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Abstract
Recent advancement in combining trajectory optimization with function approximation (especially
neural networks) shows promise in learning complex control policies for diverse tasks in robot
systems. Despite their great flexibility, the large neural networks for parameterizing control poli-
cies impose significant challenges. The learned neural control policies are often overcomplex and
non-smooth, which can easily cause unexpected or diverging robot motions. Therefore, they often
yield poor generalization performance in practice. To address this issue, we propose adversarially
regularized policy learning guided by trajectory optimization (VERONICA) for learning smooth
control policies. Specifically, our proposed approach controls the smoothness (local Lipschitz con-
tinuity) of the neural control policies by stabilizing the output control with respect to the worst-case
perturbation to the input state. Our experiments on robot manipulation show that our proposed ap-
proach not only improves the sample efficiency of neural policy learning but also enhances the
robustness of the policy against various types of disturbances, including sensor noise, environmen-
tal uncertainty, and model mismatch.
Keywords: Adversarial Regularization, Policy Learning, Trajectory Optimization

1. Introduction
Robust and generalizable motion planning enables robotic systems to handle various uncertainties
and accomplishes diverse tasks. However, learning a dynamically consistent neural control policy
(i.e., a neural-network control policy) and executing it reliably remain challenging. First, the func-
tion approximators used to model the policy can be highly complex and non-smooth, causing poor
generalization performance. Second, the dynamics models involved often have some mismatch
between the physical robot and the environment, leading for the need to learn a robust policy.

Trajectory optimization (TO) (Betts, 1998; Kuindersma et al., 2016; Tassa et al., 2014; Posa
et al., 2014) is a powerful model-based approach to generate optimal control sequences for complex
robotic systems. However, existing methods for solving TO problems with full robot dynamics re-
quire solving large nonlinear programs, resulting in high computational cost. This difficulty prevents
the use of TO methods in real-time robot control settings. As such, to alleviate the computational
burden at run-time, it is preferable to have a parametric representation of a robot control policy. In
comparison, model-free policy search, as in (Deisenroth et al., 2013), aims to automatically learn
the controller through random exploration. However, a majority of these methods fail to explore the
model dynamics, which causes sample inefficiency.

To take advantage of both TO and policy search, Mordatch and Todorov (2014) and Levine and
Koltun (2013a) train a robot control policy supervised by optimized trajectory samples, and mean-
while adapting TO to the learned policy. The work in Mordatch and Todorov (2014) observes that
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the derivatives of a neural control policy can behave irregularly even when the policy matches the
optimal trajectory baseline. This is because neural networks have high complexity and flexibility,
which makes them highly non-smooth — a small change in the networks’ input can cause a large
variation in the output. To mitigate this limitation, existing works attempt to impose some smooth-
ness constraints on the policy. For instance, Mordatch and Todorov (2014) matches the gradient
for policy and trajectory samples via tangent propagation. However, tangent propagation requires
Jacobian computation on each trajectory point, which does not scale well to large datasets.

To alleviate these issues, we propose a new approach: adversarially regularized policy learning
guided by trajectory optimization (VERONICA). Specifically, our approach improves the local Lip-
schitz continuity of the neural control policy via adversarial regularization, which improves gener-
alization performance for inputs not seen during training. We focus on promoting smoothness in
policy for non-hybrid robotics tasks that are often governed by differential equations with high-order
continuity. For hybrid systems where non-smooth dynamics might occur during physical contact,
several works in TO (Brubaker et al., 2009; Todorov, 2011; Mordatch et al., 2012) and physical sim-
ulation MuJoCo (Todorov et al., 2012) propose to model contact with a smoothed model, where con-
tact forces diminish gradually with contact distance. The work of Drnach and Zhao (2021) proposes
a risk-sensitive cost function to represent a stochastic, smoothed variant of the original complemen-
tarity contact problem (Chen and Mangasarian, 1996). In this work, we show that the VERONICA
framework also provides robustness benefits for a hybrid locomotion system with physical contacts.

The VERONICA framework is related to existing works (Miyato et al., 2018; Zhang et al.,
2019; Hendrycks et al., 2019; Xie et al., 2019; Jiang et al., 2019; Shen et al., 2020). These works
consider similar regularization techniques, but target at other applications with different motivations,
e.g., semi-supervised learning, unsupervised domain adaptation, harnessing adversarial examples,
fine-tuning pre-trained models and model-free reinforcement learning. Morimoto and Doya (2000)
solves a similar min-max problem to improve the robustness of reinforcement learning.

We further observe that besides promoting policy smoothness, adversarial regularization im-
proves the robustness of the policy against modeling errors and perturbations in the environment.
We verify that the VERONICA framework produces stable robot behaviors under sensor noise,
environmental uncertainty, and model mismatch.

Conventionally, adversarial regularization involves a min-max game, which is solved by alter-
nating gradient descent-ascent. During training, neither of the players can be advantageous, such
that the generated perturbations can be over-strong and hinder model generalization. To resolve this
issue, we employ Stackelberg adversarial regularization (SAR), as proposed in Zuo et al. (2021),
which formulates adversarial regularization as a Stackelberg game. In SAR, the policy (i.e., the
leader) has a higher priority than the perturbation (i.e., the follower). The leader procures its advan-
tage by considering how the follower will respond after observing the leader’s decision, such that
the leader anticipates the predicted move of the follower when optimizing its strategy. We note that
prioritizing the policy optimization is reasonable and beneficial because we target the performance
of the learned policy, instead of the adversary.

Our contributions are: I) We propose VERONICA, an adversarial regularization method for
learning smooth neural control policies guided by TO. This improves the generalization perfor-
mance of the learned policy; II) We show that the learned policy achieves better robustness under
disturbances such as sensor noise, environmental uncertainty, and model mismatch; III) We refor-
mulate adversarial regularization as a Stackelberg game, which further improves generalization and
robustness of the policy compared with the conventional formulation.

2



ADVERSARIALLY REGULARIZED POLICY LEARNING GUIDED BY TRAJECTORY OPTIMIZATION

2. Related Works
Adversarial Training in Robot Learning: Adversarial training has previously been used to im-
prove safety in robot visuomotor control scenarios (Chen et al., 2020). The work in Lechner et al.
(2021) argues that adversarial training induces unexplored error profiles in vision-based robot learn-
ing, which studies classification tasks that are not Lipschitz continuous. In contrast, our work
focuses on adversarial regularization for neural control policy in dynamics-based robot learning,
which are intrinsically smooth. Therefore, vision-based adversarial training studies fundamentally
different problems than ours.

Imitation Learning: Behavioral cloning (BC) uses supervised learning to directly imitate
expert trajectories without interacting with the environment (Schaal et al., 1997). However, BC
is particularly vulnerable to error compounding (Ross et al., 2011). In our work, we solve a BC
problem for policy learning in each iteration of the Alternating Direction Method of Multipliers
(ADMM) method, while the ADMM framework offers a coupling mechanism to allow the trajectory
optimizer (i.e., the teacher) to not only guide the learned policy (i.e., the student) towards better
solutions but also adapt to the student. More importantly, we incorporate an adversarial regularizer
to improve policy smoothness, which significantly eases the effect of error compounding.

Along another line of research, generative adversarial imitation learning (Ho and Ermon, 2016;
Zolna et al., 2019) uses generative adversarial networks (GAN) to directly generate policies that
imitate expert demonstrations. In contrast, the adversaries in our work are the direct perturbations
on the input (i.e., the robot state), rather than the discriminator network.

Trajectory-Optimization-Guided Policy Learning: Trajectory optimization has been used
to aid and stabilize value function learning in the reinforcement learning (RL) context (Lowrey
et al., 2018), while Landry et al. (2021) use a bilevel optimization to learn the value function with
adversarial samples. In this work, we focus on supervised learning approaches that train neural
control policies from TO.

Guided policy search (GPS) (Levine and Koltun, 2013a,b, 2014) iteratively updates guiding
sample using differential dynamic programming (DDP) and trains policies on the distribution over
the guiding samples. In contrast, the work of Mordatch and Todorov (2014) seeks consensus be-
tween neural network policy and trajectory optimization using ADMM (Boyd et al., 2011). Duburcq
et al. (2020) similarly solve for ADMM consensus, but aim to learn a trajectory sequence rather than
policy. The ADMM formulation in our work is closely related to Mordatch and Todorov (2014), but
we focus on adversarial regularization for policy learning.

3. Method
We introduce VERONICA, our proposed adversarially regularized approach which combines the
strength of policy learning and trajectory optimization. First, we define an adversarial regularizer
and explain how it improves smoothness and robustness of neural control policies; Second, we de-
scribe an ADMM-based algorithm that solves the full joint optimization problem; Third, we develop
an extension to our proposed adversarial regularization approach — Stackelberg adversarial regu-
larization. We consider the neural control policy learning process guided by N optimal trajectories
{X,U} = {Xi,Ui | i = 1, · · · , N}, and each optimal trajectory {Xi,Ui} consists of T state-
control pairs {xt

i ∈ Rdx ,ut
i ∈ Rdu | t = 1, · · · , T}, where xt

i and ut
i denote the robot state and

the control, respectively. In this study, the robot state corresponds to the joint positions, velocities
and task parameters such as goal configurations, while the control corresponds to the joint torque.
Moreover, let π(·|W) denotes the neural control policy, where W denotes the associated parameters.
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3.1. Adversarial Regularization for Neural Control Policy

To promote smoothness of the neural control policy, we consider the following adversarial discrep-
ancy measure:

radv(x,W) = max
∥δ∥≤ϵ

r(x,W, δ) = max
∥δ∥≤ϵ

∥π(x|W)− π(x+ δ|W)∥2,

where ∥ · ∥ denotes the ℓ2 norm, δ ∈ Rdx is the adversarial perturbation injected to the state vector
x, and ϵ > 0 is the perturbation strength. Such an adversarial discrepancy measure radv(x,W)
essentially computes the maximal deviation of the neural control policy output at state x given an
input perturbation δ whose ℓ2 norm is bounded by ϵ.

We then apply the adversarial discrepancy measure to control the smoothness of the neural
control policy. Specifically, we solve the following joint optimization problem:

min
X,U,W

N∑
i=1

L(Xi,Ui) +QBC(X,U,W) + αRadv(X,W), (1)

s.t. xt+1 = f(xt,ut),x0 = xinit,X ∈ X ,U ∈ U ,
where L(Xi,Ui) denotes the loss function of the trajectory optimization (TO) for the ith trajectory,
QBC(X,U,W) denotes the loss function for policy learning:

QBC(X,U,W) =
1

N

∑
i,t

||π(xt
i|W)− ut

i||2,

Radv(X,W) is the adversarial regularizer for controlling the smoothness of the policy:

Radv(X,W) =
1

N

∑
i,t

radv(x
t
i,W) =

1

N

∑
i,t

max
∥δti∥≤ϵ

∥π(xt
i|W)− π(xt

i + δti |W)∥2,

and α is the regularization coefficient weighting between the QBC(X,U,W) andRadv.
Solving the optimization problem in Eq. (1) learns a neural control policy that not only mini-

mizes the TO loss and the behavior cloning loss, but also encourages the adversarial discrepancy
measure of the policy to be small at every state of the optimal trajectories.

Figure 1: Illustration of policy smooth-
ness at state x and control u. If the policy
π(·|W ) is smooth around x, the perturbed
state x̃ will produce a control u′ similar
to u. If the policy π(·|W) is non-smooth
around x, the output control u′′ would de-
viate significantly from u.

(I) Adversarial Regularization Improves Generaliza-
tion: Existing methods usually train neural control policies
by only minimizing the trajectory optimization loss and be-
havior cloning loss. Due to the high capacity of deep neural
networks, the learned neural control policies are often over-
complex and highly non-smooth. This is inconsistent with
observations that many optimal control policies for robots are
smooth. Here we exclude the problem involving physical con-
tact dynamics, which exhibits discontinuous and non-smooth
phenomenon. Smoothness requires a small perturbation to the
state vector x to only yield a small change to the policy output
(Figure 1). Such a property can improve generalization of the
learned policy.

VERONICA naturally promotes the desired smoothness
by imposing a high penalty when the adversarial perturbation δ yields a large deviation to the
policy output. More precisely, radv(x,W) essentially upper bounds the deviation of the pol-
icy output due to the adversarial perturbation δ with respect to the state x, and therefore can
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be viewed as a measure of the local Lipschitz constant within a small neighborhood of x, i.e.,
Cx = sup∥δ∥≤ϵ

∥π(x|W)−π(x+δ|W)∥
∥δ∥ . Accordingly, our proposed adversarial regularizer penalizes

the average discrepancy measures of the neural control policy at all trajectory points, which en-
forces its local Lipschitz continuity.

(II) Adversarial Regularization Gains Robustness: Robot systems measure their states from
sensors, which are prone to stochastic or systematic sensor errors. VERONICA naturally gains
robustness against such disturbances. Specifically, the adversarial perturbation in VERONICA can
be viewed as a proxy to the errors. Therefore, our approach does not require prior knowledge of
them. In comparison, existing methods for handling such errors usually assume specific forms, e.g.,
independent Gaussian noise, which can be restrictive in practice.

Moreover, as suggested in Asadi et al. (2018), the Lipschitz continuity is essential to robustness,
especially for control and reinforcement learning problems. This is because for policies without the
Lipschitz continuity property, a small error in sensor measurement or state transition potentially
leads to a drastic change to the policy output. Due to the dynamic nature of the control problem, it
will further yield significant error compounding during policy roll-out. Moreover, when the models
used to describe robot dynamics mismatch the real robot, such compounding system errors can be
catastrophic. Quantitatively, the upper bound for policy robustness under state disturbance, mea-
sured by compounding value function discrepancy, is proportional to the Lipschitz constant of the
neural control policy. As the VERONICA approach can effectively control the local Lipschitz con-
tinuity of the neural control policy, such an issue can be mitigated. A theoretical analysis can be
found in Appendix G of the supplementary material (Zhao et al., 2021).

3.2. Combined Trajectory Optimization and Adversarially Regularized Policy Learning

We apply ADMM (Zhao et al., 2020; Zhou and Zhao, 2020) to solve the optimization problem in
Eq. (1). Specifically, we reparameterize Eq. (1) into a decomposable form by introducing two aux-
iliary sets of state and control variables: (XTO,UTO) represents the trajectory samples generated
by trajectory optimization (TO), and (XPL,UPL) are copies of (XTO,UTO) for policy learning.
Accordingly, the optimization problem in Eq. (1) is reformulated as:

min
XTO,PL,UTO,PL,W

N∑
i=1

L(XTO
i ,UTO

i ) +QBC(X
PL,UPL,W) + αRadv(X

PL,W)

s.t. XTO = XPL,UTO = UPL. (2)
ADMM splits the above optimization problem into N individual TO problems and a policy learning
problem to be solved in an iterative manner. Let λp

Xi
,λp

Ui
denote the dual variables at the pth

iteration and ρx, ρu > 0 denote the penalty parameters. The ADMM primal and policy updates are:

XTO,p+1
i ,UTO,p+1

i = argmin
Xi,Ui

L(Xi,Ui) +
ρx
2
∥Xi −XPL,p

i + λp
Xi
∥2

+
ρu
2
∥Ui −UPL,p

i + λp
Ui
∥2, (primal TO update) (3)

Wp+1 = argmin
W

QBC(X
PL,p,UPL,p,W) +Radv(X

PL,p,W), (policy update) (4)

XPL,p+1
i ,UPL,p+1

i = argmin
Xi,Ui

QBC(X
PL,p
i ,UPL,p

i ,Wp+1) +
ρx
2
∥XTO,p+1

i −Xi + λp
Xi
∥2

+
ρu
2
∥UTO,p+1

i −Ui + λp
Ui
∥2. (primal PL update) (5)
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Primal TO update: The update in Eq. (3) involves TO and is solved by either direct optimiza-
tion methods Drnach and Zhao (2021) or indirect methods such as differential dynamic program-
ming (DDP), as described in Tassa et al. (2014) and Jacobson and Mayne (1970). We defer details
of the DDP algorithm to Appendix A in the supplementary material (Zhao et al., 2021).

Policy update: Note that Eq. (4) is a min-max optimization problem. For notation simplicity,
we omit the iteration index p, and we rewrite it as

W = argmin
W

QBC(X
PL,UPL,W) +

α

N

∑
i,t

max
∥δti∥≤ϵ

r(xPL,t
i ,W, δti). (6)

To solve Eq. (6), we apply an alternating gradient descent/ascent algorithm. Specifically, at the sth

iteration, we first apply the projected gradient ascent algorithm to update δti for K steps,

δt,si = δt,s,Ki , where δt,s,ki = Π
[
δt,s,k−1
i + ηδ∇δr(x

PL,t
i ,Ws, δt,s,k−1

i )
]

for k = 2, · · · ,K.

Here, δt,s,1i is randomly sampled fromN (0, σ2I), Π denotes projection to the ℓ2 ball with a radius ϵ,
and ηδ > 0 denotes the step size. Then we apply a gradient descent (or stochastic gradient descent)
step to W,

Ws = Ws−1 − ηW [∇WQBC(X
PL,UPL,Ws) +

α

N

∑
i,t

∇Wr(xPL,t
i ,Ws, δt,si )]. (7)

Primal PL update: The update in Eq. (5) solves an unconstrained differentiable optimization sub-
problem, which can be efficiently solved for each trajectory using stochastic gradient descent.

Dual update: After the above three updates, we perform the dual update as follows:

λp+1
Xi

= λp
Xi

+XTO,p+1
i −XPL,p+1

i , λp+1
Ui

= λp
Ui

+UTO,p+1
i −UPL,p+1

i . (8)

After a certain number of iterations of the above primal-dual policy updates, the joint optimiza-
tion in Eq. (2) achieves a consensus and the primal and dual residuals meet the ADMM stopping
criteria. The overall algorithm is summerized in Algorithm 1 in Appendix B (Zhao et al., 2021).

3.3. Stackelberg Adversarial Regularization

One major limitation of the adversarial regularizer in Eq. (6) is that it solves a min-max-game-based
optimization, where neither of the players can be advantageous. This is problematic because the ad-
versarial player may generate over-strong perturbations that hinder generalization. To mitigate this
issue, we employ Stackelberg adversarial regularization (Zuo et al., 2021) to solve the policy update
in Eq. (6) through a Stackelberg game formulation. In a Stackelberg game, there are two players,
a leader (the policy) and a follower (the perturbations). The leader acknowledges the strategy of
the follower, such that it is always in an advantageous position. This effectively eliminates the
over-strong perturbations.

To simplify the notation, we omit the indices on the trajectory sample points x. We solve

min
W
QSAR(W) = QBC(X,U,W)

+
α

N

∑
r(x,W, δK), (9)

s.t. δK(W) = UK ◦ UK−1 ◦ · · · ◦ U1(δ0).

The policy parameter W in Eq. (9) is the leader, and the perturbation δ(W) is the follower. Here,
◦ denotes operator composition, i.e., f(·) ◦ g(·) = f(g(·)). Each Uk for k = 1, · · · ,K represents
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the kth step update operator for the follower’s strategy. The operators are defined by pre-selected
optimization algorithms such as stochastic gradient descent (SGD) or Adam (Kingma and Ba, 2014).

In Stackelberg adversarial training, the leader acknowledges the strategy of the follower by
treating the perturbations (the follower) as a function of the policy parameters (the leader). Cor-
respondingly, we solve for the policy parameters using gradient descent, where the Stackelberg
gradient is

dQSAR(W)

dW
=

dQBC(X,U,W)

dW
+ α

∂r(x,W, δK)

∂W︸ ︷︷ ︸
leader

+α
∂r(x,W, δK)

∂δK
dδK

dW︸ ︷︷ ︸
leader-follower interaction

. (10)

In comparison, the conventional adversarial regularization in Eq. (6) uses only the leader term
and does not consider the leader-follower interaction.

The most expensive term to compute in Eq. (10) is dδK/dW. Recall that we have δk =
Uk(δk−1), where Uk is an update operator, e.g., a one-step gradient ascent. As a short-hand, we
write

δk(W) = δk−1(W) + ∆(x, δk−1(W),W),
where ∆(x, δk−1(W),W) signifies the update from δk−1 to δk. Then we have

dδk

dW
=

dδk−1

dW
+

∂∆(x, δk−1,W)

∂W
+

∂∆(x, δk−1,W)

∂δk−1

dδk−1

dW
.

This recursive differentiation can be efficiently computed using deep learning libraries, such
as PyTorch (Paszke et al., 2019). Please refer to Zuo et al. (2021) for more details. The overall
adversarial regularization algorithm is shown in Algorithm 2 in Appendix C (Zhao et al., 2021).

4. Experiments
We evaluate VERONICA on cart-pole swing-up, Kuka arm manipulation, and hopper locomotion
tasks. The experiments are shown in the video1. We compare smoothness, generalization, and
robustness of policies trained with Gaussian perturbations, conventional adversarial regularization
(VERONICA-AR), and SAR (VERONICA-SAR). We do not include tangent propagation due to
the excessive computational requirements to compute the Jacobian. We also demonstrate that the
neural control policy is able to handle simple multi-modal dynamics for the pick and place task.

For Kuka manipulation tasks, the simulation environment is implemented in PyBullet (Coumans
and Bai, 2016–2021). We solve for TO described in Eq. (3) using DDP implemented in Crocod-
dyl (Mastalli et al., 2020). For hopper locomotion tasks, we implement both the simulation envi-
ronment and a direct TO algorithm in Drake (Tedrake and the Drake Development Team, 2019).
The adversarially regularized policy learning algorithm is implemented in PyTorch (Paszke et al.,
2019) and Higher (Grefenstette et al., 2019). The implementation details can be found in Ap-
pendix D (Zhao et al., 2021).

Policy Smoothness: We qualitatively examine the smoothness of our neural control policy by
inspecting a typical policy roll-out for cart-pole swing-up and Kuka arm reaching tasks, as shown
in Figure 2. Figure 2(a) shows the smoothness comparison during a cart-pole swing-up. VERON-
ICA produced visually smoother force sequences comparing to Gaussian perturbation. Figure 2(b)
displays the torque sequence of Kuka joint 2 during a reaching task. The policy trained by Gaussian
perturbation generates a non-smooth torque profile around the initial position of the task, indicat-
ing that the Gaussian perturbation is not sufficient to prevent overfitting at the initial phase of the
trajectory, where the torque changes relatively quickly with respect to state. In comparison, the

1. The link to the video is https://youtu.be/2zlAC9Xs8Bg.
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VERONICA-AR and VERONICA-SAR policies produce smoother control sequences that track the
baseline closely. To inspect the smoothness of the neural control policies, we plot the torque output
on Kuka joint 2 against the joint angle in Figure 2(c). VERONICA successfully penalize against the
non-smooth peak that appeared in the torque profile of the Gaussian perturbed policy.
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Figure 2: Comparison of control output smoothness for cart-pole and Kuka arm reaching tasks. Trajectory optimization
baseline is marked as a dashed line. (a) Time sequence of forces applied onto the cart during swing-up. (b-c) Torque
output for Kuka joint 2 with respect to time and joint 2 angle.
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Figure 4: Example of an undisturbed policy roll-out for a 3-DOF manipulator reaching task where Gaussian perturbation
fails. (a) Cumulative cost for policy roll-out (b-c) Torque outputs on joints 2 and 4.

Generalization Performance: To evaluate the generalization performances of VERONICA,
we perform policy roll-outs with 100 different initializations in an undisturbed environment (see
Figure 3(a)). The adversarially regularized policies produce lower costs because the policies trained
with no perturbation or Gaussian perturbation are unable to generate stable robot motions under
some initializations. Figure 4 displays an example of an arm reaching task that Gaussian perturba-
tion cannot handle. Although a vast majority of roll-outs with the VERONICA-AR policy are stable,
a small percentage (2%) produces unstable robot motions that fail to achieve the task. In contrast,
the VERONICA-SAR policy leads to stable and near-optimal robot motions across all attempts,
demonstrating that VERONICA-SAR enhances numerical stability comparing to VERONICA-AR.

8



ADVERSARIALLY REGULARIZED POLICY LEARNING GUIDED BY TRAJECTORY OPTIMIZATION

We further compare VERONICA with proximal policy optimization (PPO) - a model free re-
inforcement learning method. PPO is trained for 3e6 timesteps. VERONICA is trained with 1000
trajectories and 300 timesteps each, matching the sample size of PPO. Figure 5 shows that VERON-
ICA consistently achieves lower cost than PPO, demonstrating its superior sample-efficiency.

C
os

t

VERONICA baseline
PPO

Timestep
1e50 2e5 3e5

Figure 5: Learning curve of PPO in
the 3-DOF Kuka reaching task. The
baseline is the 95 percentile cost for
VERONICA-AR across 100 differ-
ent tests.

Policy Robustness: We evaluate our policies’ robustness
against three different kinds of disturbances. For sensor noise and
environmental uncertainty, we add a uniform noise bounded by an
ℓ∞-norm ball with radius ζ onto the sensor measurement and state
transition, respectively. As for model mismatch, we modify the
URDF file used in policy roll-out by decreasing the mass of each
robot link by 0.25 kg.

We first compare the policies’ robustness against different mag-
nitudes of sensor noise, as shown in Figure 3(b-c). While Gaus-
sian perturbation does provide some robustness comparing to the
unregularized policy, VERONICA-AR and VERONICA-SAR con-
sistently outperforms the Gaussian perturbation. Furthermore,
VERONICA-AR deviates significantly from the undisturbed TO baseline under a strong sensor
noise (ζ = 0.05), while VERONICA-SAR remains able to produce stable robot motion and closely
track the TO baseline.

Table 1: Task Error for 3-DOF Manipulator Reaching Task (ζ = 0.01, Unit: m)
Gaussian VERONICA-AR VERONICA-SAR

Undisturbed 1.62e-1± 5.05e-2 6.26e-2± 3.96e-2 6.39e-2± 2.70e-2
Sensor Error 1.75e-1± 7.85e-2 7.11e-2± 7.57e-2 6.61e-2± 2.42e-2

Environment Uncertainty 1.73e-1± 7.59e-2 8.66e-2± 1.03e-1 7.75e-2± 3.99e-2
Model Mismatch 2.14e-1± 8.26e-2 5.24e-2± 3.27e-2 1.23e-1± 2.16e-2

Table 1 shows the average task errors - the distance between the goal and the actual final po-
sitions for the robot arm’s end-effector - and their standard deviation for 100 manipulator reaching
tasks under different types of disturbances. VERONICA provides significantly lower task errors
across all clean and disturbed experiments. Furthermore, VERONICA-SAR leads to a lower stan-
dard deviation than VERONICA-AR, indicating that the policy learned by VERONICA-SAR is less
prone to outliers comparing to VERONICA-AR.

Table 2: Median Task Errors for M -
DOF Manipulator (Unit: m)

M = 3 M = 5 M = 7

6.39e-2 1.23e-1 1.32e-1

Application to Higher-DOF Manipulators: We investigate
how the performance of VERONICA-SAR scales to higher state
and control dimensions by evaluating the task errors of manipula-
tor reaching tasks for 3, 5, and 7-DOF Kuka arms (Table 2). The
task error increases with the dimensionality of the problem, but not
significantly. Note that the 5 and 7-DOF experiments involve manipulation in the 3-D space, which
lead to much higher problem complexity than the planar 3-DOF configuration, and require larger
neural control policies. Figure 6 indicates that similar to the 3-DOF cases, the proposed Stackel-
berg adversarial regularization benefits both generalization and robustness performance compared
to Gaussian regularization in the 7-DOF Kuka arm reaching tasks.

Preliminary Study of Learning Multimodal Dynamics: In the pick and place task, we train
a policy to handle the control of the Kuka arm for both free-moving or object-holding scenarios.
In order to train the policy applicable for both cases simultaneously, we include a discrete variable

9
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Figure 6: Cost percentile plot for 7-DOF arm reaching task with 100 different initializations and under different distur-
bances on sensor measurements. The plot is capped at 3 times the maximum baseline cost.

in the network input to signify the grasping state of the object. Figure 7 shows the arm’s torque
output for the same initialization, with or without an object. For simplicity, this experiment assumes
that only one object with a known mass, and the object is fixed to a pre-specified position in the
gripper when grasped by the arm. In the future, the adaptability of the policy can be improved
by augmenting the input with more information such as the weight of the object and the relative
position between the object and the gripper.
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Figure 7: Comparison for the con-
trol policy outputs with or without
grasping a 5kg object.

Application to Hybrid Locomotion Systems: We apply
VERONICA in hopper locomotion tasks to evaluate the perfor-
mance of VERONICA in a single leg 5-DOF hopper system, where
the hybrid locomotion trajectories involve intermittent contacts with
the terrain. We compare the cost percentile plot between the TO
baseline and VERONICA-SAR, as displayed in Figure 8. Note that
the open-loop rollout of trajectories generated by TO baseline per-
forms poorly in simulation due to the model mismatch between TO
and simulation environments. In contrast, the policy trained with
VERONICA-SAR generates a lower cost hopper motions due to
the robustness against model mismatch provided by adversarial perturbation. A visual comparison
can be found in the video.

5. Conclusion

Figure 8: Cost percentile plot for
hopper locomotion task with 100
different initializations.

We present VERONICA, an adversarial regularization framework
for combined trajectory optimization and policy learning. We show
that the proposed regularizer improves generalization and robust-
ness by enforcing Lipschitz continuity of the policy. Additionally,
we propose to further stabilize training by formulating the adver-
sarial regularization as a Stackelberg game. The experiment results
in robot manipulation scenarios show that our approach helps to
improve the smoothness of the learned policy, which results in a
more stable robot motions and lower policy execution costs. Addi-
tionally, we demonstrate that policies trained with VERONICA are
able to robustly handle various types of disturbances.

Our future work will (i) evaluate the performance of VERONICA in the presence of more types
of perturbations and uncertainties, such as varying link moment of inertia and kinematic parameters;
(ii) extend VERONICA to solve more complex manipulation and locomotion problems involving
physical contact and enhance robustness to contact uncertainties. Adaptive adversarial training,
where perturbations are generated by an additional network, can be incorporated to generate variable
perturbation radius around contact points.
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Supplemental Materials

Appendix A. Differential Dynamic Programming

In order to generate each individual trajectory sample satisfying robot rigid body dynamics, we
solve the following trajectory optimization (TO) problem formulated as:

min
X,U

L(X,U) =
T−1∑
t=1

ℓ(xt,ut) + ℓf (x
T ,uT ) (11a)

s.t. xt+1 = f(xt,ut),x0 = xinit, (11b)

X ∈ X , U ∈ U , (11c)

where ℓ(xt,ut) is the cost function at time-step t, ℓf (xT ,uT ) represents the terminal trajectory
cost at time-step T , xt+1 = f(xt,ut) is the discretized system dynamics, and X ,U represents
additional path constraints on state and control. The running trajectory cost ℓ(x,u) is composed of
the a goal tracking term, a control regularization term, and the ADMM residual terms:

ℓ(x,u) = x̂⊤Qx̂+ u⊤Ru+
ρx
2
∥x− xPL + λx∥2 +

ρu
2
∥u− uPL + λu∥2,

where x̂ = x−xgoal represents the deviation between the trajectory state x and goal state xgoal and
Q,R ⪰ 0 are the weighting matrices for the strength of the regularization. The ADMM residual
terms ρx

2 ∥x − xPL + λx∥2 and ρu
2 ∥u − uPL + λu∥2 are initialized to be 0 at the first iteration,

but eventually have the effect of regularizing the trajectory optimization to be closer to the policy
output.

In the following we briefly describe the formulation of DDP, which is used in this work to
compute trajectory samples. Jacobson and Mayne (1970) provides a detailed representation of DDP
in the historical context, and Tassa et al. (2014) presents a control-constrained version of DDP that
is widely used in robotics.

DDP solves the optimization described in Eq. (11) using a backward pass of Bellman’s equation,

V (xt) = min
u

[ℓ(xt,ut) + V (xt+1)]. (12)

Let Q(δxt, δut) be the change in local cost function given a perturbation around the tth time-step:

Q(δx, δu) = ℓ(x+ δx,u+ δu)− ℓ(x,u) + V (x+ δx)− V (x) (13)

The DDP backward pass computes the second order Taylor expansion of Q and the optimal local
perturbation δu∗ is given by the local feedback control policy:

δu∗ = k+Kδx, (14)

where k = −Q−1
uuQu and K = −Q−1

uuQux. After the backward pass is completed, the DDP forward
pass simulates the system by rolling out the system dynamics xt+1 = f(xt,ut). The backward-
forward passes are iterated until convergence.

Appendix B. Algorithm Overview of the Proposed Trajectory Optimization Guided
by Adversarially Regularized Policy Learning

Algorithm 1 shows the complete procedure of jointly solving TO and policy learning using ADMM.
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Algorithm 1 TO-Guided Policy Learning Using ADMM
Input: P : total number of ADMM iterations; N : number of sample trajecto-
ries.
Xinit ← N trajectory initial conditions
λ0
X,λ0

U ← 0
for p = 1, · · · , P do

XTO,p,UTO,p ← compute N trajectories using Eq. (3) (primal TO update)
Wp ← solve min-max optimization in Eq. (4) using Algorithm 2 (policy update)
XPL,p,UPL,p ← optimize using Eq. (5) (primal PL update)
λp
X,λp

U ← update using Eq. (8) (dual update)
end for
return WP

Appendix C. Pseudo-Code for Adversarial Regularization

Algorithm 2 Adversarially Regularized Policy Learning.
Input: {X,U}: trajectory samples; E: number of epochs; K: number of perturbation up-
dates.

for epoch = 1, · · · , E do
for {x,u} ∈ {X,U} do

Initialize δ0 ∼ N (0, σ2I)
for k = 1, · · · ,K do

Compute dRadv/dδ
k−1

δk ← Optimizer(dRadv/dδ
k−1)

end for
Adv Reg:

Compute d(QBC +Radv)/dW
Update W using (7)

Stackelberg Adv Reg:
Compute dQSAR/dW using (10)
W← Optimizer(dQSAR/dW)

end for
end for

Appendix D. Implementation Details

We use a fully connected neural network with 2 hidden layers and 8 units per layer for the cart-pole
example. The 3-DOF Kuka arm uses 2 hidden layers and 64 units each, the 5-DOF manipulator
uses 3 hidden layers and 64 units each, while the 7-DOF manipulator uses a residual network with
3 hidden layers and 256 units. The Kuka arm simulation is illustrated in Figure 9. The hopper
example, as shown in Figure 10, uses a fully connected network with 3 hidden layers and 24 units
each.
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Figure 9: The Kuka arm manipulation scenarios in simulation. (a) Kuka IIWA arm reaching: the learned policy controls
the arm to reach a predefined joint configuration. In 3-DOF reaching experiments, only joints 2, 4, and 6 are active
degrees-of-freedom (DOFs), making the arm equivalent to a planar manipulator. In 5-DOF experiments, joints 1, 2, 4, 5,
and 6 are active DOFs; (b) The Kuka arm pick and place task: an additional object is grasped by the Kuka arm during
this task.

Figure 10: The hopper locomotion tasks in simulation. The single leg hopper has 5 degree-of-freedom, with two contact
points with the ground located at the heel and the toe of the hopper.

In all experiments, we train the networks using AdamW (Loshchilov and Hutter, 2017) for
policy optimization and stochastic gradient descent (SGD) for adversarial perturbation. The regu-
larization coefficient α is set to 1. The learning rate for the policy learning lrp is chosen between
{1e-3, 5e-4}, and the learning rate for adversarial perturbation lradv is chosen between {5e-4, 1e-4}.
The number of adversarial update steps K is selected from {1, 3}, and the adversarial bound ϵ is
chosen from {1e-2, 5e-3}. The policy is trained for at most 300 epochs, with model averaging in
the last 1/4 of total epochs. Also, we apply gradient norm clipping of {∞, 1}.

In ADMM, we apply a trajectory state penalty coefficient ρx of {1, 10, 50} and a trajectory con-
trol penalty coefficient ρu of 1. We find that the behavioral cloning lossQBC decreases over ADMM
iterations, but the loss deduction is not significant after 5-10 iterations. Therefore, the ADMM is
run until QBC stops decreasing, which results in between 5-15 iterations in our experiments. The
result for QBC plotted with respect to ADMM iterations can be found in Appendix E.

D.1. 3-DOF Kuka Experiments

We use a fully connected network with 2 hidden layers and 64 units in each layer. The policy
input for the reaching task is 9-dimensional, which consists of a 6-dimensional robot state and a
3-dimensional goal configuration. The policy input for the pick and place task is 10-dimensional,
with 1 additional input dimension encoding the grasp state. The learning rate for policy parameters
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Figure 11: Illustration of the residual network used for 7-DOF Kuka manipulator experiments. The network consists of 3
hidden layers with 256 units each. A skip connection is included from the output of the 1st hidden layer to the output of
the 3rd hidden layer.

lrp is set to 1e-3, and the learning rate for adversarial perturbation lradv is set to 5e-3. The number
of adversarial update step K is selected to be 1, and the adversarial bound ϵ is 5e-3. We use
N = 5000 trajectory samples with 300 timesteps each. The policy is trained for 300 epochs, with
model averaging in the last 75 epochs.

The PPO algorithm as compared in Figure 5 is implemented using Stable Baseline 3 (Raffin
et al., 2019).

D.2. 7-DOF Kuka Experiment

We use a residual network with 3 hidden layers (Figure 11) to learn the neural control policy for the
7-DOF Kuka experiment. The policy input is 21-dimensional, which consists of a 14-dimensional
robot state and a 7-dimensional target joint angles. The learning rate for policy parameters lrp is
set to 1e-3, and the learning rate for adversarial perturbation lradv is set to 1e-4. The number of
adversarial update step K is selected to be 1, and the adversarial bound ϵ is 5e-3. We apply a
gradient norm clipping of 1. We use N = 25000 trajectory samples with 200 timesteps each. The
policy is trained for 100 epochs, with model averaging in the last 25 epochs.

Appendix E. Policy Behavioral Cloning Loss Over ADMM Iterations

Figure 12 shows the behavioral cloning loss QBC plotted against ADMM iterations. In the cart-
pole experiment shown in Figure 12(a), QBC decreases in the first 15 iterations, and gradually
increases afterwards. In Kuka experiment (Figure 12(b)), QBC is improved significantly in the first
2 iterations, then only slowly decreases from the 3rd iteration onward.

Appendix F. Effects of Adversarial Perturbation Bound Value

We evaluate the effect of adversarial perturbation bound ϵ by comparing the 3-DOF Kuka arm poli-
cies trained by VERONICA-SAR with a set of perturbation values ϵ ∈ {0, 0.005, 0.01, 0.025, 0.05}.
As seen in Figure 13, ϵ ∈ {0.005, 0.01} provides the best performances and closely track the TO
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Cart -Pole Kuka

(a) (b)

Figure 12: The behavioral cloning losses QBC with respect to ADMM iterations. The policies are trained with
VERONICA-SAR for (a) cart-pole and (b) 3-DOF Kuka manipulator.
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Figure 13: Cost percentile plot for 3-DOF arm policy rollout with 100 different initializations. The policies are trained
with different adversarial perturbation bounds ϵ

.

baseline. ϵ = 0 is equivalent to the policy trained without perturbation, which does not enjoy the
generalization and robustness gains provided by VERONICA. In contrast, the policy performance
decreases significantly when ϵ > 0.025, indicating that the adversarial perturbation is too strong
and causes underfitting.

Appendix G. Theoretical Analysis on Policy Smoothness and Robustness

In this section, we provide a theoretical analysis on how the Lipschitz continuity improves a neural
control policy’s robustness. We evaluate the policy’s robustness against state disturbances via value
discrepancy propagation analysis, as described in Xu et al. (2019), where the policy robustness is
analyzed by studying how the error caused by state disturbance propagates in the value functions of
the policy. As shown in Appendix G.3, the upper bound of the policy robustness (measured by value
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function discrepancy) is proportional to the Lipschitz constant of the policy. Therefore, controlling
the Lipschitz continuity of the policy helps to improve its robustness.

We make the assumption that the poilcy π, the cost function ℓ(x,u), and the system dynamics
f(x,u) are globally Lipschitz continuous. Although these assumptions might not hold in all prac-
tical cases, the following discussion provides some insight and intuition about why controlling the
smoothness of the policy enhances its robustness against various disturbances.

G.1. Definitions

π(·|W) denotes a neural control policy with network parameters W. For notation simplicity, W
are omitted in the following discussion. Let ℓπ(x(t)) = ℓ(x(t), π(x(t))) denote the cost for policy π
at state x(t) on time-step t. Similarly, fπ(x(t)) = f(x(t), π(x(t))) represents the system dynamics
under policy π at state x(t). We define the value function Jπ of policy π(x) to be the infinite
horizon cost with a discount factor γ ∈ (0, 1),

Jπ(x
(0)) =

∞∑
t=0

γtℓπ(x
(t)).

We consider the discount factor for convenience of analysis. The results can be extended to the
average cost setting, but will be more involved.

The Lipschitz constant of π, ℓπ, fπ, and Jπ are denoted as Cπ, Cℓπ , Cfπ , and CJπ respectively.
Cu
ℓ and Cu

f represents the Lipschitz constant of ℓ(x,u) and f(x,u) with respect to u.

G.2. Lipschitz Continuity of Value Function

Lemma 1: Given a neural control policy π with Lipschitz continuous cost function ℓπ and dynamics
fπ, and let γCfπ < 1. The value function Jπ is Lipschitz continuous and the Lipschitz constant is
CJπ =

Cℓπ
1−(γCfπ )

t .
Proof:

∥Jπ(x(0))− Jπ(y
(0))∥

=

∞∑
t=0

γt∥ℓπ(fπ(x(t)))− ℓπ(fπ(y
(t)))∥

≤
∞∑
t=0

Cℓπγ
t∥fπ(x(0))− fπ(y

(0))∥

≤ (
∞∑
t=0

(γCfπ)
t)Cℓπ∥x(0) − y(0)∥

=
Cℓπ

1− (γCfπ)
t
∥x(0) − y(0)∥

G.3. Value Discrepancy Under State Disturbances

Lemma 2 below shows that the value discrepancy for a policy π caused by a norm bounded pertur-
bation is proportional to the Lipschitz constant of the policy.
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Lemma 2: Given a neural control policy π and let δ(t) be the state disturbance at time-step t
norm bounded by ∥δ(t)∥ ≤ ζ. Let π′(x(t)) = π(x(t)+δ(t)) denote the disturbed neural control pol-

icy. The discrepancy between value functions Jπ′ and Jπ has an upper bound of Cπ(
Cu

ℓ +γCJπC
u
f

1−γ )ζ.

Proof:
The value function Jπ satisfies:

Jπ(x) = ℓπ(x) + γJπ(fπ(x)).

Therefore, the value discrepancy due to disturbances δ can be written as the following:

Jπ′(x)− Jπ(x)

= ℓπ′(x)− ℓπ(x) + γ(Jπ′(fπ′(x))− Jπ(fπ(x)))

≤ Cu
ℓ ∥π′(x)− π(x)∥+ γ(Jπ(fπ′(x))− Jπ(fπ(x))) + γ(Jπ′(fπ′(x))− Jπ(fπ′(x)))

≤ Cu
ℓ Cπζ + γCJπC

u
f Cπζ + γ(Jπ′(fπ′(x))− Jπ(fπ′(x))) (by Lemma 1)

≤ Cπ(
Cu
ℓ + γCJπC

u
f

1− γ
)ζ.
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