robot and dynamic obstacle can occupy, while H,. .
represents the four cardinal directions in which the robot can
travel on the coarse abstraction. The dynamic obstacle moves
under the following assumptions: (a) it will not attempt to
collide with the robot when the robot is standing still, (b) it’s
maximum speed only allows it to transition to an adjacent
coarse cell during one turn of the navigation game, and (c)
it will eventually move out of the way to allow the robot to
pass. Assumption (c) prevents a deadlock [47]. Static obstacle
locations are encoded as safety specifications. Given these
assumptions, the task planner in Section will guarantee
that the walking robot can achieve a specific navigation goal.



B. Action Planner Design

The local environment, i.e., one coarse cell, is further
abstracted into a fine discretization. At each walking step, the
action planner evaluates the robot’s state in the environment
(eHLﬂ consisting of the discrete waypoint location (I, s €
L, ¢) and heading (h, s € H, ) on the fine grid, as well
as the robots current stance foot index (ig), and determines
an appropriate action set (apy,) defined in Def. [[II.I] The
action planner generates a sequence of locomotion actions
guaranteeing that the robot eventually transitions to the next
desired coarse cell while ensuring all action sets are safe
and achievable based on epnr, and agr,. Note that, the fine
abstraction also models the terrain height for each fine-level
cell, allowing the action planner to choose the correct step
height Azg, for each keyframe transition.

During locomotion, the nominal robot state transitions are
deterministically modeled within the action planner based on
the current game state and system action, however, the nominal
transition is not guaranteed. To account for this, we model
additional necessary nondeterministic transitions to handle the
following cases:

o The robot location is far enough from the centroid of a
cell that the same geometric cell transition puts the robot
in a different cell at the next step than expected. This
occurs because infinite number of continuous locations
are captured in one discrete cell.

o Not all the robot states can be captured in the discrete
abstraction, such as the robot CoM velocity, which,
however, may still affect transitions.

o The robot may be perturbed externally while walking,
altering the foot location at the next walking step.

We have encoded nondeterministic transitions, and associ-
ated transition flags (¢,,4), to capture these cases into action
planner’s environment assumptions. This flag variable ¢,,4 is
encoded as a special automaton state that will be used to replan
the foot location of the next walking step. An example of
addressing a sagittal perturbation will be shown in Fig. [I3]
(c).

An example of modeled nondeterministic transitions can be
seen in Fig. 0] The CoM trajectory sometimes imperfectly
tracks the waypoints due to accumulated differences in the
continuous keyframe state represented by the same discrete
state egr,. The reduced-order motion planner identifies when
the waypoint needs to be shifted from the lateral case and
informs the action planner, which verifies the updated way-
point is allowed by the non-deterministic transition model and
continues planning from the new waypoint.

C. Encoding Low-level Dynamics Constraints into
High-level Planner Specifications

To ensure the action planner only commands safe and
feasible actions, we must take into account the underlying
Locomotion Safety. This is achieved by capturing low-level
constraints in the high-level planner specifications. Action

8We use the symbol ey, to represent the robot state, since this symbol
represents the second player in the game, i.e., the environment player.
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Fig. 9: Illustration of fine-level steering walking within one coarse cell.
Discrete actions are planned at each keyframe allowing the robot to traverse
the fine grid toward the next coarse cell. The waypoint transitions nondeter-
ministically following the turn. A set of locomotion keyframe decisions are
also annotated.

planner state transition limitations based on straight walking
step length constraints in Theorem [[V.I]} and kinematic con-
straints from the Cassie leg, are directly encoded in the action
planner specifications. Locomotion safety is guaranteed when
the combination of apex velocity, heading angle change, and
foot placement meets Theorems These constraints
are not able to be directly captured as the action planner does
not reason about CoM velocity and the dynamic equations of
motion can not be encoded in symbolic specifications. Instead,
they are captured by generating a library of permissible turning
sequences based on discrete robot states that are known to
meet the above constraints (see Table. [[I). For example, given
w = 3.15 rad/s, Ay, = 0.14 m (equals to Ay; 4 in
Algorithm , and an allowable v,pex range [0.2,0.7] m/s,
Theorem [IV.2] results in Af < 24.40°. Any turning angle
larger than this value will results in a high-level action that is
not executable by the middle-level motion planner. Thus we
choose Af = 22.5° such that we can complete a 90° turn in
4 consecutive walking steps. A safe turning sequence can be
seen in Fig. 0]

To ensure that collision avoidance in the abstract game
translates to collision-free locomotion in the continuous do-
main, we guarantee the location [, ¢ stays far enough away
from any obstacles. Algorithm. [T] ensures that the distance
between [ ; and the robot’s desired foot placement does
not exceed bgasety as detailed in Sec. The action planner
guarantees [, ¢ is never in a cell that is less than a distance
bsatety away from the neighboring coarse cell that may contain
static or dynamic obstacles via safety specifications. The
planner guarantees this distance even after non-deterministic
sagittal and lateral transitions, ensuring collision avoidance.

D. Task Planner Synthesis

A navigation game structure is proposed by including robot
actions in the tuple G := (S, s™i* Tx) with

e S=Lrc XLy x Hypx N, is the augmented state;

o Mt — (It Jinit pInit ninit) s the initial state;
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e Ty € SxS§is a transition relation describing the possible
moves of the robot and the obstacle.

To synthesize the transition system 7y, we define the
rules for the possible successor state locations which will
be further expressed in the form of LTL specifications
1. The successor location of the robot is based on its
current state and action succy(lyc,hre,na) = {l.. €
CT,CE'Z:J? h;,c((lr,ca lov h'r‘,ca ’fla), (l'/r‘,cﬂ llo’ h;",cv ’ﬂ;)) € TN}
We define the set of possible successor robot actions at
the next step as succn,(Na,lre;lycrlosly, e, hy ) =

{na € Nal((lneslos bresa), (s Loy i) €
Tn}. We define the set of successor locations
of the obstacle. succo(lyc,lo,nq) = {1’ €
£0|3l;,c7 ;',c'((lr,cvlmhr,cvna)? (l;,cvl;7hlr,cvn:z)) € TN}

Later we will use a belief abstraction inspired by [13] to
solve our synthesis in a partially observable environment.

The task planner models the robot and environment inter-

play as a two-player game. The robot action is Player 1 while
the possibly adversarial obstacle is Player 2. The synthesized
strategy guarantees that the robot will always win the game
by solving the following reactive problem.
Reactive synthesis problem: Given a transition system 7Ty
and linear temporal logic specifications 1, synthesize a win-
ning strategy for the robot such that only correct decisions are
generated in the sense that the executions satisfy .

The action planner is synthesized using the same game
structure as the navigation planner, with possible states
and actions corresponding to Section Nondeterministic
robot location transitions are captured in the robot successor
function succy ¢(ly ¢, he f,aur) = {l'T’f € Ly, h’r}f €
He g (g g @), (L L g afyy)) € Ta}, where T is
the transition relation in the action planner. Compared to the
transition relation 7T, 74 does not have the obstacle location
l, but includes locomotion actions ayyr,. Given the current
robot state and action, succ,y provides a set of possible
locations at the next turn in the game. Obstacle avoidance is
taken care of in the navigation game the obstacle location £,
and successor function succ, are not needed for action planner
synthesis. Since reactive synthesis is used for both navigation
and action planners, and the action planner guarantees the
robot transition in the navigation game, the correctness of this
hierarchical task planner is guaranteed.

E. Belief Space Planning in A Partially Observable
Environment

The navigation planner above synthesizes a safe game
strategy that is always winning but only in a fully observable
environment. We relax this assumption by assigning the robot
a visible range only within which the robot can accurately
identify a dynamic obstacle’s location. To reason about where
an out-of-sight obstacle could be, we devise an abstract belief
set construction method based on the work in [13]. Using
this belief abstraction, we explicitly track the possible discrete
locations of a dynamic obstacle, rather than assuming it could
be in any non-visible cell. The abstraction is designed by
partitioning regions of the environment into sets of discrete
belief regions (R;) and constructing a powerset of these

. bipedal robot

. dynamic obstacle

D visible cell I I obstacle belief
. static obstacle . obstacle free

(a) Environment divided into belief regions (b) Obstacle before leaving visible range

(c) Obstacle not visible to robot

(d) Obstacle not visible to robot

(e) Obstacle not visible to robot

(f) Obstacle reappears in visible range

Fig. 10: Simulation showing how the navigation planner’s belief evolves when
the dynamic obstacle leaves the visible range for several turns. 6 colored belief
regions are shown, as well as the robot (blue circle), the dynamic obstacle
(orange circle) and static obstacles (red cells). Black cells represent non-visible
cells believed to be obstacle free while white cells are visible. The planner
believes the obstacle could be in any colored cell depicted, and can therefore
reason where the obstacle could and could not reappear, allowing the planner
to determine which navigation actions are safe.

regions (P(Ry)). We choose smaller partitions around static
obstacles that may block the robot’s view as this allows the
planner to guarantee collision-free navigation for a longer
horizon like the scenario depicted in Fig. [I0} We index each
set in P(Ry,) to represent a belief state b, € BB, that captures
non-visible regions potentially with a dynamic obstacle.

The fully observable navigation game structure is modified
to generate a partially observable belief-based navigation game
with an updated state Spejer and transition system Tpelier In
addition to the obstacle location [, € L,, Spelier captures the
robot’s belief of the obstacle b, € B,. A visibility function
V15 : Spelief — B is added such that it maps the state (I, ., l,)
to the Boolean as True if and only if [, is a location in the
visible range of [, .. We do not need to modify succ,, since
the dynamic obstacle only affects the possible one-step robot
action if it is in the visible range. succ, also remains the same
as the relationship between the robot’s actions and its state is
not changed by the belief. The set of possible successor beliefs
of the obstacle location, b)), is defined as succy,, = {b), €
Bol((Lres bos o), (1. o, by lo)) € Toelier} Where b, indexes {)
when vis(l,. ., 1)) = True and 1) indexes a nonempty set in
P(Rp) when vis(l, ., 1)) = False.

Four classes of belief transitions, shown in Fig. [I0] are
defined for accurate and meaningful belief tracking:

o Visible to visible: as in the fully observable case, the
obstacle may transition to any adjacent visible cell.
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Fig. 11: 3D simulation of the Cassie robot dynamically navigating in the partially observable environment while avoiding collisions with two mobile robots
that are treated as dynamic obstacles. Cassie’s task is to move between designated initial and goal locations for package delivery. Trajectories of Cassie CoM,
foot placements as well as environment coarse-level cell abstraction are shown in subfigure (a). Subfigure (b) shows a 3D view of the tested environment.

o Visible to belief: the belief state represents the set of
regions containing non-visible cells adjacent to the ob-
stacle’s previous visible location.

o Belief to belief: the obstacle could be in any non-visible
(or newly visibleﬂ) cell represented by the current belief
state, the next belief state represents the current belief
plus the belief regions the dynamic obstacle could have
entered given its limited motion capability.

o Belief to visible: similar to the previous case, the current
obstacle may be in any non-visible or newly visible cell
represented by the planner’s belief, and may move to
any adjacent cell, which defines the visible cells it could
appear in at the next time step.

This method of belief tracking guarantees that all real
transitions the obstacle can make during its turn are captured
in the planner’s belief. When the obstacle enters cells in a
new belief region, the planner believes it could be anywhere
in that region, therefore the belief is an over-approximation of
possible obstacle locations. We guarantee that the obstacle is
within the regions captured by the belief state, therefore we
can guarantee that the obstacle can only appear in a visible cell
when there is a modeled transition from the current belief state
to that cell. Since both the action planner and the allowable
navigation actions remain the same for the partially observable
game, the game captures the same safety guarantees, but allow
for a larger set of navigation options than would be possible
without tracking the belief of the dynamic obstacle’s location.

F. Belief Tracking of Multiple Obstacles

Our task planner is extensible to environments with multiple
dynamic obstacles. It is possible to directly add any number
of additional obstacles and their associated beliefs to the
navigation planning game, however, the synthesis has polyno-
mial time complexity. To improve computational tractability,

Due to the turn-based nature of the game, an obstacle may be in the robot’s
visible range after the robot makes a move, but the obstacle may move from
this newly visible cell before the robot reevaluates its new visible range.

we merge all non-visible obstacles’ believed states into one
combined belief region. Reasoning about a combined belief
region still allows the planner to guarantee collision-free
navigation without the complexity of tracking each obstacle
individually.

To model a combined belief state we separate the obstacles’
state from it’s belief. Each obstacle’s state is either a visible
cell on the grid, or and index representing the obstacle is not
visible (I i c € Lo c|Lo,i,c = Lo+ZLny). The joint belief state
consists of the powerset of belief regions, including the empty
set when all obstacles are visible. (b,; € B|B = P(Rs)).

We generate a new multi-obstacle game structure
gcombinedfbelief = (Sbeliefu Sﬁgﬂef, 7I)elief7 UZS) with

o Sbelief = Er,c X Eo,i,c X Bo X an X Na;

o sptee = (ORI oY AR niM) s the initial

location of the obstacle known a priori;

o Toeliet © Spelief X Shelief are possible transitions where

((ZT,Cv lo,i,c; b07 h?”,67 na)7 ( ;“,cv :y,i,o? blc)7 h’”r‘,c’ 'I’L;)) e
7Taelief;
o ViS : Speliet — B is a visibility function that maps the

state (I, ¢, o) to the boolean as True iff [,; is a real
location in the visible range of [, .

This game requires new specifications that govern
succo,i(lreyloic,b) and succy(lyc,loic,b), the allowable
successor obstacle state and joint belief state, all other
successor functions remain the same. Even though the belief
can represent multiple obstacles, the possible belief-to-belief
transitions are the same as when the belief state represents
a single obstacle. The key specifications to be changed are
those governing succy, when an obstacle enters or exits the
visible range. These changes can be made in the specifications
defining the successor belief state succy, .

VII. RESULTS

This result section evaluates the performance of (i) the high-
level task planner by assessing its task completion, collision
avoidance, and safe action execution; (ii) the middle-level



motion planner by employing our designed keyframe deci-
sion maker to choose proper keyframe states and generating
safe locomotion trajectories; (iii) recoverability against per-
turbations using the reachability-based synthesized controller;
and (iv) the feasibility of using the reduced-order motion
plan to generate whole-body motion trajectories. The results
are simulated using the Drake toolbox [48], and the open-
source code can be found here https://github.com/
GTLIDAR/safe—nav—locomotion.gitl A video of the
simulations is https://youtu.be/w-SrjuUbO78.

A. LTL Task Planning Implementation

The task planner is evaluated in an environment with multi-
ple static and dynamic obstacles, and two rooms with different
ground heights connected by a set of stairs as seen in Fig. [T1]
To generate the navigation planning abstraction, the environ-
ment is discretized into a 10 x 5 coarse grid, with a 2.7 x 2.7
m? cell size. L, . is the set of all accessible discrete cells, H,. .
is the set of cardinal directions, and N is a set of navigation
actions in those cardinal directions (N, E, S, W). Each coarse
cell is further discretized into a finer 26 x 26 grid for local
action planning. We model the possible actions as step length
d € {small1,small2, medium1, medium2, large1, large2},
heading change Af# < {left,none,right}), and step height
Azfoor € {Zdown27zdownlaZﬂatazuplyzu;ﬁ}- The possible
heading changes Af € {—22.5°,0°,22.5°}, are constrained
by the minimum number of steps needed to make a 90° turn,
and the maximum allowable heading angle change that results
in viable keyframe transitions as defined in Theorem We
choose Af = £22.5° so that a 90° turn can be completed in
four steps as shown in Fig. [0] Completing the turn in fewer
steps is not feasible as it would overly constrain v,pex, as can
be seen in Fig. [6(b). Due to the allowable heading change
of £22.5°, H, r contains a discrete representation of the 16
possible headings the robot could have.

A set of specifications is designed to describe the allowable
successor locations and actions in the transition system. Here,
we only show a few specifications as examples:

((hr’f = Hrc N ((isy = left A Af = right)

(isy = right A A6 = left)) = O(d = medium2)), (7)
((hrp = Hoe A ((ise = left A AG = left)

V (i, = right A A9 =right)) = O(d = small2)),  (8)

]
V
]

which govern the allowable step length during the first step of
a turning process.

Both navigation and action planners are constructed by
combining environment assumptions and system specifications
generated by the successor functions described in Sections[VI]
and [VI-F| into a transition system and using the LTL
synthesis tool SLUGS to generate a winning strategy. Syn-
thesis occurs offline, and the winning strategy is efficiently
encoded in a binary decision diagram (BDD) [49] which can
be accessed online by interfacing the controller directly with
SLUGS. At each turn of the game, the controller computes
the new abstracted environment state and passes it to SLUGS
which returns the corresponding system action.

nominal waypoint

possible waypoint transitions
[l replanned waypoint

safety boundary

o foot stance
«se low-level waypoint

«+« CoM apex

o

= | I

[
Dynfety

Fig. 12: Tlustration of online updating the high-level waypoint to maintain
lateral tracking at the middle-level motion planner. The high-level waypoint
is also required to keep a safe distance away from the adjacent coarse cell
to avoid collisions with static or dynamic obstacles. In this run, we set the
safety boundary to be 6 fine cells as shown in light blue.

TABLE I: Successful motion plan results for the pick and place task

Steps | turns | waypoint correction
200 9 4
260 17 12
500 29 22

B. Nominal Online Planning for A Pick and Place Task

The middle-level motion planner is able to generate CoM
trajectories of the ROM for a pick and place task infinitely
often that include traversing stairs, steering, stopping, and
avoiding dynamic obstacles. The keyframe decision maker,
detailed in Sec. [V] selects the optimal next keyframe for way-
point tracking. The action planner interfaces with the middle-
level motion planner online to pass the action set for the
next keyframe. In the case when the keyframe decision maker
cannot satisfy the lateral tracking of high-level waypoints in
Proposition |V.1] a new non-deterministic transition from the
action planner is selected based on the modified lateral phase-
space plan online. The action planner receives the updated
waypoint which allows the planner to chose the correct transi-
tion to the next game state. Our simulation shows that the robot
successfully traverses uneven terrain to complete its navigation
goals while steering away from dynamic obstacles when they
appear in the robot’s visible range. The robot’s navigation
trajectory is shown in Fig.[TT] The tracking results for multiple
plans with different obstacle paths are detailed in Table. [
using PSP parameters given in Table. |lIl Waypoint correction
only occurs in the last step of a turning sequence due to the
complexity of lateral tracking during steering scenarios. 12 out
of 260 stepﬂ result in alternative discrete state transitions in
the lateral direction, all of which were seamlessly handled by
the action planner as shown in Fig. [I2] This result show that
the integration of the high-level planner and the middle-level
motion planner in an online fashion allows for successful and
safe TAMP.

10the step count refers to the number of high-level actions received by the
middle-level motion planner, which includes stopping actions


https://github.com/GTLIDAR/safe-nav-locomotion.git
https://github.com/GTLIDAR/safe-nav-locomotion.git
https://youtu.be/w-SrjuUbO78

TABLE II: Nominal PSP parameters values

[ parameter | value | parameter | value |
Vapex,min 0.20 m/s Vapex,max 0.70 m/s
hapex 0.985 m AzZfoot {0,£0.1,40.2} m
0.10 m
Ay (0.0 m for steering) Ayz.a 0.14'm
1.0 1.0
“a (7 for steering) e (4 for steering)
AO {0°,£22.5°} bsafety 0.52 m
{0.21,0.28,0.31,
d 0.38,0.42,0.43, Vine 0.01 m/s
0.47,0.52} m

C. Belief Space Planning

The belief abstraction in the navigation planner is successful
in tracking and bounding nonvisible obstacles as can be seen in
Fig.[10] The tracked belief enables the robot to navigate around
static obstacles while guaranteeing that the dynamic obstacles
are not in the immediate non-visible vicinity. Fig. [I3] depicts
a snapshot of a simulation where the robot must navigate
around such an obstacle to reach its goal states. The grid-
world environment is abstracted into 6 distinct belief regions
resulting in 64 possible belief states. A successful strategy can
be synthesized only when using a belief abstraction. Without
explicitly tracking possible non-visible obstacle locations, the
task planner believes the obstacle could be in any non-visible
cell when it is out of sight, including the adjacent visible cell
in the next turn of the game. That means the planner can not
guarantee collision avoidance and is not able to synthesize a
strategy that would allow the robot to advance. Fig. [I3b]depicts
a potential collision that could occur in pink. This comparison
underlines the significance of the belief abstraction approach.

The belief abstraction provides additional information for
deciding long-horizon navigation actions beyond guaranteeing
immediate collision avoidance. In the simulation shown in Fig.
[I1] it is challenging to navigate around the vision occluding
static obstacles at the lower-level (including the walls and a
multi-stair platform). The synthesized strategy reacts to the
additional information about the dynamic obstacle provided
by belief tracking in three distinct ways. Based on the belief,
the robot either (i) continues on the most direct route to the
goal location; (ii) loops around to the right and positions itself
to be able to go around either side of the static obstacle; or (iii)
stops and waits until the dynamic obstacle disappears (see the
result in the simulation video). The planner can choose any
of these three strategies as long as all safety specifications are
met. This nondeterministic mechanism offers the task planner
flexibility in choosing safe navigation actions.

Generating global navigation task planners for two dynamic
obstacles using a joint belief abstraction requires only 40% of
the synthesis time as that of independently tracking the belief
state of each obstacle. Specifically, synthesizing a strategy for
the scene in Fig. [T1] with two dynamic obstacles took 34
mins using joint belief tracking and 85 mins when individually
tracking the belief of each obstacle.

D. Safe Recoverability and Replanning

The proposed sequential composition of controllable regions
and reachability analysis in Sec. [[V-B]allows our middle-level

(a) With explicit belief tracking

(b) No explicit belief tracking

Fig. 13: A snapshot of the coarse-level navigation grid during a simulation
where the robot (blue circle) is going between the two goal states (green cells),
while avoiding a static obstacle (red cells) and a dynamic obstacle (orange
circle). White cells are visible while grey and black cells are non-visible.
Gray cells represent the planner’s belief of potential obstacle locations. The
closest distance the obstacle could be to the robot, as believed by the planner,
is depicted by the pink circle.
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Fig. 14: Results of OWS robust PSP. (a) shows a 15 random keyframe transi-
tions with bounded disturbances, where Tows = (0.416 m, [0.45,0.7] m/s).
(b) Composition of controllable regions of OWS. Here, we demonstrate that
the synthesized controller is able to handle the perturbed CoM trajectory,
shown as a black solid line, inside the superimposed controllable regions and
successfully complete multiple steps when controllable regions are composed
as proposed in Corollary [[V.6]

motion planner to be robust against perturbations exerted on
the CoM in the sagittal space. Given a keyframe transition
for OWS, the synthesized controller is able to guarantee that
the CoM state reaches the targeted state within OWS, thus
successfully completing a OWS safely. In Fig. [T4(b) we show
the composition of controllable regions for multiple walking
step and demonstrate that the CoM trajectory is recoverable
when employing the synthesized controller. Table. [lTI] shows
the success rate for randomly generated keyframe transitions,
where the step length is d; = 0.312 m, d3 = 0.416 m and
d3 = 0.52 m. The data is generated using ROCS [43] with
1000 runs for each desired keyframe transition, a randomly
selected &. € E. and the applied disturbance bound éapplicd
is uniformly distributed within [—2,2] m for CoM position
and [—5,5] m/s for CoM velocity. The controllable regions
are synthesized with state space granularity of (0.002 m, 0.004
m/s), a control input w € [2.8,3.5] rad/s with a granularity of
0.02 rad/s, and the added noise bound at synthesis ésynthcsis
is uniformly distributed within [—0.01,0.01] m for CoM
position and [—0.02, 0.02] m/s for CoM velocity. In Fig.[T4{a),
we show 15 successful random keyframe transitions where
Vapex,n = [0.45,0.7] m/s and d = 0.415 m.

Large perturbations can push the system state outside of
the controllable regions and the synthesized controller cannot
recover to Tswitch- 10 safely recover from such large pertur-
bations, we employ a variant of the capture point formulation



TABLE Ill: Success rate of perturbed OWS transitions

. Success Rate
Vapex,n Margin 4 o o
0.2,0.45] m/s 90.2% | 91.6% | 92.5%
0.45,0.7] m/s 91.8% | 92.2% | 93.6%

[11], [50] to redesign the next foot position Zfyet,, While
maintaining the desired vapex,n via the following formula:

— -2 2 1/2
Tfoot,n = Tswitch + ;(zswitch,dist + vapex,n) / ©)

where Zgyitch 1S determined analytically based on the nominal
transition, and Tgwitch,dist 15 the post-disturbance sagittal CoM
velocity at switch instant and computed through a position
guard * = Zswitch Shown as the vertical dashed line in Fig@
(a). The nominal foot position is determined by the high-level
waypoint. In case that the new foot location lands in a different
fine cell, the online integration mechanism between the high-
level and middle-level will update the action planner for a
new waypoint location as shown in Fig. @b) and (c). The
action planner reacts to to the perturbation by replanning d
and A6 in apyy, which further induces a waypoint change
at the next walking step. In particular, the nondeterministic
transition flag t,,4 = {nominal, forward, backward} indicates
the perturbation direction. The automata shown in fig. |'1§] (c)is
a fragment from the larger action planner consisting of 21447
nodes. The navigation planner automaton has 20545 nodes.
Online resynthesis of these planner automata is computation-
ally intractable, and thus we incorporate the nondeterministic
transition flag t,4 into the automaton offline synthesis and
employ them online for action replanning.

E. Whole-body Non-periodic Trajectory Generation

To validate the feasibility and effectiveness of the synthe-
sized phase-space trajectory on the bipedal robot Cassie, we
exploit one-walking-step trajectory optimization (OWS-TO) to
generate full-body motions that meet strict constraints of the
keyframe hyperparameters in Fig. [2]

The selected keyframe transitions in the phase-space plan
allow non-periodic gaits for rough terrain traversability. A
subset of keyframe state k is selected as hyperparameters:
the step length d, sagittal apex velocities at the current and
next walking Step Vapex,c» Vapex,n, and the heading change
AO. We select viable ranges of these hyperparameters based
on Cassie’s physical feasibility. These hyperparameter ranges
are discretized to create a finite set of combinatorial gait
parameters. These parameter combinations are enforced as
boundary conditions in the TO, and produce non-periodic mo-
tion primitives between keyframes. We choose d € [0.2,0.6]
m with an 0.1 m increment, vapex € [0.2,0.5] m/s, and
Af € [—30°,0°,30°]. The possible actions that the high-level
planner (Sec. can take are bounded within the range
of the discretized hyperparameters, so we can always take
the action to interpolate the motion primitives in the offline
generated library to obtain a full-body motion.

The OWS-TO solves the optimal full-body trajectory by
minimizing the sum of square of control efforts (i.e., joint
torques) along a trajectory that obeys physical constraints.
We represent the trajectory with a finite number of discrete

(a) sagittal phase-space
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(b) CoM trajectory
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(c) Navigation Automaton Fragment with Replanning
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(
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Fig. 15: Safe recovery from a large perturbation. (a) shows the sagittal phase-
space plan, where a position guard is used to determine a safe replanned foot
location to recover from the perturbation. (b) shows the CoM trajectory in
Cartesian space and the online integration of the high-level action planner
and the middle-level PSP for a waypoint modification. (c) shows a fragment
of the synthesized action planner automaton capturing modeled nondetermin-
istic transitions (with the associated flag ¢,4). For each next state of the
environment (egr,), there is a set of game states corresponding to all possible
tnq. Blue transitions capture the replanned execution when the robot CoM is
perturbed forward while red transitions depict a nominal execution without any
perturbation. Numerical values for eyy, and agr, index distinct environment
state and robot action sets in the algorithm implementation.

node points with equal time intervals. Each node contains
state variable (full-body joint position and velocity (g, ¢)) and
control variables (full-body joint torque 7), which are used to
construct the cost and constraint functions.

Due to the inherent hybrid nature of legged systems, the
formulated TO comprises D = 2 stance phases separated by
a foot contact switch. The TO problem is formulated using
the direct collocation method [51], which places collocation
points in the middle of each two nodes to enforce the dynamics
constraints. In our implementation, each phase is composed of



N; = 11 nodes. We transcribe an initial trajectory into a non-
linear program (NLP):

D N]
arg;nin Z ZQJ VACH

j=11=0

st Hj(q))d +Vilal, @) = 7,
-j+1 .7
" = Aj(an,),

(10)
(dynamics)
)

(reset map

fere >0, |femyl < pife, (friction)
Cr* gl il 7)) <o, (path)
C;?Olmd(qg i) =0 (hyperparameters)

The NLP above describes the problem for solving the optimal
state-control decision variable X* = {¢", ¢/, 7/"}. By min-
imizing the cost of pseudo energy J; = ||77||* with weights
2; while enforcing the physical constraints, we get contin-
uous trajectory by interpolate between the optimal decision
variables. The discretized full-body dynamics are enforced,
which contains [ and V denoting the inertia, bias force
matrices of the equation of motion. The state after the contact
switch ¢ = Aj(q'gvj) is mapped from the state before the
switch. We adopt the linear complementarity constraints for
non-slippery ground contact. The path constraints also enforce
joint and torque limits of the robot system. As for the boundary
constraint of each OWS, the sagittal apex velocity, heading
angle change, and step length follow the desired combinations
of keyframe hyperparameters.

We use the fast robot optimization and simulation toolkit
(FROST) [52] to construct the NLP and exploit the IPOPT
[53] solver to offline find a set of 585 OWS motion primitives
in Matlab. The TO stopping criteria of the constraints are on
the order of 1073, We use the Intel i7-8700 CPU that takes
236 minutes to create the whole motion primitive set. The
final trajectory are parameterized as a piecewise polynomial
using the state and control decision variables. For each OWS
phase-space trajectory, we extract the hyperparameters at the
keyframe and generate the corresponding full-body trajectory
through interpolation between the motion primitives in the set.
We show Cassie’s full-body CoM trajectory in Fig. [I6] for a
continuous straight walking and a 90° turning in 4 steps. We
evaluate the discrepancy between the CoM trajectory from
the phase-space plan and that estimated from the generated
full-body motion, using the root-mean-square (RMS) distance
metric. The RMS between the trajectories are 0.011 m for
straight walking and 0.017 m for the four-steps turning. For
the CoM trajectory solved by the full-body TO, there is a
vertical velocity jump at the foot transition instant (see the
red trajectory in Fig. Ea)-(b)). This is induced by the impact
dynamics with ground contact. The proposed TO method
validates the feasibility of deploying the reduced-order phase-
space trajectories onto Cassie hardware.

VIIl. DISCUSSION AND LIMITATIONS

Belief tracking expands the guaranteed safe navigation ac-
tions available to the navigation planner. Merging the belief of
multiple dynamic obstacles into one abstract state captures less
information than individual obstacle tracking by design. This

(a) lateral phase-space trajectory (b) sagittal phase-space trajectory
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Fig. 16: Comparison of the phase-space CoM trajectory with that estimated
from the full-body motion generated from TO. (a) and (b) show the OWS
of continuous straight walking. (c) illustrates a four-step turning sequence.
The full-body motion, matching the phase-space trajectory, can successfully
maneuver the robot to execute a safe turn.

reduces computational complexity while providing the same
guarantees of capturing dynamic obstacle locations. One path
to enhance the proposed framework in the future is to model
small obstacles in the action planner so that an entire coarse
cell containing such obstacles are still accessible to the robot
in the navigation game. Additionally, the library of turning
sequences can be expanded to incorporate more aggressive
navigation decisions while obeying the safety criteria proposed
in Sec. [V-Al and to include fine-level obstacle avoidance
maneuvers.

Our proposed safe PSP demonstrates successful execution
of high-level actions under nominal conditions for a large
number of walking steps as detailed in Table. [ While the
framework still lacks formal guarantee on successful lateral
tracking of the high-level waypoints for infinite number of
steps or under extremely large perturbations, our results show
empirical guarantees afforded by the integration of the formal
navigation and obstacle avoidance guarantees in the high-
level task planner in Sec. [V, locomotion safety guarantees in
Sec. [[V-A] and the online replanning algorithm for waypoint
tracking in Sec. Such empirical guarantees are shown in
Figs. [[T{12] and Table. [ Moreover, in real-life deployment
of our framework on Cassie, correction-as-needed strategies
can be explored for specific tasks, such as stopping motions at
pick and place locations, therefore robot state deviation will
not accumulate during infinite walking step scenarios.

The success rate of completing OWS safely under pertur-
bation highly depends on various factors such as the state
space granularity, robot actuation capability, environmental
uncertainties, and the locomotion phase when the perturbation
is applied. Comprehensive analysis of the success rate with
respect to these factors is beyond the scope of this study. In
the future, we plan to design more advanced safety criteria



addressing adversarial pedestrian in the environment [5], [54],
[55] and contact uncertainties from terrain [56]. Moreover,
the reachability analysis is based on the ROM dynamics,
therefore a discrepancy will be induced when taking into
account Cassie’s full-body dynamics.

In Sec. [VI-E] we validate the feasibility of the reduced-
order motion plans to generate dynamics-consistent whole-
body motions. Our results in Fig. [I6]show that the whole-body
motion of Cassie is able to successfully track the reduced-
order motion plan. This is the first yet significant step towards
deployment of our proposed framework on Cassie hardware
and remains a motivation for future work.

IX. CONCLUSION

Long-horizon and formally-guaranteed safe TAMP in com-
plex environments with dynamic obstacles has long been a
challenging problem, specifically for underactuated bipedal
systems. On the other hand, symbolic planners are powerful
in providing formal guarantees on safety and task completion
in complex environments. For this reason, integrating high-
level formal methods and low-level safe motion planning
ought to be explored by the locomotion community to attain
formally safe TAMP for real-life tasks. The way we address
this problem is through multi-level safety in a hierarchically
integrated planning framework.

Our proposed TAMP framework seamlessly integrates low-
level locomotion safety specifications into a formal high-level
LTL synthesis, to guarantee safe execution of the high-level
commands. The middle-level motion planner generates non-
period motion plans that accurately execute the safe high-level
actions. Our high-level planner employs a belief abstraction
to address the partial observability of a large environment
and guarantees safe navigation. We also investigate robust-
ness against external perturbation through safe sequential
composition of keyframe states to achieve robust locomotion
transitions. The generated CoM motion plans are also validated
to be viable for generating full-body locomotion gaits of the
20-degree-of-freedom Cassie bipedal robot.

APPENDIX |
ANALYTICAL SOLUTION FOR PIPM DYNAMICS
When the CoM motion is constrained within a piece-wise
linear surface parameterized by h = a(z — Toot) + Rapex. the
reduced-order model becomes linear and an analytical solution
exists:

x(t) = Ae®t + Be ! + g0
i(t) = w(Ae*t — Be ")

Y
12)

where w = haieva = %((JZO - zfoot) + @)7 B = %((l’o -

Zfoot) — %) manipulate Eq. - gives

o+ L pp = 246 (13)
w
which renders
1 T+ £ _ Tfoot
t=—log(—%—— 14
- log( oA ) (14)

To find the dynamics, & = f(x), which will lead to the
switching state solution, remove the ¢ term by plugging Eq.
(T4) into Eq. (T1).

1 T 2AB

§(x - Tfoot) = PR — (15)
(z — :Bfoot)2 - (5)2 =4AB (16)

which yields
b = (@ — o) — (0~ Tr00)?) + 3] (17

If the apex height is constant, then w is constant. According
to the constrain that sagittal velocity should be continuous, the
saggital switching position is obtained by

1 C

Tswitch — z\————————— + (xfoot,c + xfoot,n)) (18)

2 Tfoot,n — Lfoot,c
where
C = e 2 _ s 2
*(xapcx,c lfoot,c) (xapcx,n ‘Lfoot,n)
2 2
Uapex,n - vapex,c (19)
w?
APPENDIX Il

PROOF OF THEOREM [V 1]

Proof. First, the sagittal switching position can be obtained
from the analytical solution in Appendix [T}

1 C
Lswitch — *(—
2 Tfoot,n — Lfoot,c

+ (Ifoot,c + xfoot,n)) (20)

— 2 2
where C' = (‘rapex,c - wfoot,c) - (xapex,n - xfoot,n) +
(42 pexn — ©2pex.c)/w?. This walking step switching position

is required to stay between the two consecutive CoM apex
positions, i.e.,

2n

Lapex,c S Tswitch S Lapex,n

which introduces the sagittal apex velocity constraints for two
consecutive keyframes as follows.

2
w (mapex,n - xapex,c)(xapex,c + Tapex,n — fooot,n)

2 2
< Uapex,n - vapex,c =

(22)
2
w (wapex,n - xapex,c)(xapex,c + xapex,n - 2xfoot,c)

Given this bounded difference between two consecutive
CoM apex velocity squares, the corresponding safe criterion
for straight walking can be expressed as Eq. (3). O

APPENDIX Il
PROOF OF THEOREM [[V.2]

Proof. First, for the sagittal phase-space, the sagittal velocity
is required to be above the asymptote:

(23)

Lapex,c > w- Tfoot,c

Initiating a heading angle change introduces a new local
sagittal coordinates as seen in Fig. [§] Therefore Eq. (23)
becomes

Vapex,c - C0S A0 > w - Ay . - sin Af (24)



As for the lateral phase-space, the lateral velocity is required
to be below the asymptote in the new coordinate as follows

Vapex,c - SINAO < w - Ay . - cos Af (25)

Combining Eqs. (24}25) results in the steering safety criterion

in Eq. @). U
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