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ABSTRACT

This paper studies the effects of damping and stiffness feedback
loop latencies on closed-loop system stability and performance.
Phase margin stability analysis, step response performance and
tracking accuracy are respectively simulated for a rigid actuator
with impedance control. Both system stability and tracking per-
formance are more sensitive to damping feedback than stiffness
feedback latencies. Several comparative tests are simulated and
experimentally implemented on a real-world actuator to verify
our conclusion. This discrepancy in sensitivity motivates the ne-
cessity of implementing embedded damping, in which damping
feedback is implemented locally at the low level joint controller.
A direct benefit of this distributed impedance control strategy is
the enhancement of closed-loop system stability. Using this strat-
egy, feedback effort and thus closed-loop actuator impedance
may be increased beyond the levels possible for a monolithic
impedance controller. High impedance is desirable to minimize
tracking error in the presence of disturbances. Specially, trajec-
tory tracking accuracy is tested by a fast swing and a slow stance
motion of a knee joint emulating NASA-JSC’s Valkyrie legged
robot. When damping latencies are lowered beyond stiffness la-
tencies, gravitational disturbance is rejected, thus demonstrat-
ing the accurate tracking performance enabled by a distributed
impedance controller.

INTRODUCTION

In recent years, robotic task complexity has grown significantly.
As one example, the disaster caused by the nuclear reactor melt-
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FIGURE 1. Hypothetical Robot with a Distributed Controller.
Many highly articulated robots today use embedded systems collocated
at each actuator to perform joint control. Reference trajectories are often
passed from a central high-level controller to the distributed low-level
controllers. The low-level controllers lack complete system knowledge,
but are able to operate with extremely low delay compared to the high-
level controller. This reduction in delay can benefit the closed-loop sta-
bility for high impedance joint control as explored in this paper.

down of the Fukushima Daiichi power plant necessitated mobile
robots be deployed to survey damage and assess danger levels
[1]. However, simple tracked robots were the only available op-
tion, limiting the robotic capability to surveillance of areas acces-
sible to a tracked, tethered vehicle. In response to this disaster,
the United States DARPA research agency sponsored a competi-
tion, named the DARPA Robotics Challenge or DRC, requiring
robots to be built to enter degraded human environments such
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as damaged nuclear reactor plants and actively perform tasks
to mitigate damage and threat to human life [2]. The require-
ments for this competition spawned a number of complex robot
designs which were intended to approach human levels of dex-
terity and strength, in order to improve surveillance coverage and
enable proactive action by future robotic rescue workers. The in-
crease in task complexity has therefore increased the complexity
of robots designed to perform these tasks. For example, Valkyrie,
NASA-JSC’s entry into the DRC is a humanoid robot with 44 ac-
tuated Degrees-Of-Freedom (DOFs) [3].

As a result of this increased robot complexity and in contrast
to many older, more conventional robots, new approaches have
been required for communicating with and controlling so many
coupled and coordinated actuators. Often, these communication
approaches manifest themselves in a hierarchical control frame-
work where a multi-joint controller delegates tasks to subordi-
nate single-joint controllers (see Figure 1.) These single-joint
controllers are often embedded directly into the robot’s joints,
collocating them with the actuation hardware. As a result, com-
munication between actuator and the single-joint controller can
occur a very high rates, while communication between single-
and multi-joint controllers occurs more slowly (up to 10s of mil-
liseconds).

Because of this separation of controllers, it is important to con-
sider where, physically, a controller is being run when designing
the closed-loop system. In this paper, we consider this physi-
cal separation of control, which we represent as a discrepancy
in feedback latency seen by each type (multi- or single-joint)
of controller. We therefore study the effect this latency has on
the closed-loop system performance. We find that feedback re-
lating to joint velocity is far more sensitive to latency than is
stiffness feedback. This discovery motivates the idea of em-
bedded damping, a control approach where damping feedback
is implemented locally at the single-joint level while stiffness
feedback occurs at the multi-joint level. The benefit of this
split proportional-derivative impedance control approach over a
monolithic impedance controller implemented at the multi-joint
level is increased control loop stability due to the reduced damp-
ing feedback latency. As a direct result of this increased stability,
feedback effort and thus closed-loop actuator impedance may be
increased beyond the levels possible for a monolithic impedance
controller. High impedance is desirable to minimize tracking er-
ror in the presence of disturbances.

While we propose implementing damping feedback at the joint
level, we argue that it is beneficial to maintain stiffness feedback
at the multi-joint level. The reasons for separation are two-fold.
First, as we show in Section 2, closed-loop stability is far less
dependent on stiffness latency than damping latency. Second,
a richer assortment of control methods are made available by
making the multi-joint controller aware of joint positions. For

FIGURE 2. Actuator and Control Plant Model. This diagram rep-
resents a generalization of rigid actuators considered in this paper. FM is
the applied motor force, x is the load displacement output, m is effective
output inertia, b is the actuator’s passive damping, and Fd is an external
disturbance force.

example, consider the case where joint-level controllers possess
a full impedance controller and desired positions are passed to
them from a multi-joint controller. For Cartesian position con-
trol of the end-effector the multi-joint controller must perform
an inverse kinematic transformation from Cartesian space to joint
space. Such a transformation is possible in some simple cases,
such as in non-redundant robots. However, as the topology and
number of tasks becomes more complex, obtaining absolute joint
positions from a collection of desired task output positions be-
comes more difficult.

This problem has been solved using inverse kinematic Carte-
sian controllers [4] which use Jacobians to convert sensed Carte-
sian error into desired joint velocities. Such approaches require
knowledge of end effector position at the multi-joint level which
can be found using knowledge of individual joint positions.

The above example considers a goal of tracking end effector po-
sition, but a similar argument holds true for Cartesian impedance
control goals. A Cartesian impedance control law implemented
at the multi-joint level can be represented the summation of a
proportional term and a derivative term based on Cartesian po-
sitions and generates a desired Cartesian force. This Cartesian
force can then be translated into joint torques using the well-
known Jacobians transpose relation. However, if directly imple-
mented at the multi-joint level, the multi-joint controller requires
the Cartesian velocity (derivative) variable. Because of this, the
velocity data spans the multi-single joint domains and thus incurs
large latencies, reducing stable gain magnitudes.

Following our proposed approach, we instead suggest imple-
menting the proportional term at the multi-joint level and the
derivative term at the single-joint level. As a result, feature-rich
controllers are enabled by incorporating stiffness feedback at the
multi-joint level while high gains are maintained by minimizing
damping feedback latencies.
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FIGURE 3. Distributed Control Structure with Separate Stiffness and Damping Servos. A simple proportional-derivative control law is used to
control an actuator. P denotes the actuator plant with motor current input, iM , and position output, x. β−1 represents a scaling constant mapping the
desired force, FD, to the motor current, iM . K is the stiffness feedback gain while B is the damping feedback gain. The damping feedback loop is labeled
as embedded to emphasize that it is meant to be locally implemented to take advantage of high servo rates. On the other hand the stiffness feedback is
implemented in a high-level computational process close to external sensors, for instance. An external disturbance is denoted as Fd inserted between
the controller and plant block as suggested by [5]. This disturbance is used to model load gravity in Section 3. Here, no force feedback is employed.

RELATED WORK

The effects of latency have often been studied recent years, espe-
cially in the work of regarding PID controller tuning [6, 7, 8, 9].
More recent work in this area also addresses velocity filtering,
but assumes that an integral control parameter is available, thus
making the work less directly applicable to impedance control
scenarios [10].

The haptics community has also considered delay and filtering
issues in impedance feedback control systems. Due to the desta-
bilizing effects of these practical phenomena, significant effort
has been put forth in ensuring systems are stable by restricting
them to meet passivity criteria [11]. Other work relaxes these
constraints and simply study how delay and filtering affects a true
or false stability criteria [12, 13, 14, 15]. Detailed work has also
been performed considering additional real-world effects such as
quantization and coulomb friction on system stability [16].

In contrast to the aforementioned work, the work presented here
considers the special case where delay between stiffness feed-
back and damping feedback is different. By testing phase margin
based stability, step response and tracking accuracy, we verify
that system stability and performance are insensitive to stiffness
feedback delays compared with its damping feedback delays.
Moreover, this scenario not only offers insight into impedance
controller sensitivity, but also may be leveraged on many practi-
cal systems to improve disturbance rejection by increasing gains
without compromising overall controller capability. As such, we
expect these findings to be immediately useful on many complex
robotic systems such as humanoid robotics among others.

Our long term goal is to design an unified decentralized cas-

caded control structure [17] applicable to humanoid robots. Cas-
caded control is not only capable of analyzing multiple feed-
back loops in a unified manner [18], but also is effective in re-
ducing the number of system variables. This will play impor-
tant roles in reducing the complexity of multiple-input multiple-
output (MIMO) control systems. Finally, we aim at maximizing
the impedance range of legged robots based on the constraints
of feedback loop latencies, signal filtering and inherent system
properties.

1 DISTRIBUTED IMPEDANCE CONTROL STRUC-
TURE

Rigid actuators can be approximately modeled as a force acting
on a viscous inertia (Figure 2),

P(s) =
x(s)

FM(s)
=

1
ms2 +bs

. (1)

Considering a current controlled motor, motor force (FM) may be
mapped into motor current (iM) using

β =
FM

iM
= ηNkτ . (2)
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FIGURE 4. Simulation of Phase Margin Sensitivity to Stiffness
and Damping Feedback Delays. Figures here show the phase margin
sensitivity results with respect to a set of stiffness and damping feedback
delays. The blue shaded region corresponds to a desired area where sys-
tems exhibit a non-oscillatory step response. It has a threshold phase
margin of 50◦ [19]. The red lines with square markers in both figures
are a reference line (i.e., Ts = Td = 3 ms). Ts or Td varies 1 ms each time.
It can be seen that phase margin is more sensitive, i.e., larger variation,
to damping feedback delays. Other system parameters include: filter
cut-off frequency fv = 50Hz, passive system mass m = 256 kg, passive
damping b = 1250 Ns/m and damping ratio ζd = 1.

Then, the control plant from iM to x is

P(s) =
x(s)

FM(s)
FM(s)
iM(s)

=
x(s)

iM(s)
=

β
ms2 +bs

. (3)

Figure 3 shows a typical impedance control block including
damping feedback filtering (Qvs), stiffness feedback delay (Ts),

damping feedback delay (Td), stiffness feedback gain (K) and
damping feedback gain (B). For such a control structure, desired
motor force (FD) is calculated as

FD(s) = K(xD − e−Tssx)+B(xDs− e−TdsQvxs), (4)

where xD and ẋD (i.e., xDs) are the desired position and velocity
respectively, and FM = FD +Fd where Fd is a disturbance force.
e−Tss and e−Tds represent time delay (i.e., latency) in the stiff-
ness and damping feedback loop, respectively. In this paper, we
assume the terminology ”stiffness” is same as ”position” or ”pro-
portional” while ”damping” is same as ”velocity” or ”derivative”.
Using P(s) in Equation (3), we can find the closed-loop transfer
function PCL(s) from desired position (xD) to load position (x)

PCL(s) =
x(s)

xD(s)
=

Bs+K
ms2 +(b+ e−TdsBQv)s+ e−TssK

, (5)

where Qv is a first order low pass filter with cut-off frequency fv

Qv(s) =
2π fv

s+2π fv
. (6)

The transfer function PCL(s) has a third order due to Qv being
a first order transfer function. This transfer function is similar
to the one used in [19], except the difference in stiffness and
damping feedback delays.

The main focus of this paper is to analyze the quantitative sta-
bility (i.e, using phase margins as a metric) and tracking perfor-
mance of this closed-loop system with an emphasis on the im-
pact of the various feedback delays, Ts and Td . To this end, we
will demonstrate how crucial it is to minimize damping feedback
delay in terms of system stability, step response and tracking ac-
curacy.

Before studying system sensitivity to various delays, we first de-
sign a gain selection criterion based on the denominator charac-
teristic polynomial of Equation (5). In selecting gains, we disre-
gard the filtering and feedback delay terms. A critically-damped
step response ζ = 1 is chosen as the desired performance. Com-
paring with a standard second order characteristic polynomial
s2 + 2ζ ωns+ω2

n , we have the following critically-damped gain
equations:

4 Copyright © 2014 by ASME

Downloaded From: http://asmedl.org/ on 05/21/2015 Terms of Use: http://asme.org/terms



FIGURE 5. Simulation of Step Response With and Without Embedded Damping. Compared with figure (a), figure (d) has an embedded damping
term with loop delay Td = 1 ms. The phase margin is largely improved and most of the points remain within the blue region (> 50◦ phase margin).
Phase margin insensitivity to stiffness feedback delays is also verified in (a) and (d). Step responses are illustrated in the remaining subfigures. As
shown in figure (b), system response starts to show undesired oscillation at fn = 4.8 Hz and almost sustained oscillation at fn = 6 Hz. At frequency
higher than fn = 6 Hz, the system becomes unstable. If we increase the stiffness feedback delay to 15ms in subfigure (c), the step response is almost
identical with a slight distortion. In the embedded damping case, the system appears to be critically-damped until fn = 12 Hz in subfigure (e). When
we increase the stiffness feedback delay to 15 ms in subfigure (f), the system responses from 7.2 Hz to 12 Hz show an overshoot but converge to steady
state within 0.2 seconds. Comparing subfigures (b) and (e), we can conclude that lowering damping feedback delay is more dominant in affecting
system performance, although lowering stiffness feedback delay gives the benefit to some degree.

K = mω2
n ,

B = 2ζ
√

mK −b,(ζ = 1)

fn =
ωn

2π
=

1
2π

�
K
m
. (7)

The natural frequency ( fn) has a monotonic relationship with our
controller gains. Note that, the main purpose of this gain selec-
tion rule is to make K and B dependent on each other, as is done
in [19]. Critically-damped performance can not be guaranteed
due to feedback delay and signal filtering. On the contrary, as
we show in the following section, a phase margin based method
can be used to study how the complete system reacts to signal
filtering and feedback delay.

2 PHASE MARGIN SENSITIVITY COMPARISON

In this section, the utility of embedded damping (i.e., small
damping feedback delay) is demonstrated by the study of phase
margin and step response sensitivity with respect to stiffness and
damping feedback delays. The transfer function used in this sec-
tion is PCL(s) in Equation (5). First, the phase margin sensitivity
is studied by two delay sampling ranges: one is small range with
1− 5 ms in Figure 4 while the other one is 5− 25 ms in Figure
5 (a) and (d). These delays roughly correspond to those found in
highly complex robots due to contributions from low level actu-
ation, sensing layers and high level planning and control layers
[3]. The results show that the phase margin is more sensitive to
the damping feedback delay Td compared with its stiffness coun-
terpart Ts. When faced with the choice of lowering either Ts or Td ,
based on the results shown in Figure 5, it is evident that Td is far
more sensitive to increased delay and thus should be minimized
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with high priority.

Several observations are taken from the results shown in Figure
5. First, reducing the damping feedback delay plays a dominant
role in improving the system phase margin and step response
performance. Comparing Figure 5 (a) and (d), the damping feed-
back delay reduction boosts phase margin dramatically. This also
can be verified by the second subfigure in Figure 4. The step re-
sponses in Figure 5 (b) and (e) (or (c) and (f)) show that reducing
Td from 15 ms to 1 ms dramatically reduces oscillation for the
same natural frequency fn. These results emphasize the signif-
icance of implementing the damping term at the fastest control
loop to keep the damping feedback delay as small as possible.

Second, the phase margin and step response are insensitive to
stiffness feedback delays. Phase margin values in either Fig-
ure 5 (a) or (d) vary within a relatively small region when only
Ts varies. Trivial variations of step responses to Ts also can be
checked by comparing Figure 5 (b) and (c) (or (e) and (f)) re-
spectively.

Third, Figure 4 (a) and Figure 5 (a) seem to indicate that increas-
ing Ts actually increases the phase margin for some values of fn.
This is counterintuitive. To confirm this observation we obtain a
Nichols diagram [5] from the open-loop transfer function. Equa-
tion (5) can be rewritten as

PCL(s) =
Bs+K

ms2+bs

1+ e−Td sBQvs+e−TssK
ms2+bs

=

Bs+K
ms2+bs

1+POL(s)
, (8)

where POL(s) � P(s)H(s) is the open loop transfer function ac-
cording to [5], P(s) is the system’s plant, and H(s) is the so-
called feedback transfer function. Thus, we have

POL(s) =
e−TdsBQvs+ e−TssK

ms2 +bs
. (9)

Using this POL(s), the Nichols diagram is shown in Figure 6. The
top diagram confirms this inconsistency because the curves flip
at the value of 0 dB.

3 EVALUATION OF DISTRIBUTED CONTROLLER UN-
DER DISTURBANCES

This section presents a case study of tracking performance of
a humanoid robot knee joint when experiencing two different
external gravitational disturbances. We present this study as a
means of demonstrating how the implementation of an embed-
ded damping term may benefit system level performance.
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FIGURE 6. Nichols Diagrams to Varying Feedback Delays. The
open loop transfer function POL(s) is used to generate the Nichols di-
agrams. Comparing these two subfigures, we can conclude that phase
margin doesn’t have a consistent relationship with stiffness feedback de-
lays.

First, two sets of knee joint trajectories are generated by a
multiple-step walking motion planner [20]. Here, we emulate
two legged robot scenarios: one is a fast leg swing motion with
a small load (e.g., shank load) while the second is a slow leg
stance motion with a large upper body load (i.e., effective whole
body load on knee). In this simulation, it is assumed that the fast
motion has a peak angular velocity θ̇max = 6 m/s while the slow
trajectory has θ̇max = 2.5 rad/s. These two types of trajectories
are applied to simulations of NASA-JSC’s Valkyrie robot knee
actuator using the configurations shown Table 1.

The external gravity load is modeled as a constant disturbance
Fd . Thus, the desired command becomes
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FIGURE 7. Simulation of Stiffness and Damping Feedback Delay Tolerance of Valkyrie Joint Tracking under Disturbance. Subfigure (a)
shows an ideal tracking case when both stiffness and damping feedback delays are 0.2 ms. In Valkyrie, feedback delay at low-level is around 0.2 ms.
When no disturbance is applied, the blue measured data accurately tracks the red desired data. When a disturbance force Fd is applied (black line),
position tracking shows a sustained offset while velocity tracking maintains accurate tracking with a slight error by inspection. In subfigures (b) and
(c), we verify how large stiffness or damping feedback delays the system can tolerate before going unstable. Subfigure (b) shows that system remains
stable until Ts = 15 ms when Td = 0.2 ms. However, in subfigure (c), system already becomes marginally stable when Td increases to 3.5 ms. These
results validate our conclusion in Section 2 that system stability is more sensitive to damping feedback delays than stiffness feedback delays. Note
that we could further reduce the offset error in position tracking by increasing controller gains. In that case, small oscillations will show up along the
trajectory.

TABLE 1. Valkyrie Knee Actuator Parameters

Parameters Swing Phase Stance Phase

Stiffness Delay Ts 15 ms 15 ms

Damping Delay Td 0.2 ms 0.2 ms

Disturbance Force Fd 2000 N 8000 N

Maximum Joint Speed θmax 6 rad/s 2.5 rad/s

FD = mẍ+bẋ−Fd . (10)

Note that Fd is a linear force mapped from the torque due to grav-
ity. In fact, there could be other types of disturbances, such as
external impact force. Our case only considers the gravity term
since it is a dominant factor that we found critically influences
Valkyrie’s locomotion stability and performance during our in-
volvement in the DARPA Robotics Challenge Trials 2013.

We can derive the disturbance transfer function from Figure 3

Pd(s) =
x(s)

Fd(s)
=

1
ms2 +(b+ e−TdsBQv)s+ e−TssK

, (11)

which has the same denominator characteristic polynomial as
Equation (5). Thus, the critically-damped gain selection rule also
applies to the disturbance case. Although the non-zero property
will change the transient dynamics to some degree, the inherent
system property remains invariant in terms of stability. As shown
in Equation (11), given a constant Fd , the higher controller gains
are, the smaller x is, meaning the influence on the output position
is reduced. Namely, higher K and B increases actuator stiffness
and reduces the position error induced by disturbances. Thus, our
strategy for disturbance rejection is to implement high controller
gains as much as possible while obeying the critically-damped
selection rule. The gravitational load is taken as a disturbance
instead of compensating for it in a feedforward manner.

We first evaluate a moderate speed joint motion with a very large
inertia and heavy gravitational load induced by the whole-body
weight. Valkyrie has an effective weight of 1300 N on the knee
and a thigh length of 0.37 m. When the knee flexes 25◦, the grav-
ity torque on the knee is approximately τg = mc · g · lc · sinθk ≈
1300 ∗ 0.37 ∗ sin(0.43) = 200 Nm where mc is the mass of the
whole body, gravity acceleration constant g = 9.8 m/s2, the dis-
tance between the whole body center of mass and the knee joint
axis is lc = 0.37 m and the bent knee angle θk = 25◦. Since the
knee lever arm r ≈ 0.025 m, Fd = τg/r = 200/0.025 = 8000 N,
which is the disturbance force in stance phase of Table 1. Sim-
ilarly, three different scenarios are simulated in Figure 7. Note
that, the radius r should be joint angle dependent but vary within
a small range. Thus, we assume it to be constant for simplicity.

We then evaluate a fast joint motion with a relatively small in-
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FIGURE 8. Step Response Experiment with Distributed Controller. Subfigures (a) through (d) show various implementations on the UT linear
rigid actuator above of the simulations depicted on Figure 5. Overlapped with the data plots, exact simulations of the experiments are also shown. The
experiments not only confirm the higher sensitivity of the actuator to damping than to stiffness delays but also indicate a good correlation between the
real actuator and the simulations.

ertia, emulating knee action on Valkyrie’s leg during swinging
motion. To simulate this scenario, the leg’s shank parameters
is used to estimate the gravity torque, τg = ms · g · ls · sinθk ≈
20 ·9.8 ·0.25 · sin(1.57) = 50 Nm where the mass of the shank is
ms = 20 kg, gravity acceleration constant g = 9.8 m/s2, the dis-
tance between the shank’s center of mass and the knee joint axis
is ls = 0.25 m and the fully bent knee angle θk = 1.57 rad. Thus
the estimated linear force Fd = 50/0.025 = 2000 N. This value
corresponds to the disturbance force in swing phase of Table 1.
Based on this Fd and feedback delays in Table 1, we carry out
simulations for three different cases in Figure 9.

4 EXPERIMENTAL VALIDATION

This section provides experimental results that validate our theo-
retical and simulation results. Step responses with different feed-
back delays are implemented on the actuator in Figure 8. They
validate transient dynamics and stability sensitivity to stiffness
and damping feedback delays. The results in Figure 8 show a
close match between simulations and experiments. For consis-
tency, the experiment uses the same stiffness and damping feed-
back delays that are used in Figure 5. In the quasi-critically
damped cases, the experiments and simulations achieve almost
identical results. In the underdamped cases, the experimental

results show less oscillation compared to the simulations. This
discrepancy may be caused by Coulomb friction and unmodeled
drive train dynamics. We also tested the step response with a 2.25
kg weight. However, this extra weight aggravated the influence
of a small amount of backlash, which deteriorated the tracking
performance dramatically.

5 DISCUSSION AND CONCLUSION

There are several directions we intend to explore in future work.
First, we plan to implement more simulation scenarios presented
on the rigid actuator hardware platform in Figure 8. Second,
in Figure 3, we have not yet added a feedforward acceleration
term to commanded force FD. However, preliminary simulation
results show that this acceleration contributes little to the track-
ing accuracy due to its extremely small value compared to the
proportional-derivative terms. It is because our strategy is to
maximize impedance gains for high stiffness performance and
the commanded force heavily relies on feedback control instead
of the model based feedforward term. Thus, impedance control
dominates the value of FD. In the future we will study more
about the model-based control where control effort will con-
tribute more from feedforward terms. Third, we are exploring
the critically-damped gain selection rule for series elastic actu-
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Column III: Real Case 2
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FIGURE 9. Simulation of Fast Swing Joint Tracking With/Without Embedded Damping and Disturbance. In this figure, each column repre-
sents a specific case in terms of feedback delays and gravitational disturbance. Column I: when feedback delays are small, the position and velocity
tracking are quite accurate. Position tracking shows around 1◦ peak error while velocity tracking has 2.5 rad/s peak error. As a result, the 2000 N
gravitational disturbance does not largely deteriorate the tracking performance. Column II: when feedback delay Ts = 15 ms, Td = 0.2 ms is consid-
ered, both position and velocity tracking errors dramatically increase. Column III: this case has both Ts = 15 ms, Td = 0.2 ms feedback delays and
2000 N gravitational disturbance. As figure shows, the tracking accuracy is similar to that in Column II. This means our controller can tolerate large
gravitational disturbance with small errors if high controller gains (i.e., high fn) are employed. Comparing Columns I and II, we conclude that feedback
delays play dominant roles in position and velocity tracking accuracy. This is consistent with our conclusion on delays in Section 2.

ators (SEA) with inner torque feedback loop. Then the system
will become a fourth order system with feedback delays and fil-
tering. We plan to characterize that system by a multiplication
of two standard second order systems. Fourth, we are also tar-
geting to find an SEA optimal analytical relationship between
fnmax = f ( fp,Kx,Kτ ,Tx,Tτ , fv) where fnmax represents the maxi-
mum natural frequency which guarantees critically-damped re-
sponse, fp is passive corner frequency. Kx and Kτ are the gain
sets for stiffness feedback and torque loop, respectively. Tx and
Tτ are the stiffness and torque feedback delays, respectively. A
sampling based optimization algorithm could be implemented to
achieve the maximum impedance range (i.e., Z-width).

In this paper, the effects of stiffness and damping feedback laten-
cies on closed-loop system stability are demonstrated by study-

ing phase margin based stability, step response performance and
tracking accuracy. Our simulations are tested based on a rigid ac-
tuator with an impedance controller. We verify that system stabil-
ity and performance are more sensitive to the damping feedback
delays than stiffness feedback delay. Trajectory tracking accu-
racy with gravitational disturbance is tested by emulating a fast
swing and a slow stance motion of NASA-JSC’s Valkyrie legged
robot. The experimental results validate the high sensitivity of
damping feedback delays and the significance of implementing
embedded damping.
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