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Robust Stability Criterion for Discrete-Time Uncertain
Markovian Jumping Neural Networks with Defective

Statistics of Modes Transitions

Ye Zhao, Lixian Zhang, Shen Shen, and Huijun Gao

Abstract— This brief is concerned with the robust stability
problem for a class of discrete-time uncertain Markovian jump-
ing neural networks with defective statistics of modes transitions.
The parameter uncertainties are considered to be norm-bounded,
and the stochastic perturbations are described in terms of
Brownian motion. Defective statistics means that the transition
probabilities of the multimode neural networks are not exactly
known, as assumed usually. The scenario is more practical,
and such defective transition probabilities comprise three types:
known, uncertain, and unknown. By invoking the property of
the transition probability matrix and the convexity of uncertain
domains, a sufficient stability criterion for the underlying system
is derived. Furthermore, a monotonicity is observed concerning
the maximum value of a given scalar, which bounds the stochastic
perturbation that the system can tolerate as the level of the
defectiveness varies. Numerical examples are given to verify the
effectiveness of the developed results.

Index Terms— Markovian jumping neural network, stability,
transition probability matrix.

I. INTRODUCTION

The past decades have witnessed extensive research on
neural networks (NNs) in both mathematics and control com-
munities, e.g., [1] and [2]. These studies are motivated by
numerous applications of the NNs in diverse fields such as
associative memory, pattern recognition, image processing,
etc. As a major concern, the stability problem of the NNs
has drawn much attention and a great number of efficient
analysis approaches have been proposed in the literature, e.g.,
[3] and [4]. Meanwhile, considering the NNs involved with
parameter uncertainties and/or stochastic perturbations, which
frequently lead to the poor performance or even instability
of the system, the corresponding stability analyses have also
been widely investigated and many useful results have been
obtained, e.g., [5] and [6] and the references therein.

Moreover, the NNs often display a feature of network modes
jumpings and such jumpings are commonly considered to be
determined by an ideal homogeneous Markov chain in the
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most literature. With the aid of analysis and synthesis method-
ologies in the dynamic systems with Markovian jumping para-
meters, i.e., the Markov jump linear systems (MJLSs), several
significant results on the Markovian jumping neural networks
(MJNNs) have been reported, e.g., [7] and [8]. It is worth
mentioning that a recent interesting consideration for MJLSs is
that the transition probabilities (TPs) to form the Markov chain
are assumed to be not exactly known. The scenario containing
such defective TPs is more general and the underlying MJLSs
are thereby more practicable. Consequently, a few meaningful
studies have been carried out, e.g., [9]–[12], and two concepts
have been proposed so far, namely, the partially unknown TPs
[11] and the uncertain TPs [10]. Also, the idea of the partially
unknown TPs has recently been applied to the MJNNs [13].

For the concept of uncertain TPs, the elements in a transition
probability matrix (TPM) are uncertain within an interval,
and two description methods, namely the norm-bounded and
the polytope uncertainty description, have been proposed.
Correspondingly, the true elements in a TPM are unknown but
belong to a given range with lower and upper bounds [10], or a
given polytope with a certain number of vertices [14]. It should
be noted that such given information is assumed obtainable
when perfect statistics of the modes transitions is targeted in
practical samplings and computations. On the other hand, the
concept of partially unknown TPs assumes that some elements
in a TPM are known, and others are not (even without any
further given information of the statistics) [11]. Therefore, it
can be well understood that the concept of partially unknown
TPs is more general and the concept of uncertain TPs is
less conservative since more information is “contrived” in the
latter case.

In fact, the uncertain TPs can be considered as the unknown
ones with further given knowledge offered from statistics. In
reverse, the unknown TPs can also be viewed as uncertain ones
within their “natural” intervals, which can be calculated from
the known TPs and the property that the sum of each row is
1 in a TPM. In other words, the two concepts of the defective
statistics are mathematically interrelated. Nevertheless, from a
different viewpoint, such two concepts actually reflect different
levels of the defectiveness. Note that, so far, these two lines
of attacks of the defective statistics of modes transitions are
still dealt separately. In fact, a more practical scenario that
designers may encounter is that some TPs are known, some
are uncertain with tighter intervals, and others are unknown
with “natural intervals.” However, the issues on MJLSs taking
account of the two aforesaid concepts of defective TPs in a
composite manner are largely open, let alone the applications
to the MJNNs area.

In this brief, we aim to address the robust stability problem
for a class of discrete-time uncertain MJNNs with defective
statistics of modes transitions. The parameter uncertainties are
assumed to be norm-bounded, and the stochastic perturbations
are described in terms of Brownian motion. The main
contribution of this brief is that a framework incorporating the
two concepts of the partially unknown TPs and the uncertain
TPs is proposed for the first time and the underlying MJNN
is studied under the framework. A sufficient stability criterion
for the underlying system is obtained by using the property of
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the TPM and the convexity of uncertain domains. A
monotonicity concerning the maximum value of a given scalar
which bounds the stochastic perturbations affecting the sys-
tem stability is observed as the level of the defectiveness
varies. The remainder of this brief is organized as follows. In
Section II, the mathematical model of the system concerned
is formulated and some preliminary results are given. Sec-
tion III is devoted to establishing the stability criterion for
the underlying system and deriving several corollaries for the
different simplified cases of the system. Numerical examples
are provided in Section IV and this brief is concluded in
Section V.

Notation: The notations used in this brief are quite stan-
dard. Rn and Rm×n refer to, respectively, the n-dimensional
Euclidean space, and the set of all m × n real matrices, N+
stands for the sets of positive integers. The notation P > 0
(≥ 0) means P is real symmetric positive (semi-positive)
definite and the superscript “T ” denotes the transpose of
vectors or matrices. Moreover, let (	,F ,P) be a complete
probability space, in which 	 is the sample space, F is the σ -
algebra of subsets of the sample space, and P is the probability
measure on F . In addition, in symmetric block matrices or
long matrix expressions, we use * as an ellipsis for the terms
that are introduced by symmetry and diag{· · · } stands for a
block-diagonal matrix. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations. E [·] stands for the mathematical expectation and
Mi is adopted to denote M(i) for brevity. I and 0 represent,
respectively, identity matrix and zero matrix with appropriate
dimensions.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider an n-neuron discrete-time uncertain Markovian
jumping neural network, defined in a complete probability
space (	,F ,P)

y(k + 1) = (A(r(k)) + �A(r(k)))y(k) + (B(r(k))

+�B(r(k))) × f (y(k)) + σ (y(k), k)w(k)

(1)

where y(k) = (y1(k), y2(k), . . . , yn(k))T ∈ Rn , is the
state vector associated with the n neurons, f (y(k)) =
( f1(y1(k)), f2(y2(k)), . . . , fn(yn(k)))T ∈ Rn , denotes the
nonlinear activation function with the initial condition f (0) =
0, A(r(k)) = diag {a1(r(k)), a2(r(k)), . . . , an(r(k))} has pos-
itive entries am(r(k)) < 1, ∀m = 1, 2, . . . , n, the real matrix
B(r(k)) is the constant connection weight matrix. In addition,
�A(r(k)), �B(r(k)) are time-varying parameter uncertainties.

The Markov chain {r(k), k ∈ N+} orchestrating the
modes jumpings of the NNs takes values in a finite set
I � {1, . . . , N} with mode TPs Pr(r(k + 1) = j |r(k) =
i) = πi j , where πi j ≥ 0, ∀i , j ∈ I, and

�N
j=1 πi j = 1.

Correspondingly, the Markovian transition probability matrix
 is defined by

 =

⎡
⎢⎢⎢⎣

π11 π12 · · · π1N

π21 π22 · · · π2N
. . .

πN1 πN2 · · · πN N

⎤
⎥⎥⎥⎦ . (2)

The set I contains N modes of (1) and for r(k) = i ∈ I,
the system matrices of the i th mode are denoted by (Ai +
�Ai , Bi + �Bi ), which are real and known with compatible
dimensions.

Taking account of the stochastic perturbations in forms
of σ (y(k), k)w(k), w(k) is a scalar Brownian Motion on
(	,F ,P) such that E[w(k)] = 0, E[w2(k)] = 1.

Now we recall a necessary assumption for our derivation.
Assumption 1: The function σ : Rn × R → Rn is a Borel

measurable function which satisfies

σ T (x, k)σ (x, k) ≤ ρx T x, ∀x ∈ Rn (3)

where ρ is a positive constant, which bounds the stochastic
perturbations that the system can tolerate. More details of
using ρ to describe the stochastic perturbations can be found
in [15].

In addition, the parameters uncertainties, as commonly
adopted in literature, e.g., [2] and [16], are assumed to have
the structure ∀r(k) = i , [�Ai ,�Bi ] = Mi Fi [N1i , N2i ],
where Mi , N1i and N2i are real constant matrices and Fi is
an unknown time-varying matrix-valued function and satisfies
FT

i Fi ≤ I, ∀i ∈ N+.
Remark 1: Note that, in practice, all the elements or a part

of them in TPM (2) are probably costly or even impossible
to obtain. Thus, instead of putting great efforts to measure or
estimate the TPM, it is necessary and significant, from control
perspectives, to further conduct research on the MJNNs with
defective statistics of modes transitions.

In this brief, the statistics of modes transitions is considered
to be defective. Specifically, some elements in matrix  are
assumed not known exactly. They may be uncertain within
given intervals offered from statistics, or they do not have
such available intervals. We term the former as “uncertain”
elements, and the latter as “unknown” ones. As described in
[14], we assume that the TPM  = [π i j ]N×N belongs to a
given polytope P with vertices r , r = 1, 2, . . . , M

P �
�
| =

�M

r=1
αr r ; αr ≥ 0,

�M

r=1
αr = 1

�
(4)

where r = [π i j ]N×N , i, j ∈ I, r = 1, . . . , M, are
given TPMs containing unknown elements still. It is worth
emphasizing that in (4), the property of each TPM r holds
and the property of TPM  will be accordingly satisfied.

For simplicity, ∀i ∈ I, we denote I = I(i)
K ∪ I(i)

UC∪ I(i)
UK as

follows:

I(i)
K � { j : πi j is known}, I(i)

UC � { j : π̃i j is uncertain}
and

I(i)
UK � { j : π̂i j is unknown}.

Here, each uncertain element and unknown element is
labeled with the tide “ ˜ ” and “ ˆ ”, respectively. Then, let
π

(i)
UC �

�
j∈I(i)

UC
π̃r

i j , ∀r = 1, . . . , M and π
(i)
K �

�
j∈I(i)

K
πi j ,

respectively.
Remark 2: Note that the unknown elements actually have

“natural intervals” which can be determined by the known ele-
ments, the lower and upper bounds of the uncertain elements,
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and the property that the sum of each row is 1 in a TPM.
However, the reason of differentiating uncertain elements
from unknown elements is that the uncertain elements with
tighter intervals (not only the “natural intervals”) reflect more
information of the statistics and the TPM can be described
more precisely.

The objective of this brief is to establish a stability criterion
for (1) when the statistics of modes transitions is defective as
stated in (4). To proceed further, we recall the essential as-
sumption for the neuron activation function and the definition
of asymptotic stability in the mean square for the underlying
system.

Assumption 2: The neuron activation function in MJNN (1)
is monotonically increasing and bounded, which satisfies

0 ≤ f j (s1) − f j (s2)

s1 − s2
≤ h, ∀ j = 1, . . . , n

where s1, s2 ∈ R, s1 �= s2, and h is a positive constant.
Definition 1: The MJNN (1) is said to be asymptotically

stable in the mean square if, for any solution y(k) of (1), the
following holds:

lim
k→∞

E[| y(k) |2] = 0.

III. MAIN RESULTS

In this section, we will derive a stability criterion for the
discrete-time uncertain MJNN (1) with defective statistics of
modes transitions (4) and simplify the criterion when the
complex dynamics in (1) are reduced. The following theorem
presents a sufficient condition on the asymptotic stability in
the mean square for (1).

Theorem 1: Consider the MJNN (1) with the defective
TPM (4). Suppose that Assumptions 1 and 2 hold. The
corresponding system is asymptotically stable in the mean
square if there exist a set of matrices Pi > 0, a diagonal
matrix L > 0, and positive scalars μ∗ and �, ∀i ∈ I, such
that

P i < μ∗ I (5)

�i =

⎡
⎢⎢⎣

−P i
s P i

s Ai P i
s Bi P i

s Mi

∗ � L + �NT
1i N2i 0

∗ ∗ � 0
∗ ∗ ∗ −� I

⎤
⎥⎥⎦< 0 (6)

where⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P (i)
K

�= �
j∈I(i)

K
πi j Pj , P (i)

UC
�= �

j∈I(i)
UC

π̃r
i j Pj ,

P (i)
UK

�= �
j∈I(i)

UK
π̂i j Pj ,

P i �= P (i)
K + �

j∈I(i)
UC

(
�M

r=1 αr π̃
r
i j )Pj + P (i)

UK,

P i
s

�= P (i)
K + P (i)

UC + (1 − π
(i)
K − π

(i)
UC)Pj , ∀ j ∈ I(i)

UK
(7)

and �
�= μ∗ρ I − Pi + �NT

1i N1i , � �= −2h−1 L + �NT
2i N2i .

Proof: By Assumption 2 and f (0) = 0, it is straight-
forward to show that 0 ≤ f (yik)/(yik) ≤ h, when s2 = 0.
Since f (yik) is assumed to be monotonically increasing with
the initial condition f (0) = 0, one knows f (yik) > 0 and
yik > 0. Then, we can further show

yik − h−1 f (yik) ≥ 0. (8)

Multiplying (8) by lii f (yik) on the right, and since
lii > 0, the above inequality is equivalent to yiklii f (yik) −
h−1 f (yik)lii f (yik) ≥ 0. By denoting a positive definite

matrix L
�= diag{l11, l22, . . . , lnn}, yk

�= (y1k, y2k, . . . , ynk)
T

and f (yk)
�= ( f (y1k), f (y2k), . . . , f (ynk))

T, the following
inequality holds:

yT
k L f (yk) − h−1 f T (yk)L f (yk) ≥ 0. (9)

To derive the stability criterion, we introduce the following
Lyapunov function candidate for (1), V (yk, k, rk) = yT

k Pi yk,
∀rk = i, i ∈ I. By (9), it follows that

E � E[V (yk+1, k + 1, rk+1) |yk, rk = i ] − V (yk, k, rk)

= yT
k+1P i yk+1 − yT

k Pi yk

=
�
Ãi yk + B̃i f (yk)

�T
P i

�
Ãi yk + B̃i f (yk)

�

+ σ T (yk)P iσ (yk) − yT
k Pi yk

≤
�
Ãi yk + B̃i f (yk)

�T
P i

�
Ãi yk + B̃i f (yk)

�
+ σ T (yk)P i

× σ (yk) − yT
k Pi yk + 2yT

k L f (yk) − 2h−1 f T (yk)L f (yk)

where

P i �=
�N

j=1
πi j Pj , Ãi

�= Ai + �Ai , B̃i
�= Bi + �Bi . (10)

By Assumption 1 and (5), it can be readily shown that
σ T (yk)P iσ (yk) ≤ μ∗σ T (yk)σ (yk) ≤ μ∗ρyT

k yk , and then

E ≤
�
Ãi yk + B̃i f (yk)

�T
P i

�
Ãi yk + B̃i f (yk)

�

+yT
k (μ∗ρ I − Pi )yk + 2yT

k L f (yk)

−2h−1 f T (yk)L f (yk). (11)

Further, we denote⎧
⎪⎨
⎪⎩

�i
�= Ãi yk + B̃i f (yk)

	i
�= yT

k (μ∗ρ I − Pi )yk + 2yT
k L f (yk)

−2h−1 f T (yk)L f (yk).

(12)

Then, (11) becomes

E ≤ �T
i P i�i + 	i . (13)

Now, we decompose the defective TPM considered in this
brief

P i =
�N

j=1
πi j Pj

= P (i)
K +

�
j∈I(i)

UC

��M

r=1
αr π̃

r
i j

�
Pj +

�
j∈I(i)

UK
π̂i j Pj

where
�M

r=1 αr π̃
r
i j , ∀ j ∈ I(i)

UC represents an uncertain element

in the polytope uncertainty description. As
�M

r=1 αr = 1 and
αr can take values arbitrarily in [0, 1], (13) implies that

E ≤ �T
i

�
P (i)
K +

�
j∈I(i)

UC

��M

r=1
αr π̃

r
i j

�
Pj

+
�

j∈I(i)
UK

π̂i j Pj

�
�i + 	i

=
�M

r=1
αr

�
�T

i

�
P (i)
K +

�
j∈I(i)

UC
π̃r

i j Pj

+
�

j∈I(i)
UK

π̂i j Pj

�
�i + 	i

�
. (14)
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Then, (14) holds if and only if ∀r = 1, . . . , M

E ≤ �T
i

�
P (i)
K + P (i)

UC +
�

j∈I(i)
UK

π̂i j Pj

�
�i + 	i

= �T
i

�
P (i)
K + P (i)

UC +
�

1 − π
(i)
K − π

(i)
UC

�

×
�

j∈I(i)
UK

π̂i j

1 − π
(i)
K − π

(i)
UC

Pj

�
�i + 	i . (15)

Since

0 ≤ π̂i j

1 − π
(i)
K − π

(i)
UC

≤ 1

and
�

j∈I(i)
UK

π̂i j

1 − π
(i)
K − π

(i)
UC

= 1

(15) becomes

E ≤
�

j∈I(i)
UK

π̂i j

1 − π
(i)
K − π

(i)
UC

×(�T
i (P (i)

K + P (i)
UC + (1 − π

(i)
K − π

(i)
UC)Pj )�i + 	i).

Thus, for 0 ≤ π̂i j ≤ 1 − π
(i)
K − π

(i)
UC , the above inequality

is equivalent to ∀ j ∈ I(i)
UK

E ≤ �T
i

�
P (i)
K + P (i)

UC + (1 − π
(i)
K − π

(i)
UC)Pj

�
�i + 	i .

Considering (12) and P i
s = P (i)

K +P (i)
UC+(1−π

(i)
K −π

(i)
UC)Pj ,

one knows that

E ≤ �T
i P i

s�i + 	i

=
�
Ãi yk + B̃i f (yk)

�T
P i

s

�
Ãi yk + B̃i f (yk)

�

+ yT
k (μ∗ρ I − Pi )yk +2yT

k L f (yk) − 2h−1 f T(yk)L f (yk)

= yT
k (ÃT

i P i
sÃi + μ∗ρ I − Pi )yk + f T (yk)

×(B̃T
i P i

s B̃i − 2h−1 L) f (yk) + 2yT
k (ÃT

i P i
s B̃i + L) f (yk)

= ξT
k �̃ξk (16)

where

ξk
�=

�
yT

k f T (yk)
�T

�̃
�=

�
ÃT

i P i
sÃi + μ∗ρ I − Pi ÃT

i P i
s B̃i + L

∗ B̃T
i P i

s B̃i − 2h−1 L

�
.

By Schur complement, (6) implies that ∀i ∈ I
⎡
⎣

−P i
s P i

s Ai P i
s Bi

∗ � L + �NT
1i N2i

∗ ∗ �

⎤
⎦+�−1P̃ i

m Mi MT
i P̃ iT

m < 0 (17)

where P̃ i
m

�= [P iT
s , 0, 0]T . Meanwhile, we denote

ϒ
�= [0,�Ai ,�Bi ], Ñ

�= [0, N1i , N2i ]

�
�=

⎡
⎣

−P i
s P i

s Ai P i
s Bi

∗ μ∗ρ I − Pi L
∗ ∗ −2h−1L

⎤
⎦

��
�= P̃ i

mϒ + ϒT P̃ iT
m .

Thus, by [6, Lemma 1], we can verify that

�� = P̃ i
mϒ + ϒT P̃ iT

m

= P̃ i
m Mi Fi Ñ + ÑT FT

i MT
i P̃ iT

m

≤ � ÑT Ñ + �−1P̃ i
m Mi MT

i P̃ iT
m . (18)

Then it follows from (17) and (18) that

� + �� =
⎡
⎣

−P i
s P i

s Ai P i
s Bi

∗ μ∗ρ I − Pi L
∗ ∗ −2h−1 L

⎤
⎦

+ P̃ i
mϒ + ϒT P̃ iT

m

≤
⎡
⎣

−P i
s P i

s Ai P i
s Bi

∗ μ∗ρ I − Pi L
∗ ∗ −2h−1 L

⎤
⎦

+ � ÑT Ñ + �−1P̃ i
m Mi MT

i P̃ iT
m

=
⎡
⎣

−P i
s P i

s Ai P i
s Bi

∗ � L + �NT
1i N2i

∗ ∗ �

⎤
⎦

+ �−1P̃ i
m Mi MT

i P̃ iT
m < 0.

By (10), we have

� + �� =
⎡
⎣

−P i
s P i

sÃi P i
s B̃i

∗ μ∗ρ I − Pi L
∗ ∗ −2h−1 L

⎤
⎦ < 0

which, by Schur complement, implies that

�̃ =
�
ÃT

i P i
sÃi + μ∗ρ I − Pi ÃT

i P i
s B̃i + L

∗ B̃T
i P i

s B̃i − 2h−1 L

�
< 0.

(19)
From (16) and (19), for a negative scalar δ, we know

E = E[V (yk+1, k+1, rk+1) |yk, rk = i ]−V(yk, k, rk) ≤ δ |ξk |2

which is equal to

E[V (yk+1, k + 1, rk+1)] − E[V (yk, k, rk)] ≤ δE[| ξk |2].
(20)

Given a positive integer m, the recursive sum of both sides
of (20) from zero to m implies

E[V (ym+1, m+1, rm+1)]−E[V (y0, 0, r0)] ≤ δ
�m

k=0
E[|ξk|2]

which gives −δ
�m

k=0 E[| ξk |2] ≤ E[V (y0, 0, r0)]. Letting
m → +∞, we know that the series

�m
k=0 E[| ξk |2] is

convergent, which means limk→+∞ E[| yk | 2] = 0, hence
the proof is completed. �

Remark 3: Note that the MJNN treated in Theorem 1 cov-
ers two simplified cases, i.e., the MJNN only with parameter
uncertainties or only with stochastic perturbations, which we
will address as follows. The proofs of the corresponding
corollaries can be obtained in the same vein as the proof for
Theorem 1.

Case 1: If there are no parameter uncertainties �Ai ,�Bi

in the MJNN, the system reduces to

y(k + 1) = Ai y(k) + Bi f (y(k)) + σ (y(k), k)w(k) (21)

where the system matrices (Ai , Bi ) are the same as the ones
in (1). Then, we have the following corollary.
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Corollary 1: Consider the MJNN (21) with the defective
TPM (4). Suppose that Assumptions 1 and 2 hold. The
corresponding system is asymptotically stable in the mean
square if there exist a set of matrices Pi > 0, a diagonal matrix
L > 0, and positive scalar μ∗, ∀i ∈ I, such that P i < μ∗ I
and

�i =
⎡
⎣

−P i
s P i

s Ai P i
s Bi

∗ μ∗ρ I − Pi L
∗ ∗ −2h−1 L

⎤
⎦ < 0

where the parameters P i and P i
s are the same as those in (7).

Case 2: If there are no stochastic perturbations σ (y(k), k)
w(k) in the MJNN, the system reduces to

y(k + 1) = (Ai + �Ai )y(k) + (Bi + �Bi ) f (y(k)) (22)

where the system matrices (Ai +�Ai , Bi +�Bi ) are the same
as those in (1). Then, we have the following corollary.

Corollary 2: Consider the MJNN (22) with the defective
TPM (4). Suppose that Assumptions 1 and 2 hold. The
corresponding system is asymptotically stable in the mean
square if there exist a set of matrices Pi > 0, a diagonal
matrix L > 0, and positive scalars μ∗ and �, ∀i ∈ I, such
that P i < μ∗ I and

�i =

⎡
⎢⎢⎣

−P i
s P i

s Ai P i
s Bi P i

s Mi

∗ −Pi + �NT
1i N1i L + �NT

1i N2i 0
∗ ∗ � 0
∗ ∗ ∗ −� I

⎤
⎥⎥⎦ < 0

where the parameters P i and P i
s are the same as those in (7).

Remark 4: Note also that the elements of the defective
TPM in Theorem 1, which include the three sorts of TPs,
i.e., known, uncertain, and unknown, could reduce to their
different simplified cases shown as below (two sorts or one
sort). Correspondingly, the composition of the parameters P i

and P i
s in (7) will be different.

1) All the elements in the TPM are unknown. The cor-
responding system can be considered as the so-called
switched NN under arbitrary switching, in terms of the
analyses in [11]. Then we have

P i = P (i)
UK, P i

s = Pj , ∀ j ∈ I(i)
UK.

2) The TPM only contains known and unknown elements
[9], and we have

P i = P (i)
K +

�
j∈I(i)

UK
π̂i j Pj

P i
s = P (i)

K +
�

1 − π
(i)
K

�
Pj , ∀ j ∈ I(i)

UK.

3) The TPM only contains known and uncertain elements
[10], then we have

P i = P (i)
K +

�
j∈I(i)

UC

��M

r=1
αr π̃

r
i j

�
Pj

P i
s = P (i)

K + P (i)
UC .

4) All the elements are known. The corresponding sys-
tem becomes the conventional MJNN with completely
known TPM [17]

P i = P i
s = P (i)

K .

Remark 5: Note that, as the level of the defectiveness
varies, it is intuitive to conjecture that there exists a monotonic-
ity with respect to the relevant system performance (e.g., in
this brief, the bound of the stochastic perturbations that the
system can tolerate without becoming unstable), which we will
verify via the numerical examples in next section.

IV. NUMERICAL EXAMPLES

In this section, three examples are presented to verify the
theoretical findings. For description brevity, we denote i th row
of the r th vertex in the polytope uncertainty description as
i

r ,∀i ∈ I, ∀r = 1, . . . , M.
Example 1: Consider a three-neuron MJNN of four jump-

ing modes with defective TPM (4) to be given by

A1 =
⎡
⎣

0.4 0 0
0 0.3 0
0 0 0.3

⎤
⎦ , A2 =

⎡
⎣

0.4 0 0
0 0.3 0
0 0 0.5

⎤
⎦

A3 =
⎡
⎣

0.4 0 0
0 0.9 0
0 0 0.7

⎤
⎦ , A4 =

⎡
⎣

0.4 0 0
0 0.2 0
0 0 0.7

⎤
⎦

B1 =
⎡
⎣

0.19 −0.21 0.09
0.00 −0.31 0.19

−0.20 −0.10 −0.20

⎤
⎦

B2 =
⎡
⎣

0.21 −0.20 0.10
0.00 −0.30 0.19

−0.21 −0.10 −0.20

⎤
⎦

B3 =
⎡
⎣

0.20 −0.20 0.10
0.00 −0.27 0.21

−0.21 −0.12 −0.19

⎤
⎦

B4 =
⎡
⎣

0.10 −0.20 0.21
0.10 −0.20 0.12

−0.10 −0.12 −0.30

⎤
⎦

Mi = 0.3I, N1i = 0.1I, N2i = 0.2I, i = 1, 2, 3, 4

h = 0.01, ρ = 0.3.

The TPM comprises five vertices r , r = 1, 2, . . . , 5, and
their second lines 2

r , r = 1, 2, . . . , 5, are given by

2
1 = [ ? 0.15 0.30 ? ], 2

2 = [ ? 0.15 0.60 ? ]
2

3 = [ ? 0.45 0.30 ? ], 2
4 = [ ? 0.45 0.55 ? ]

2
5 = [ ? 0.40 0.60 ? ]

and other rows in the five vertices are defined with the same
elements, ∀r = 1, 2, . . . , 5

1
r = [ ? 0.4 ? 0.2 ], 3

r = [ ? 0.2 0.5 ? ]
4

r = [ ? 0.3 ? ? ].
For simplicity, the TPM in the polytope uncertainty descrip-

tion can be rewritten in the following norm-bounded form:
⎡
⎢⎢⎣

? 0.4 ? 0.2
? [0.15, 0.45] [0.3, 0.6] ?
? 0.2 0.5 ?
? 0.3 ? ?

⎤
⎥⎥⎦ . (23)

By Theorem 1, one can verify that (5)–(6) have a feasible
solution, which shows that the given system is asymptotically
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TABLE I

STABILITY OF THE MJNN CORRESPONDING TO DIFFERENT ρ VALUES

Value of ρ Stability of MJNN

0.3 Stable
0.4 Stable
0.5 Unstable
0.6 Unstable

TABLE II

MAXIMUM VALUE OF ρ FOR UNCERTAIN TPS WITH

DIFFERENT INTERVALS

Interval of π22 Interval of π23 Maximum value of ρ

[0.05, 0.85] [0.10, 0.90] 0.389
[0.15, 0.75] [0.20, 0.80] 0.412
[0.25, 0.65] [0.30, 0.70] 0.439
[0.35, 0.55] [0.40, 0.60] 0.441

stable in the mean square despite the defectiveness existing in
TPM (23).

Note that, as shown in (3), ρ has a constraint on the
intensity of stochastic perturbations. This means that a larger ρ
may cause the corresponding MJNN to become unstable. By
Theorem 1, one can further obtain the relation between the
different ρ and the stability of the resulting MJNN, as listed
in Table I. It is seen from Table I that a larger ρ, which allows
the stochastic perturbations σ (y(k), k)w(k) to be more intense,
will lead to the instability of the system. Thus a direct question
is: what is the factor that gives rise to different maximum
values of ρ such that the corresponding MJNN is unstable?
It is natural for us to conjecture that different defectiveness
of a TPM may have such a potential. That is, as the level of
the defectiveness varies, the maximum value of ρ will change.
The corresponding verification will be shown in Examples 2
and 3.

Example 2: Consider the MJNN in Example 1 and change
the intervals of uncertain TPs π22 and π23 in (23). The purpose
here is to demonstrate the different behaviors of the underlying
MJNN as the intervals of uncertain TPs vary. Using the
conditions in Theorem 1, we can obtain the maximum value
of ρ by solving the following minimization problem:

min 1/ρ

subject to L M Is (5) and (6).

Given four different intervals of π22 and π23, the corre-
sponding computation results are shown in Table II. It can
be seen that, as the intervals of uncertain TPs π22 and π23
become smaller, the maximum value of ρ increases, i.e., more
intense stochastic perturbations are allowed.

Now, we will consider the more complex cases in Exam-
ple 3, in which all the three types of TPs are involved in the
variations.

Example 3: Consider the MJNN in Example 1 with four
different defective TPMs as listed in Table III.

From Cases I–IV in Table III, the level of the defec-
tiveness decreases, which one can observe in three cases:
1) unknown elements turn into uncertain or even known ones;

TABLE III

FOUR DIFFERENT TRANSITION PROBABILITY MATRICES

Case I: Completely unknown TPM⎡
⎢⎢⎣

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎤
⎥⎥⎦

Case II: Defective TPM 1⎡
⎢⎢⎣

? 0.4 ? 0.2
0.2 ? [0.3, 0.5] 0.1
? 0.2 [0.1, 0.7] ?
? ? ? ?

⎤
⎥⎥⎦

Case III: Defective TPM 2⎡
⎢⎢⎣

? 0.4 ? 0.2
0.2 [0.15, 0.35] [0.3, 0.5] 0.1
? 0.2 [0.4, 0.6] ?

0.4 0.3 0.2 0.1

⎤
⎥⎥⎦

Case IV: Completely known TPM⎡
⎢⎢⎣

0.3 0.4 0.1 0.2
0.2 0.3 0.4 0.1
0.1 0.2 0.5 0.2
0.4 0.3 0.2 0.1

⎤
⎥⎥⎦

TABLE IV

MAXIMUM VALUE OF ρ FOR DIFFERENT CASES

Case Maximum value of ρ

I 0.134
I I 0.296

I I I 0.438
I V 0.525

2) the intervals of the uncertain elements become tighter; and
3) the uncertain elements become known ones. In particular,
Case I represents the so-called switched NNs under arbitrary
switching and Case IV represents the conventional MJNN with
completely known TPM. The corresponding result can be seen
in Table IV.

From the computation results, it can be also seen that the
lower is the level of defectiveness of the TPM, the stronger
is the capability of tolerating stochastic perturbations for
ensuring stability of the system.

As seen from Example 1, the validity of Theorem 1 is
demonstrated. Also, it can be concluded from Examples 2
and 3 that, as more statistics are available to the designers,
the relevant system performance (the capability of tolerating
stochastic perturbations here) will be improved as conjectured.

V. CONCLUSION

This brief dealt with the stability criterion for a class of
uncertain MJNNs with defective statistics of modes transitions
in discrete time domain. The defective TPs took account
of the recent studies, i.e., the so-called uncertain TPs and
partially unknown TPs, in a composite way. By using the
property of the TPM and the convexity of uncertain domains,
a sufficient condition for the stability of the underlying system
was established. Furthermore, a monotonicity between the
level of the defectiveness and the system’s capability of toler-
ating the stochastic perturbations was observed concerning the
maximum value of a given scalar ρ. Numerical examples were
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provided to show the effectiveness of the developed results. It
is worth mentioning that the consideration of the defective
TPM can be further extended to other issues of MJNNs, such
as MJNNs with time delays [17], [18], MJNNs in continuous
time domain [19], etc.
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