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Active Suspension Control With Frequency Band
Constraints and Actuator Input Delay

Weichao Sun, Ye Zhao, Jinfu Li, Lixian Zhang, and Huijun Gao, Senior Member, IEEE

Abstract—This paper investigates the problem of vehicle active
suspension control with frequency band constraints and actuator
input delay. First, the mathematical model of suspension systems
is established, and the problem of suspension control with finite-
frequency constraints is formulated to match the characteristics of
the human body. Then, the finite-frequency method is developed
to deal with the problem of suspension control with actuator
input delay, based on the generalized Kalman–Yakubovich–Popov
lemma. Compared with the traditional entire-frequency approach
for active suspension systems, the finite-frequency approach pro-
posed in this paper achieves better disturbance attenuation per-
formance for the chosen frequency range while the constraints
required by real situation are guaranteed in the controller de-
sign. The effectiveness and merits of the proposed method are
verified by a number of simulations with several types of road
disturbances.

Index Terms—Active suspension systems, actuator input delay,
disturbance attenuation, finite frequency.

I. INTRODUCTION

V EHICLE suspensions have been a hot research topic due
to their important roles in vehicle performances. Recently,

combining active vibration control mechanism with advanced
control algorithms to improve suspension systems is a popular
and effective way, i.e., the so-called active suspension sys-
tem which is suitable for improving suspension performances,
and has attracted much attention [4], [12], [14], [16], [18],
[19], [25].

Generally speaking, performance requirements for vehicle
active suspensions include these aspects: ride comfort, which
means to isolate passengers from vibration and shock arising
from road roughness; handling performance, which refers to
suppress the hop of the wheels so as to maintain firm and
uninterrupted contact of wheels to road; suspension travel;
and actuator consumption. However, these requirements are
always conflicting, for example, enhancing ride comfort results
in larger suspension stroke and smaller damping in the wheel-
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hop mode. Hence, the main goal of active suspension design is
to resolve the inherent tradeoffs among ride comfort, handling
performance, suspension travel, and actuator consumption.
Driven by the aforementioned motivations, a considerable
amount of research has been carried out for the last few decades
[17], [20], [22], and many active suspension control approaches
are proposed, based on various control techniques such as linear
quadratic Gaussian control, adaptive control, sliding-mode con-
trol [6], [26], nonlinear control, and H∞ control. In particular,
H∞ control has been intensively discussed in the context of
robustness and disturbance attenuation [2], [27], [28].

There are some papers that discuss the problems of H∞ con-
trol or disturbance attenuation for active suspension systems. To
mention a few, in [9], the problem of constrained H∞ control
for active suspensions is considered, and a state feedback
controller is designed to ensure the disturbance attenuation
performance of the closed-loop system while the constraints
required in the vehicle suspension control are guaranteed.
Finally, the inherent tradeoffs is transformed into the prob-
lem of multiobjective control to be addressed. In [7], a load-
dependent controller design approach is presented to solve the
problem of multiobjective control for vehicle active suspension
systems based on the state feedback strategy. This approach of
designing controllers, whose gain matrix depends on the online
available information of the body mass, is based on a parameter-
dependent Lyapunov function, where the performance require-
ments are fused in the controller design.

As is known to all, time delay is a characteristic that is
commonly encountered in various engineering systems, such
as pneumatic and hydraulic systems and industrial processes
for instance [5], [15]. In active control of vehicle suspension
systems, the time delay of the system is an important issue
that needs careful treatment to avoid poor performance or even
possible instability of the closed-loop system, and unavoidable
time delays may appear in the controlled channel, particularly
in actuators where the delays are taken to build up the required
control force. Although the delay time may be short, it can
nevertheless limit the control performance when the delay
appears in the feedback loop. There are some results about the
active suspension system with actuator input delay, such as [8],
[10], and the references therein.

Among the required performances, ride comfort is a key
indicator of the active suspension control, and various control
strategies have been introduced aiming at improving the ride
comfort performance [3], [13]. It is worth mentioning that most
researchers design controllers for suspension systems over the
entire-frequency range, and the existing results overlook a vital
fact that active suspension systems just belong to a certain
frequency band. The human body is more sensitive to vibrations
of 4–8 Hz in the vertical direction, and human’s organs will
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resonate with the vibrations in this frequency domain. Hence,
the development of the finite-frequency control is significative
for active suspension systems.

Weighting functions are usually employed in the existing
results where the finite-frequency problems are concerned. This
weighting method is effective, while it is weighting functions
that increase the system complexity, and the process of se-
lecting appropriate weights can be time consuming as well.
Recently, a significant development made by Iwasaki and Hara
is the generalized Kalman–Yakubovich–Popov (KYP) lemma
[23] that establishes the equivalence between a frequency do-
main property and a linear matrix inequality (LMI) over a finite-
frequency range, allowing designers to impose performance
requirements over the chosen finite-frequency ranges. The gen-
eralized KYP lemma is useful for the analysis and synthesis of
practical application problems [1], [11], [24].

In this paper, the problem of vehicle active suspension
control with frequency band constraints is considered, where
the actuator input delay, limit of actuator output force, and
controlled output constraints are taken into account in a unified
framework. The quarter-car model is employed as the object
of research. By using the generalized KYP lemma, the finite-
frequency method is developed to control the active suspension
with actuator input delay, and the finite-frequency problems are
transformed into a set of LMIs to be solved. In addition, the
time-domain constraints, which represent performance require-
ments for vehicle suspensions (road holding, suspension stroke,
and actuator limitation), are guaranteed in the controller design.
The desired controllers can be obtained by solving a set of LMIs
using standard numerical algorithms. The effectiveness of the
proposed approach is shown by an actual example.

The remainder of this paper is organized as follows. The
problem of finite-frequency controller design for active sus-
pension systems with input delay is formulated in Section II.
Section III presents the results of controller design. The simu-
lations illustrating the usefulness and advantage of the proposed
methodology are shown in Section IV, and conclusions are
given in Section V. Some essential lemmas are given in the
Appendix.

Notation: For a matrix P , PT, P−1, and P⊥ denote its
transpose, inverse, and orthogonal complement, respectively;
the notation P > 0 (≥ 0) means that P is real symmetric and
positive definite (semidefinite); and [P ]s means P + PT. For
a vector or matrix, {·}i(i = 1, 2, . . .) represents the ith line of
the vector or matrix. In symmetric block matrices or complex
matrix expressions, we use an asterisk (∗) to represent a term
that is induced by symmetry, and diag{. . .} stands for a block-
diagonal matrix. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.
The space of square-integrable vector functions over [0,∞)
is denoted by L2[0,∞), and for w = {w(t)} ∈ L2[0,∞), its

norm is given by �w�2 =
�� ∞

t=0 |w(t)|2dt. For G ∈ Cn×m and

Π ∈ Hn+m, a function υ: Cn×m × Hn+m → Hm is defined

by υ(G, Π) =
�

G
Im

�∗
Π

�
G
Im

�
.

II. PROBLEM FORMULATION

By considering the vertical dynamics and taking into account
the vehicle’s symmetry, a suspension can be reduced to a

Fig. 1. Quarter-car model with an active suspension.

quarter-car model, as shown in Fig. 1. In this figure, ms is
the sprung mass, mu is the unsprung mass; cs and ks are the
damping and stiffness of the suspension system, respectively; kt

and ct stand for compressibility and damping of the pneumatic
tire, respectively; zs and zu are the displacements of the sprung
and unsprung masses, respectively; zr is the road displacement
input; and u is the active input of the suspension system. In
this paper, the effect of actuator dynamics is neglected, and the
actuator is modeled as an ideal force generator.

The ideal dynamic equations of the sprung and unsprung
masses are given in [8]. Define the following state variables:

x1(t) = zs(t) − zu(t) x2(t) = zu(t) − zr(t)
x3(t) = żs(t) x4(t) = żu(t) (1)

and the disturbance input is defined as w(t) = żr(t).
Then, by defining

x(t) = [x1(t) x2(t) x3(t) x4(t)]
T

we have the following state-space form:

ẋ(t) = Ax(t) + B1w(t) + Bu(t) (2)

where

A =

⎡
⎢⎢⎣

0 0 1 −1
0 0 0 1

− ks

ms
0 − cs

ms

cs

ms
ks

mu
− ku

mu

cs

mu
− cs+ct

mu

⎤
⎥⎥⎦

B = [ 0 0 1
ms

− 1
mu

]T (3)

B1 = [ 0 −1 0 ct

mu
]T . (4)

A. Ride Comfort

It is widely accepted that ride comfort is closely related to the
body acceleration in the 4–8-Hz frequency band. Consequently,
it is important to keep the L2 gain (from the disturbance inputs
to car body acceleration) of the closed-loop system as small as
possible over the 4–8-Hz frequency band.

B. Road Holding Ability

Due to the disturbances caused by road bumpiness, a firm
uninterrupted contact of wheels with the road is important
for vehicle handling and is essentially related to ride safety.
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Therefore, the dynamic tire load should be small, i.e.,
kt(zu(t) − zr(t)) < (ms + mu)g.

C. Suspension Deflection

To reduce the vertical acceleration of the car body, it is
unavoidable to use more suspension travel, which increases
the likelihood of a driver hitting the suspension travel limits
when driving over a speed bump or into a pothole. Hence,
the suspension deflection should travel within its allowable
range, i.e., |zs(t) − zu(t)| ≤ zmax, where zmax is the maximum
suspension deflection.

D. Actuator Limitation

As the operator of a control system, the actuator plays an
important role in engineering applications [21]. Here, another
hard constraint imposed on active suspensions is from the
limited power of the actuator, i.e, |u(t)| ≤ umax.

In order to satisfy the aforementioned performance require-
ments, the controlled outputs are defined by

z1(t) = z̈s(t),

z2(t) =
�
zs(t) − zu(t)

zmax

kt (zu(t) − zr(t))
(ms + mu)g

T

. (5)

Therefore, the vehicle suspension control system can be
described by

ẋ(t) = Ax(t) + Bu(t) + B1w(t)
z1(t) = C1x(t) + D1u(t)
z2(t) = C2x(t) (6)

where

C1 = [− ks

ms
0 − cs

ms

cs

ms
] D1 =

1
ms

C2 =
� 1

zmax
0 0 0

0 kt

(ms+mu)g 0 0


.

Time delays are widely encountered in the control loops
because of the electrical and electromagnetic characteristics
of the actuators. In this paper, the results of finite-frequency
control are developed to address the active suspension systems
with input time delay.

We are interested in designing a state feedback controller

u(t) = Kx(t) (7)

where K is the state feedback gain matrix to be designed.
Therefore, the closed-loop system is given by

ẋ(t) = Ax(t) + BKx(t − d) + B1w(t)
z1(t) = C1x(t) + D1Kx(t − d)
z2(t) = C2x(t). (8)

In this paper, our purpose is to design a state feedback
gain matrix K such that the following conditions are satisfied.

1) The closed-loop system in (8) is asymptotically stable.
2) The L2 gain of the closed-loop system should be smaller

or less than a certain given value γ within the chosen
frequency band, i.e.,

�z1(jω)�2 < γ �w(jω)�2 , ω1 < ω < ω2. (9)

3) The following constraints are guaranteed with the distur-
bance energy under the bound wmax:

|{z2(t)}i| ≤ 1, i = 1, 2
|u(t)| ≤umax. (10)

III. FINITE-FREQUENCY CONTROLLER DESIGN

In this section, the finite-frequency controller will be de-
signed to address the active suspension systems with actuator
input delay, and the following theorem gives the conclusion of
controller design.

Theorem 1: Give positive scalars γ, α, β1, β2, and ρ, and
let a state feedback controller in the form of (7) be given. The
closed-loop system in (8) is asymptotically stable and satisfies
�z1(jω)�2 < γ�w(jω)�2, for ω ∈ [ω1, ω2], while respecting
the constraints in (10) with the disturbance energy under the
bound wmax = (ρ − V 
(0))/η, if there exist symmetric matri-
ces P , S1 > 0, S2 > 0, R1 > 0, R2 > 0, P1 > 0, P2 > 0, and
Q > 0 and general matrices K and Y satisfying

Π1 + [Y1U1]s < 0 (11)

Θ + M + [Y2U2]s < 0 (12)�
−I

√
ρ{C2}i

∗ −P2


< 0 (13)

�
−I

√
ρK

∗ −u2
maxP2


< 0 (14)

where

Π1 =

⎡
⎣

d2S1 P1 0
∗ R1 − S1 S1

∗ ∗ −R1 − S1

⎤
⎦

Π2 =

⎡
⎣

d2S2 P2 0
∗ R2 − S2 S2

∗ ∗ −R2 − S2

⎤
⎦

Y1 = [ Y T αY T 0 ]T

Y2 = [ β1Y
T β2Y

T 0 0 ]T

U1 = [−I A BK ]
U2 = [−I A BK B1 ]
L = [ 0 C1 D1K ]

Θ =
�

Π2 + LTL 0
∗ −γ2I



F =
�

I 0 0 0
0 I 0 0


Φ =

�
0 1
1 0



M = F ∗(Φ ⊗ P + Ψ ⊗ Q)F

Ψ =
�

−1 jωc

−jωc −ω1ω2


.

Proof: First, the asymptotic stability of (8) with w(t) = 0
is shown, i.e.,

ẋ(t) = Ax(t) + BKx(t − d). (15)

Consider a Lyapunov functional candidate as

V (t) Δ= V1(t) + V2(t) + V3(t) (16)

V1(t)
Δ= xT(t)P1x(t) (17)
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V2(t)
Δ=

t�

t−d

xT(s)R1x(s) ds (18)

V3(t)
Δ= d

0�

−d

t�

t+β

ẋT(α)S1ẋ(α) dα dβ (19)

where P1 >0, R1 >0, and S1 >0 are matrices to be determined.
The derivatives of V1(t), V2(t), and V3(t) satisfy

V̇1(t) = ẋT(t)P1x(t) + xT(t)P1ẋ(t)
V̇2(t) = xT(t)R1x(t) − xT(t − d)R1x(t − d)

V̇3(t) = d2ẋT(t)S1ẋ(t) − d

t�

t−d

ẋT(β)S1ẋ(β) dβ.

By using the Jensen inequality in Lemma 1, we have

−d

t�

t−d

ẋT(β)S1ẋ(β)dβ

≤ − [x(t) − x(t − d)]T S1 [x(t) − x(t − d)] .

Then, we have V̇ (t) ≤ ζT(t)Π1ζ(t), where ζ(t) =
[ẋT(t) xT(t) xT(t − d)]T. On the other hand, from Lemma 2,
inequality (11) is equivalent to

δT(t)Π1δ(t) < 0 ∀U1δ(t) = 0

which can guarantee V̇ (t) < 0 from the fact that U1ζ(t) = 0,
which means that the closed-loop system in (8) is asymptoti-
cally stable.

Next, we shall establish the L2 gain performance of the
closed-loop system in (9). Choose a Lyapunov functional as

V 
(t) Δ= V 

1(t) + V 


2(t) + V 

3(t) (20)

V 

1(t)

Δ= xT(t)P2x(t) (21)

V 

2(t)

Δ=

t�

t−d

xT(s)R2x(s) ds (22)

V 

3(t)

Δ=

0�

−d

t�

t+β

ẋT(α)S2ẋ(α) dα dβ (23)

where P2 > 0, R2 > 0, and S2 > 0 are matrices to be deter-
mined. Then, we can obtain

V̇ 
(t) ≤ ζT(t)Π2ζ(t). (24)

Define

J
Δ= �z1�2

2 − γ2�w�2
2. (25)

Under zero initial conditions, we can obtain

J ≤�z1�2
2 − γ2�w�2

2 + V 
(∞) − V 
(0)

=

∞�

0

�
zT
1 z1 − γ2wTw + V̇ 
(t)

�
dt (26)

≤
∞�

0

ξT(t)Θξ(t) dt (27)

where ξ(t) Δ= [ζT(t) wT(t)]T. Define

J̄ =

∞�

0

ξT(t)Θξ(t) dt. (28)

Noting that Θ is a real symmetric matrix, we can split Θ as

Θ = (Θ1/2)
∗
Θ1/2, and we can get

J̄ =

∞�

0

φ∗(t)φ(t) dt, with φ(t) = Θ
1
2 ξ(t). (29)

After the Fourier transform to φ(t), we can obtain the spec-
trum of φ(t), which is denoted as φs(ω). By using the Parseval
equality, we have

J̄ =

∞�

0

φ∗(t)φ(t) dt =
1
2π

∞�

−∞

φ∗
s(ω)φs(ω) dω

=
1
2π

∞�

−∞

ξ∗s(ω)Θξs(ω) dω. (30)

On the other hand, Lemma 2 tells us that inequality (12) is
equivalent to

ξ∗s(ω)(Θ + M)ξs(ω) < 0

U2ξs(ω) = 0 (31)

where inequality (31) can guarantee

ξ∗s(ω)Θξs(ω) < 0 with ξ∗s(ω)Mξs(ω) ≥ 0 (32)

by using the S-procedure.
Define

M = {F ∗(Φ ⊗ P + Ψ ⊗ Q)F ; P, Q ∈ H2}
E = {s = C : υ(s, Φ) = 0, υ(s, Ψ) ≥ 0} .

From [23], we know that the following two sets are
equivalent:

W(1) = {ε ∈ C : ε �= 0, ε∗Mε ≥ 0, ∃M ∈ M}
W(2) = {ε ∈ C : ε �= 0, TsFε = 0, s ∈ E}

and W(2) describes our chosen frequency band ω ∈ [ω1, ω2],
with

Φ =

�
0 1

1 0

�
Ψ =

�
−1 jωc

−jωc −ω1ω2

�
.

Therefore, we can see that inequality (32) guarantees J < 0,
which implies that �z1(jω)�2 < γ�w(jω)�2 with ω ∈ [ω1, ω2].
Inequality (9) is guaranteed.

From the aforementioned proof, we can see that inequality
(32) can guarantee J̄ < 0, which implies that

zT
1 z1 − γ2wTw + V̇ 


1(t) < 0 (33)

and then, inequality (33) guarantees that

V̇ 

1(t) < γ2wTw. (34)
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Integrating both sides of inequality (34) from 0 to t re-
sults in

V 
(t) − V 
(0) < γ2

t�

0

wT(t)w(t) dt ≤ γ2wmax

where wmax = �w�2
2. Note that V 


2(t) > 0, V 

3(t) > 0, which

shows that

xT(t)P2x(t) < V 
(0) + γ2wmax = ρ. (35)

Consider

max
t≥0

|{z2(t)}i|2 = max
t≥0

�
xT(t){C2}T

i {C2}ix(t)
�

max
t≥0

|u(t)|2 = max
t≥0

�
xT(t)KTKx(t)

�
.

From inequality (35), it is true that

max
t≥0

|{z2(t)}i|2 < ρ · λmax

�
P

− 1
2

2 {C2}T
i {C2}iP

− 1
2

2

�

max
t≥0

|u(t)|2 < ρ · λmax

�
P

− 1
2

2 KTKP
− 1

2
2

�

where λmax(·) represents the maximum eigenvalue. Then, the
constraints in (10) hold if

ρP
− 1

2
2 {C2}T

i {C2}iP
− 1

2
2 <I, i = 1, 2

ρP
− 1

2
2 KTKP

− 1
2

2 <u2
maxI (36)

which, by Schur complement, are equivalent to (14). The proof
is completed. �

Define Ĵ1 = diag{Y −1, Y −1, Y −1}, Ĵ2 = diag{Y −1, Y −1,

Y −1, I, I}, Ĵ3 = diag{I, Y −1}, and Ĵ4 = diag{I, Y −1}.
Then, we perform a congruence transformation to (11)–(14),

respectively, by the full rank matrices Ĵ1, Ĵ2, Ĵ3, and Ĵ4 on the

left and ĴT
1 , ĴT

2 , ĴT
3 , and ĴT

4 on the right. Defining

S̄1 = Y −1S1Y
−T P̄1 = Y −1P1Y

−T Ȳ = Y −1

R̄1 = Y −1R1Y
−T R̄2 = Y −1R1Y

−T K̄ = KY −T

S̄2 = Y −1S1Y
−T P̄2 = Y −1P1Y

−T

we have the following solvable theorem.
Theorem 2: Give positive scalars γ, α, β1, β2, and ρ, and

let a state feedback controller in the form of (7) be given. The
closed-loop system in (8) is asymptotically stable and satisfies
�z1(jω)�2 < γ�w(jω)�2, for ω ∈ [ω1, ω2], while respecting
the constraints in (10) with the disturbance energy under the
bound wmax = (ρ − V 
(0))/η, if there exist symmetric ma-
trices P̄ , S̄1 > 0, S̄2 > 0, P̄1 > 0, P̄2 > 0, R̄1 > 0, R̄2 > 0,
and Q̄ > 0 and general matrices Ȳ , K̄, satisfying inequality
(37)–(40), shown at bottom of the next page.

Moreover, the control gain K is given by K = K̄Ȳ −T.

IV. SIMULATION

In this section, we will apply the aforementioned approach
to design a state feedback controller based on the quarter-car
model described in Section II. The quarter-car model parame-
ters are shown as ms = 320 kg, mu = 40 kg, ks = 18 kN/m,
kt = 200 kN/m, cs = 1 kN · s/m, and ct = 10 N · s/m.

Fig. 2. Curves of MSVs (d = 5 ms).

By solving the matrix inequalities (37)–(40) with ω1 = 4 Hz,
ω2 = 8 Hz, ρ = 0.01, and zmax = 100 mm and choosing d =
5 ms, we can obtain γmin = 8.4059, and

K = 104 × [1.6985 0.5127 0.0180 − 0.0654].

Then, we will solve the entire-frequency controller, accord-
ing in [8]. After solving the matrix inequalities in [8] with
d = 5 ms, we can calculate γmin = 16.1799, and

K = 104 × [1.7799 0.2873 0.0485 − 0.0308].

After obtaining the finite- and entire-frequency controllers,
we will compare the two controllers to illustrate the perfor-
mance of the closed-loop suspension system with actuator
time delay in the finite-frequency domain. In Fig. 2, the solid
and dotted lines are the responses of the closed-loop system
with the finite- and entire-frequency controllers, respectively,
and the dashed line is the response of the passive system. From
the figure, we can see that the finite-frequency controller yields
the least maximum singular values (MSVs) over the frequency
range 4–8 Hz, for the active suspension systems with input
delay (d = 5 ms), which clearly shows that an improved ride
comfort has been achieved.

In order to evaluate the suspension characteristics with re-
spect to the performance requirements, we give the disturbance
signal in (41) to clarify the effectiveness of our finite-frequency
controller

w(t) =

�
A sin(2πft), if 0 ≤ t ≤ T

0, if t > T .
(41)

Assume that A = 0.5 m, f = 5 Hz, and T = 1/f = 0.2 s,
and the time-domain response of body vertical acceleration for
the active suspension system is shown in Fig. 3, where the
black solid line and the blue dashed line are the responses of
body vertical acceleration with the finite- and entire-frequency
controllers, respectively. We can clearly see that the value of
the body acceleration with the finite-frequency controller is less
than that with the entire-frequency controller. In addition, Fig. 4
shows that the ratio x1(t)/zmax and the relative dynamic tire
load ktx2(t)/(ms + mu)g are below one, which means that
the time-domain constraints are guaranteed by the designed
controller. Also, the force of actuator is below the maximum
2500 N.

When the actuator time delay is increased to 20 ms, the
MSVs of the passive suspension, the active suspension with
entire-frequency controller, and the active suspension with
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Fig. 3. Time-domain response of body acceleration (d = 5 ms).

Fig. 4. Constraints of suspension system (d = 5 ms).

finite-frequency controller are compared in Fig. 5, which shows
the same conclusion with the case d = 5 ms. However, as
the actuator delay increases, disturbance attenuation becomes
weaker than the case of d = 5 ms, which also implies the impact
of actuator time delay on the suspension system.

The time-domain responses of the body acceleration, sus-
pension deflection limitation, relative tire dynamic load, and
active force are shown in Figs. 6 and 7. It can be seen from
these figures that the responses of the body acceleration, the
suspension deflection limitation, the relative tire dynamic load,
and the active force of active suspension are all similar to those
shown in Figs. 3 and 4 in spite of the increase of time delay.

Fig. 5. Curves of MSVs with (d = 20 ms).

Fig. 6. Time-domain response of body acceleration (d = 20 ms).

Hereinafter, another disturbance signal is used to verify the
effectiveness of the designed controller, i.e., the random vibra-
tion. Random vibrations are consistent and typically specified
as a random process with a given ground displacement power
spectral density (PSD) of

Gq(n) = Gq(n0)
�

n

n0

�−W

(42)

where n is the spatial frequency, n0 is the reference spatial
frequency of n0 = 0.1(1/m), Gq(n0) stands for the road rough-
ness coefficient, and W = 2 is the road roughness constant.

⎡
⎣

d2S̄1 − [Ȳ ]s P̄1 + AȲ T − αȲ BK̄

∗ R̄1 − S̄1 + [αAȲ T]s S̄1 + αBK̄

∗ ∗ −R̄1 − S̄1

⎤
⎦ > 0 (37)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
d2S̄2 − Q̄

−β1[Ȳ ]s

� �
P̄2 + P̄ + jωcQ̄

+β1AȲ T − β2Ȳ

�
β1BK̄ β1B1 0

∗
�

R̄2 − S̄2 − ω1ω2Q̄

+β2[AȲ T]s

�
β2BK̄ + S̄2 β2B1 Ȳ CT

∗ ∗ −R̄2 − S̄2 0 K̄TDT
1

∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (38)

�−I
√

ρ{C2}iȲ
T

∗ −P̄2


> 0 (39)

�−I
√

ρK̄

∗ −u2
maxP̄2


> 0 (40)
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Fig. 7. Constraints of suspension system (d = 20 ms).

Fig. 8. PSD of body acceleration (d = 5 ms).

Related to the time frequency f , we have f = nV with V for
the vehicle forward velocity. According to (42), we can obtain
the PSD ground displacement as Gq(f) = Gq(n0)n2

0(V/f2).
Correspondingly, PSD ground velocity is given by

Gq̇(f) = (2πf)2Gq(f) = 4πGq(n0)n2
0V (43)

which is only related with the vehicle forward velocity. Select
the road roughness as Gq(n0) = 256 × 10−6 m3, which cor-
responds to D grade (poor) according to ISO2361 standards,
to generate the random road profile. Set the vehicle forward
velocity as V = 45 km/h, and as expected, it is observed
from Fig. 8 that the closed-loop system with finite-frequency
controller realizes a better ride comfort compared with the
system with entire-frequency controller for the frequency range
4–8 Hz (since the closed-loop system with finite-frequency con-
troller has lower PSD body acceleration than that with entire-
frequency controller and smaller PSD body acceleration value
results in better ride comfort), where PSD body acceleration
can be calculated by

Gz1(f) = |G(jω)|2 Gq̇(f). (44)

To check more random road profiles, we select the road
roughness as Gq(n0) = 16 × 10−6 m3 (B grade—good),
Gq(n0) = 64 × 10−6 m3 (C grade—average), and Gq(n0) =
1024 × 10−6 m3 (E grade—very poor), respectively. From
Fig. 9, it can be observed that the closed-loop system with
finite-frequency controller realizes a better ride comfort than
that with the traditional method in spite of the different road
roughness. When the actuator time delay is not 5 ms but the

Fig. 9. PSD of body acceleration with different road profiles (d = 5 ms).

other value, the control results are with the similar situation,
and here, we pass the repetition over.

V. CONCLUDING REMARKS

In this paper, the finite-frequency method has been developed
to deal with the active suspension systems with actuator input
delay, and the state feedback controller for active suspension
systems with frequency band constraints has been designed to
improve ride comfort. The key idea of designing the proposed
controllers is to use the generalized KYP lemma. At the same
time, the time-domain constraints have also been guaranteed in
the controller design. Simulation results show that the finite-
frequency controllers achieve better disturbance attenuation
performance over the concerned frequency range than those
designed in the entire frequency.

APPENDIX

Lemma 1—(Jensen Inequality): For any positive symmetric
constant matrix M ∈ Rn×n, scalar r satisfying r > 0, and
a vector function ω : [0, r] −→ Rn such that the integrations
concerned are well defined, then

r

r�

0

ωT(s)Mω(s)dβ ≥

⎛
⎝

r�

0

ω(s) ds

⎞
⎠

T

M

r�

0

ω(s) ds.

Lemma 2—(Finsler’s Lemma): Let x ∈ Rn, P ∈ Sn, and
H ∈ Rm×n such that rank(H) = r < n. The following state-
ments are equivalent:

xTPx < 0 ∀Hx = 0, x �= 0
⇔∃X ∈ Rn×m : P + XH + HTXT < 0.
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