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As robots move from the laboratory into the real world, motion planning will need to
account for model uncertainty and risk. For robot motions involving intermittent contact,
planning for uncertainty in contact is especially important, as failure to successfully make
and maintain contact can be catastrophic. Here, we model uncertainty in terrain geometry
and friction characteristics, and combine a risk-sensitive objective with chance constraints
to provide a trade-off between robustness to uncertainty and constraint satisfaction with
an arbitrarily high feasibility guarantee. We evaluate our approach in two simple examples:
a push-block system for benchmarking and a single-legged hopper. We demonstrate that
chance constraints alone produce trajectories similar to those produced using strict
complementarity constraints; however, when equipped with a robust objective, we
show the chance constraints can mediate a trade-off between robustness to
uncertainty and strict constraint satisfaction. Thus, our study may represent an
important step towards reasoning about contact uncertainty in motion planning.

Keywords: trajectory optimization, chance constraints, robust motion planning, planning with contact,
complementarity constraints

1 INTRODUCTION

As robots move into the real world, accounting for model uncertainty and risk in motion planning
will become increasingly important. While model-based planning and control has demonstrated
success in designing and executing dynamic motion plans for robots in a variety of tasks in the
laboratory (Mordatch et al., 2012; Dai et al., 2014; Winkler et al., 2018; Patel et al., 2019), real world
environments are difficult or intractable to precisely model, and as such the resulting motion plans
could be prone to failure due to modeling errors. Planning for uncertainty and risk is especially
important when the task involves intermittent contact, as incorrectly modeling friction can cause
robots to drop and break objects or slip and fall, and incorrectly modeling contact geometry can
cause mobile robots to trip and fall or collide with obstacles. While decent controller design can
mitigate the effects of small modeling errors and disturbances (Toussaint et al., 2014; Gazar et al.,
2020), incorporating uncertainty and risk into planning can help improve performance by generating
reference trajectories that have a high success rate for execution.

Trajectory optimization (TO) is powerful for planning continuous dynamic motions that obey
constraints such as actuation limits, obstacle avoidance, and contact dynamics (Dai and Tedrake,
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2012; Dai et al., 2014; Posa et al., 2014; Mordatch et al., 2015;
Kuindersma et al., 2016; Carius et al., 2018; Yeganegi et al., 2019;
Gazar et al., 2020). While the optimal strategies produced by TO
typically lie on the boundary of the feasible region, recent works
have begun to incorporate risk and uncertainty to improve the
robustness of the planned motion. Uncertainty about the state or
dynamics can be accounted for by an expected exponential
transformation of the cost, resulting in risk-sensitive TO
(Farshidian and Buchli, 2015; Ponton et al., 2018).
Alternatively, uncertainty about the constraints has been
approached by defining failure probabilities and optimizing for
motion plans that do not exceed some user-defined total failure
probability (Hackett et al., 2020; Shirai et al., 2020). Planning
under contact uncertainty, however, has only recently begun to be
investigated. One recent work developed a risk-sensitive cost term
to plan for uncertainty in the contact model for systems with
intermittent contact (Drnach and Zhao, 2021). However, while
the robust cost formulation for uncertainty in contact produced
robust trajectories, it also produced infeasible motion plans at
high uncertainty, including setting friction forces to zero during
sliding and allowing for positive contact reactions at nonzero
contact distance.

In this work, we explicitly investigate uncertainty resulting
from the terrain contact parameters and develop a method for
trading off between motion feasibility and robustness. In contrast
to the previous work (Drnach and Zhao, 2021), which controlled
robustness only by varying the uncertainty, we aim to achieve a
tradeoff at fixed uncertainty by introducing tunable risk
parameters. Specifically, we:

• Design chance constraints for contact with uncertainty in
contact distance and friction coefficient.

• Provide a risk-bounded interpretation to the relaxed chance
complementarity constraints.

• Demonstrate that chance constraints, combined with a
contact-sensitive objective, can control the trade-off
between robustness to contact uncertainty and contact
constraint satisfaction at fixed values of uncertainty.

2 RELATED WORK

2.1 Contact-Robust Trajectory Optimization
Planning motions for robots with intermittent contact can be
achieved through either hybrid (Dai and Tedrake, 2012; Dai et al.,
2014) or contact-implicit TO (Mordatch et al., 2012; Posa et al.,
2014; Patel et al., 2019). In the hybrid case, contact is modeled by
specifying end-effector location at contact and defining
constrained dynamics for each mode. Robustness to contact
uncertainty has been studied by sampling contact locations
and minimizing an expected cost (Dai and Tedrake, 2012;
Seyde et al., 2019), by using Bayesian optimization to learn a
robust cost function (Yeganegi et al., 2019), and by constraining
the risk of slipping (Shirai et al., 2020). However, developing
general methods for contact uncertainty is difficult within the

hybrid optimization framework as contact conditions are
specified in the dynamical modes.

In contrast, contact-implicit methods specify contact through
a complementarity model which includes the nearest contact
distance and friction coefficient (Stewart and Trinkle, 1996; Posa
et al., 2014), and thus may provide a natural avenue for
representing and planning for uncertainty in contact. Despite
this potential, there have been few works exploring contact
uncertainty within the contact-implicit framework. In
(Mordatch et al., 2015), contact point locations were sampled
and an expected cost was minimized to produce robust motions.
Recently, uncertainty in contact was modeled using probabilistic
residual functions, and the expected residual was added to the
cost to produce contact-sensitive trajectories (Drnach and Zhao,
2021), at the expense of producing potentially infeasible
trajectories as uncertainty increased.

2.2 Chance Constraints
To trade-off between robustness and constraint satisfaction,
chance constraints can be added to an optimization problem
to enforce a probabilistic version of the uncertain constraints
(Mesbah, 2016; Celik et al., 2019; Paulson et al., 2020). Chance
constraints model uncertainty by defining a probability of
constraint satisfaction, which can be tuned to enforce a
conservative constraint or to relax the constraint. Previous
works have achieved robust vehicle trajectory planning under
obstacle (Blackmore et al., 2011) and agent (Wang et al., 2020)
uncertainty using chance constraints. Chance constraints have
also been applied to robot locomotion to increase the likelihood
of avoiding collision with obstacles in uncertain locations (Gazar
et al., 2020), or to model slipping risk due to errors in the friction
model (Brandão et al., 2016; Shirai et al., 2020). In contrast to
collision avoidance, intermittent contact with the environment is
required for robot locomotion, and while chance constraints have
been applied to parts of the contact problem, they have yet to be
applied to the full complementarity constraints for contact. Here,
we investigate if chance constraints can trade-off between
constraint satisfaction and robustness under contact
uncertainty by combining them with our previously developed
robust objectives (Drnach and Zhao, 2021).

3 PROBLEM FORMULATION

In this section, we present a robust contact-implicit TO with both
contact-robust costs and chance constraints to provide
robustness to contact uncertainties while maintaining the
feasibility of physical contact models.

3.1 Contact-Implicit Trajectory Optimization
Planning robot motions that are subject to contact reaction forces
can be achieved through contact-implicit TO (Posa et al., 2014).
The traditional problem solves for generalized positions q,
velocities v, controls u, and contact forces λ through a
discretized optimal control problem:
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min
h,q,v,u,λ,γ

∑K−1
k�0

hkL xk, uk, λk( ) (1a)

s.t.

x0 � x(0), xK � x(Tf) (1b)
M(vk+1 − vk) + C � Buk+1 + J⊤c λk+1 (1c)
0≤ λN,k+1 ⊥ ϕ(qk+1)≥ 0 (1d)
0≤ λT,k+1 ⊥ ck+1 + JTvk+1 ≥ 0 (1e)
0≤ ck+1 ⊥ μλN,k+1 − e⊤λT,k+1 ≥ 0 (1f )

∀k ∈ {0, . . . , K − 1}

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
where L is the running cost, hk is the timestep, x � (q, v) is the
state, Eq. 1b are boundary constraints,M is the generalized mass
matrix, C contains Coriolis and conservative force effects, B is the
control selection matrix, Jc is the contact Jacobian, λN and λT are
the normal and tangential contact reaction forces, ϕ is the contact
distance, c is a slack variable corresponding to the magnitude of
the sliding velocity, μ is the coefficient of friction, and e is a matrix
of 1s and 0s.

The contact Jacobian can be decomposed into normal and
tangential components, J⊤c � [J⊤N, J⊤T]. The normal component
J⊤N maps the normal reaction force at the contact point to the
generalized joint torques and is derived by projecting the contact
point Jacobian onto the surface normal at the nearest contact
point. The tangential component J⊤T maps the frictional forces at
the contact point to generalized torques, and is the projection of
the contact point Jacobian onto the plane tangent to the contact
surface at the nearest point of contact.

Eqs. 1d, f are complementarity constraints governing
intermittent contact with the environment, where the notation
0 ≤ a ⊥ b ≥ 0 represents the complementarity constraints a ≥ 0,
b ≥ 0, ab � 0. Eq. 1d enforces that normal contact reaction forces
are only imposed when the distance between the two objects is
zero. Likewise (1e) and (1f) govern the sticking and sliding phases
of friction; when in sliding (1f) forces the friction forces to the
edge of the friction cone and (1e) requires c and the
corresponding relative tangential velocities to be nonzero. In
sticking, however (1f) forces the variable c to zero and (1e)
requires the corresponding relative tangential velocity to also be
zero. We replaced the friction cone with a polyhedral
approximation (Stewart and Trinkle, 1996), denoted by the
use of the e in (1f), which contains only 1s and 0s, instead of
the use of the 2-norm, and we consider λT to be the non-negative
components of the friction force projected onto the polyhedron.
The polyhedral approximation presented here can readily extend
to the full three-dimensional case, although we do not study
three-dimensional contact in this work.

In general, the running cost is a function of all the decision
variables, including the timesteps, states, controls, and reaction
forces. However, in this work, we use a quadratic function of only
the states and controls:

L xk, uk, λk( ) � xk − x Tf( )( )⊤Q xk − x Tf( )( ) + u⊤
k Ruk.

where R is the weight matrix on the control effort and Q is the
weight matrix on the deviation from the final state. Our initial
cost design does not depend on the reaction forces λ, although
this is purely a design choice. Quadratic costs are common in the

optimal control literature (Posa et al., 2014; Kuindersma et al.,
2016; Patel et al., 2019), although other cost functions can be used,
such as the cost of transport (Posa et al., 2014).

Problem (1) is a mathematical program with equilibrium
constraints, a type of nonlinear program (NLP) that can be
difficult to solve. Two approaches to solve the problem
numerically using standard NLP solvers like SNOPT (Gill et al.,
2005) include relaxing the complementarity constraints ab ≤ ϵ
(Figure 1D) and solving the problem from progressively smaller
values of ϵ (Scholtes, 2001; Posa et al., 2014;Manchester et al., 2019),
and replacing the constraints with an exact penalty term ρab in the
cost, where ρ is chosen sufficiently large to drive the term ab to zero
(Baumrucker and Biegler, 2009; Patel et al., 2019). In this work, we
found that the choice to use either the ϵ-relaxation method or the
exact penaltymethodwas problem dependent.We also note that the
robust cost we use is a probabilistic variant of the penalty method.

3.2 Expected Residual Minimization
The complementarity constraints in (1) assume that perfect
information about the contact model is available. However, if
any of the model parameters are uncertain, the problem has
stochastic complementarity constraints (SCP) (Luo and Lu, 2013)
0 ≤ z ⊥ F(z, ω) ≥ 0, ω ∈ Ω where z is a deterministic variable, and
F(·) is a vector-valued stochastic function, and ω represents a
random variable on probability space (Ω,F ,P), with sample
space Ω, event space F , and probability distribution P.

Prior works on SCPs (Chen et al., 2009; Tassa and Todorov,
2010; Luo and Lu, 2013) commonly replace the complementarity
constraint with a residual function ψ that attains its roots when
the complementarity constraints are satisfied: ψ(z, F) � 05z ≥ 0,
F ≥ 0, zF � 0. Although this formulation is for scalars z and F, it
generalizes to the case when z and F are vectors by applying the
complementarity constraints and/or the residual function
elementwise. In the Expected Residual Minimization (ERM)
approach (Chen et al., 2009; Tassa and Todorov, 2010), the
expected squared residual is minimized:

min
z

E ψ z, F z,ω( )( )				 				2[ ] (2)

One advantage of the ERM is that its solutions have minimum
sensitivity to random variations in the parameters (Chen et al.,
2009).

Prior work using an ERM cost to plan for uncertainty in
contact resulted in solutions that were robust to variations in the
contact parameters (Drnach and Zhao, 2021). However, while the
ERMmethod produced robust trajectories, as contact uncertainty
increased, it also produced trajectories which were infeasible with
respect to the expected values of the constraints. In this work, we
use an ERM cost for Gaussian-distributed friction coefficient and
normal distance (Tassa and Todorov, 2010; Drnach and Zhao,
2021), and we add the ERM to the running cost as:

min
z�{x,u,λ}

∑K−1

k�0
L xk, uk, λk( ) + αE ψ zk, F zk,ω( )( )				 				2[ ]( ) (3)

where α is a penalty weighting factor selected to keep the ERM
cost a few orders of magnitude higher than the other cost terms,
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as in the penalty method. In (3), the variable zk and the function F
are generic decision variables and constraint functions,
respectively. In our work, we consider uncertainty in the
terrain geometry and in the friction coefficient separately. In
the case of uncertain terrain geometry, F is the normal distance
function ϕ(q) and z includes the normal forces λN. Likewise, in the
case of uncertainty in friction, F is the linearized friction cone in
(1f) and z includes the sliding velocity slack variable c.

3.3 Chance Complementarity Constraints
Chance constraints are another general method for encoding
uncertainty into constraints. Optimization with chance
constraints enforces that the constraint is satisfied to within
some user-specified probability, Pr(z ∈ Z)≥ 1 − θ, where Z is
the constraint set and θ is the specified probability of violation
(Figure 1C). In this as in other works, we assume that z is
Gaussian, z ∼ N (μz,Σ), and that the constraint is linear, Z �
{z|c⊤z≤ b} (Blackmore et al., 2011). In this case, we can write the
chance constraint using the error function erf (Celik et al., 2019):

Pr cTz≤ b( ) � 1
2

1 + erf
b − cTmz�����
2cTΣc

√( )( )≥ 1 − θ (4)

0 cTmz ≤ b −
�����
2cTΣc

√
erf−1 1 − 2θ( ) (5)

As erf−1 takes values in (−1, 1), Eq. 5 can represent either a
relaxed (θ > 0.5) or a conservative (θ < 0.5) constraint.

To complement the robust ERM approach, in this work we
investigate contact uncertainty by converting the stochastic
complementarity constraints to deterministic, chance
complementarity constraints. As with the Gaussian ERM, we
assume the complementarity function is normally distributed
F ∼ N (mF, σ2), and we place probabilistic requirements on the
components of the complementarity constraints Pr(F ≥ 0) ≥ 1 − β
and Pr(zF ≤ 0) ≥ 1 − θ. Assuming that z is a deterministic
variable, by Eq. 5 we have the following chance-
complementarity constraints:

z≥ 0, mF ≥ − �
2

√
σ erf−1 2β − 1( ), zmF ≤

− �
2

√
zσ erf−1 1 − 2θ( ) (6)

Remark 1. If either σ � 0 or β � θ � 0.5, then the chance
constraints recover the strict complementarity constraints.

Remark 2. If β � 0.5 and θ > 0.5, we recover a relaxed version of
the complementarity constraints (Figure 1E): z ≥ 0,mF ≥ 0, zmF ≤
ϵ where ϵ � − �

2
√

zσ erf−1(1 − 2θ)> 0.
Remark 3. If β ≥ 1 − θ, z > 0, the chance constraints relax the

complementarity constraints into a tube around the mean:

− �
2

√
σ erf−1 2β − 1( )≤mF ≤ − �

2
√

σ erf−1 1 − 2θ( ) (7)

Note that, in this case, the chance constraints provide
potentially asymmetric upper and lower bounds on the
constraint violation, as by assumption z > 0. For example, if
mF and z represent the normal distance and normal force, the
chance constraints provide upper and lower bounds for the
distance at which a non-zero normal force can be applied.

We also note that chance constraints cannot provide
robustness by making the complementarity constraints more
conservative, as the original constraints have an empty
interior. In contrast, previous works have used chance
constraints to achieve robustness to uncertainty by removing
part of the interior of the constraint set, making the constraint
more conservative (Gazar et al., 2020; Shirai et al., 2020). Chance
complementarity constraints, however, always provide a
relaxation of the original constraints, and give a probabilistic
interpretation to previous methods using relaxed constraints
(Manchester et al., 2019; Patel et al., 2019).

The chance complementarity constraints presented here
possess nonempty solution sets only when β > 1 − θ; however,
we note that not every choice of β and θ is recommended, as
choosing θ > 0.5 and β < 0.5 requires the mean value mF to be
strictly positive, whereas choosing θ < 0.5 forces the mean mF to
be strictly negative, both of which induce a bias into the
complementarity problem. Therefore, we recommend further
restricting the choice of parameter values to β, θ ≥ 0.5, as this
choice ensures the meanmF can be zero, but still allowsmF to take
on positive and negative values.

In this work, we apply the chance constraints to relax the
friction cone constraint (Eq. 1f) and the normal distance
constraint (Eq. 1d), assuming normal distributions over the
friction coefficient and the normal distance. We also include
the corresponding ERM cost to examine the effects of chance
constraints on the robustness of ERM solutions. We note that the
failure probabilities β, θ can also be interpreted as risk bounds
(Shirai et al., 2020). By varying these risk bounds, we examine the

FIGURE 1 | (A,B) Contact geometry of the hopper and block examples, respectively, with uncertainty in (A) terrain height and (B) friction coefficient. (C) Gaussian
distribution with meanm and standard deviation σ, where p(Z < z) � θ. (D) Relaxed complementarity constraint region for comparison with (E) chance complementarity
constraint feasible regions for different risk bounds. (F)Overlap between ERM costmap and chance relaxed feasible region at σ � 10. At high uncertainty, low ERM values
approach the positive mF axis and the chance constraint region widens around the non-negative z axis.
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tradeoff between strict feasibility under the expected value of the
constraint when β, θ � 0.5 and robustness to parameter variations
under the ERM cost when β, θ > 0.5.

3.4 Chance Constrained Contact Robust
Trajectory Optimization
In this work, we use both the ERM cost (Eq. 3) and the chance
constraints (Eq. 6) to model uncertainty in the contact
constraints of contact-implicit TO (Eq. 1). When applying our
methods to uncertainty in contact distance, our contact-robust
TO follows as:

min
h,q,v,u,λ,γ

∑K−1
k�0

hkL xk, uk, λk( ) + αE ψ λN,k, ϕ qk( )( )				 				2[ ] (8a)

s.t.

x0 � x(0), xK � x(Tf) (8b)
M(vk+1 − vk) + C � Buk+1 + J⊤c λk+1 (8c)
λN,k+1 ≥ 0, ϕ(qk+1)≥ − �

2
√

σ erf−1(2β − 1),
λN,k+1ϕ(qk+1)≤ − �

2
√

λN,k+1σ erf−1(1 − 2θ) (8d)
0≤ λT,k+1 ⊥ ck+1 + JTvk+1 ≥ 0 (8e)
0≤ ck+1 ⊥ μλN,k+1 − e⊤λT,k+1 ≥ 0 (8f )

∀k ∈ {0, . . . , K − 1}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Likewise, we can also apply the chance constraints and ERM

cost to the friction constraint to derive an optimization that is
robust against friction.

Throughout our work, we compare our contact-robust TO
against the standard contact-implicit TO in Eq. 1 and against a
contact-robust TO with the ERM cost only; that is, without the
chance constraints. Under contact distance uncertainty, the ERM-
only robust optimization is identical to Eq. 8a, except without the
chance distance constraint (Eq. 8d). Likewise, under friction
uncertainty the ERM-only robust optimization has only the
ERM cost for friction, and not the associated chance constraints.

3.5 Quantifying Feasibility
To quantify the feasibility of our solutions, we adopt a modified
merit function M(z) (Seyde et al., 2019):

M z( ) � 1
K

∑K−1
k�0

gEC,k z( )2 +min 0, gIC,k z( )( )2( ) (9)

where gEC are the equality constraints, gIC are the inequality
constraints, and z are the decision variables. Here, the merit score
only penalizes constraint violation, and provides a quantification of
the feasibility of the solutions. For the purposes of this study, we focus
solely on contact feasibility under the expected value of the uncertain
contact parameters, and apply the merit score to the friction cone
constraint (Eq. 1f) for frictional uncertainty and to the normal
distance constraint (Eq. 1d) for contact distance uncertainty.

4 SIMULATION EXPERIMENTS

We compared the chance-constrained risk-sensitive optimization
approach to the ERM-only risk-sensitive approach (Drnach and
Zhao, 2021) and the traditional non-robust optimization

approach in two experiments: a block sliding over a surface
with uncertain friction and a single-legged hopper robot
hopping over a flat terrain with uncertain height. All our
examples were implemented in Python 3 using Drake (Russ
Tedrake and the Drake Development Team, 2019) and solved
using SNOPT (Gill et al., 2005) to major optimality and feasibility
tolerances of 10–6. Unless otherwise noted, all of our robust and
chance-constrained problems were initialized with the reference,
non-robust solution, and we used the same value for uncertainty
σ in the ERM objective as in the chance-constraints. Our code is
available at https://github.com/GTLIDAR/
ChanceConstrainedRobustCITO.

4.1 Sliding Block With Uncertain Friction
Our first example is a planar 1 m, 1 kg cube sliding over a surface
with nonzero friction (Figure 1B). The state of the system x �
[pCoM, vCoM] includes the planar position and velocity of the center
of mass of the block, pCoM and vCoM respectively, and the control u
is a horizontal force applied at the center ofmass.We optimized for
a 1s trajectory, discretized with 101 knot points, to travel between
the initial state x0 � [0,0.5,0,0]⊤ and final state xN � [5,0.5,0,0]⊤. The
running cost had weight matrices R � 10 andQ � diag([1, 1, 1, 1]).
We first solved the optimization to a tolerance of 10–6 and then to
10–8; in this example, solving to the tighter tolerance improves the
visual quality of the solutions. In the reference trajectory, we used
friction coefficient μ � 0.5. For the uncertain cases, we assumed a
mean friction of �μ � 0.5 and tested under 5 uncertainties σ ∈ {0.01,
0.05, 0.10, 0.30, 1.00}. When including chance constraints, we
tested several combinations of the risk bounds θ, β ∈ {0.51, 0.6, 0.7,
0.8, 0.9} For completeness, we also tested the chance constraints
without the ERM cost for uncertainties σ ∈ {0.1, 1.0}.We quantified
the feasibility of ourmotion plans using themerit score (Eq. 9) with
the expected friction cone constraint (Eq. 1f), and we quantified the
robustness using themaximum sliding velocity, as a higher velocity
indicates less time in sliding.

We evaluated the performance of the non-robust reference
controls, the ERM controls, and the ERM with chance
constraints controls in open-loop time-stepping simulations
(Stewart and Trinkle, 1996). To evaluate the robustness, we
perturbed friction with 4 values uniformly spaced between μ �
0.3 and μ � 0.7 and evaluated the control performance as the
difference between the block position at 1s and the target position.
We quantified robustness as the range of final position errors under
all friction perturbations. We further evaluated the effect of the risk
bounds on performance by first testing the chance constraints across
a range of friction uncertainties with θ, β � 0.7. We also evaluated
the performance of the chance constraints at high uncertainty (σ �
1.0) by testing 9 combinations of β, θ ∈ {0.51, 0.7, 0.9}.

4.2 Single-Legged Hopper Over an
Uncertain Terrain
Our second example is a 2D single-legged hopper with collision
points at the toe and heel. The configuration q includes the planar
position (horizontal and vertical) of the base pCoM and the angles
of the hip θH, knee θK, and ankle θA; that is, q � [pCoM, θH, θK, θA].
Thus, the state vector is x � [q, _q], and the controls are the
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torques on the hip, knee, and ankle joints. In this example, the
hopper travels 4 m in 3 s starting and ending at rest with the base
1.5 m above the heel. We used 101 knot points and cost weights
R � diag([0.01, 0.01, 0.01]) and Q � diag([1, 10, 10, 100, 100, 1, 1,
1, 1, 1]).

We first solved for the reference trajectory using the exact
penalty cost method to enforce the complementarity constraints
for contact (Baumrucker and Biegler, 2009; Patel et al., 2019), and
we initialized the reference optimization by linearly interpolating
between the start and goal states. In our experiments with
uncertainty, we assumed known friction coefficient μ � 0.5 and
uncertain terrain height with expected distance between initial
hopper base height and terrain of 1.5 m. We tested the ERM and
ERM with chance constraints approaches under 6 uncertainties
roughly logarithmically spaced between σ � 0.001 and σ � 0.5 m.
To more effectively utilize the ERM cost at high uncertainty, we
scaled the normal distance by 10 during optimization, expressing
the distance and its uncertainty in decimeters. At each uncertainty
level, we tested 5 values of the chance parameters, θ ∈ {0.51, 0.60,
0.70, 0.80, 0.90}, with β � 0.5 in all cases to ensure no ground
penetration. Note that when we apply chance constraints, we do
not apply any other relaxation to the complementarity constraints.
Instead, we use the strictly feasible solution from our progressive
tightening procedure to warm-start the optimization with chance
constraints. We quantified the feasibility of the hopping motion
plans using the merit score (Eq. 9) and the distance constraint (Eq.
1d). We used average foot height to quantify robustness, as higher
foot heights indicate the hopper is less likely to trip over unexpected
variations in ground height.

5 RESULTS

5.1 Chance Constraints Improve Friction
Feasibility Under High Uncertainty
In the sliding block example, optimizing under moderate
uncertainty (σ � 0.1) using chance constraints without the

ERM cost produced trajectories that were nearly identical to
the reference trajectory under moderate uncertainty (σ � 0.1)
(Figure 2A). When σ � 1.0, however, the friction forces varied
both above and below the reference value of -4.9N, demonstrating
that chance constraints relax the friction cone around both sides
of the mean. However, the optimized control was still nearly
identical to the reference control (Figure 2B), indicating chance
constraints alone may not offer any robustness to uncertainty in
contact.

In our optimizations combining the ERM with chance
constraints, when the friction uncertainty was σ < 0.1, the
ERM with chance constraints method produced friction
forces around 4.9 N during sliding, similar to those
produced by the ERM method alone (Figure 2C). However,
when the uncertainty was large (σ � 1.0), the ERM produced
friction forces at 0 N during the entire motion, which is
infeasible for all friction coefficients except μ � 0. In
contrast, the ERM with chance constraints produced
nonzero friction forces, and the magnitude of the friction
forces increased as the risk bounds decreased and converged
towards the expected value for friction at 4.9 N (Figure 2D),
indicating a solution with improved feasibility under the
expected friction coefficient.

Across all uncertainties, the solutions of the ERM and ERM
with chance constraints tended to improve in friction cone
feasibility as the uncertainty decreased, as indicated by a
decrease in the merit score (Figure 3A). Moreover, at any
fixed uncertainty, the friction merit score decreased as the
risk parameters decreased, with the ERM-only solution and
reference solution acting as upper and lower bounds,
respectively. Similarly, the maximum sliding velocity of the
block increased with increasing uncertainty, indicating less
sliding time under uncertainty, but decreased with decreasing
the risk parameters (Figure 3B), except in the highest
uncertainty case. The range of maximum velocity across
chance parameters also increased with increasing uncertainty,
from 0.02 m/s at σ � 0.01 to 1.73 m/s at σ � 0.3. However, at the

FIGURE 2 | Effects of including chance constraints on contact-robust optimization at different uncertainty levels, for different risk bounds. (A,B) Including chance
constraints without a robust cost, such as the ERM, does not have much effect on the optimized open-loop control, but can allow the friction force to vary under high
uncertainty. (C,D) Including chance constraints with a contact robust cost has little effect on the robust solution at low uncertainty, but tightening the risk bounds θ and β

increases the friction force magnitude at high uncertainty.
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highest uncertainty, the sliding velocity for the ERM and chance
constraints were all identical and less than that of the reference.
In the σ � 1 case, the ERM failed to provide robustness to
friction uncertainty; in this case, the ERM does not model the
friction cone constraint well, and allows the optimization to set
the friction forces to zero. Without friction, the optimal control
is an impulsive, bang-bang controller (Figure 2D) and the
resulting trajectory has almost constant velocity at 5 m/s.
However, the addition of chance constraints did improve the
feasibility of the final motion plans with respect to the friction
cone constraint, but did not alter the sliding velocity. Taken
together, these results indicate that the chance constraints can
mediate a trade-off between the robustness to friction

uncertainty provided by the ERM and the strict feasibility
provided by the reference solution.

5.2 Chance Constraints Improve Average
Performance Against Friction Perturbations
in Simulation
In our open loop simulations with the block example, the controls
generated under ERM with chance constraints performed
similarly to those generated under only the ERM for
uncertainties less than 0.1 (mean position error 0.04 and error
range 0.44 for ERM only, mean −0.03 and range 0.61 for ERM
with chance constraints at σ � 0.1) (Figure 4). However, at high

FIGURE 3 | Chance constraint mediated trade-off between expected friction cone feasibility and robustness to friction uncertainty (signified by maximum sliding
velocity). (A) Merit scores across uncertainty and risk tolerances, quantifying violation of the expected friction cone constraint. (B) Maximum sliding velocity across
uncertainty and risk tolerances, signifying robustness as larger velocities indicate shorter sliding times. Both constraint violation and maximum velocity increase with
increasing uncertainty and with increasing risk bounds. Missing data points indicate the optimization was not solved successfully.

FIGURE 4 | Example block simulations demonstrating chance constraints retain robustness at moderate uncertainty and improve feasibility performance at high
uncertainty, compared to the (A) simulations using the reference controls, for four different values of the friction coefficient. Simulations using controls generated under
only the contact-robust ERM cost result in a low spread around the desired position for moderate uncertainty (B), but can result in a large average position error when the
friction uncertainty is large (C). Simulations using controls generated using ERMwith chance constraints (θ � β � 0.7) maintain a low spread at moderate uncertainty
(E), and have a low final position error at high uncertainty (F). (D) Illustration of the motion of the block for the reference, ERM, and ERM with chance constraint controls
under high friction uncertainty.
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uncertainty σ � 1.0, the ERM with chance constraint simulation
achieved a lower average position error compared to the ERM
alone (0.26 for chance constraints, 2.41 for ERM only), although
both had a similar range of position errors (Figure 5A). By
varying the chance parameters during optimization, we found
that changing β had little effect on simulation results, while
increasing θ resulted in a slight increase in the final position
error, from an average error of 0.01 at θ � 0.51 to 0.65 at θ � 0.9,
for all values of β (Figure 5B). Moreover, changing θ and β at high
uncertainty had no effect on the range of final positions achieved,
indicating again that the chance constraints modulate the
feasibility of the motion plan, while the robustness is provided
by the ERM cost.

5.3 Chance Constraints Mediate the
Distance at Which Contact Forces Are
Applied
In the hopping example with contact distance uncertainty, the
ERM alone produced higher average foot height with increasing
uncertainty, up to an average of 0.46 m at our highest value of
uncertainty (σ � 0.5 m). However, the ERM also allows contact
forces to be applied at a nonzero distance from the expected
terrain; such motion plans are not physically realizable on the
expected terrain, and could be dangerous to execute on real
robots because the robot may expect a large force when one is
not provided by the environment. Introducing chance
constraints, however, reduced the foot height and reduced the
distance at which the contact normal forces were nonzero, and
the decrease in foot height trended with decreasing the risk
parameters θ, β (Figures 6B,C). Across all uncertainties and
risk parameters, the chance constraints tended to reduce foot
height as the risk parameters decreased, and the range of foot
heights generated by the risk parameters tended to increase with
increasing uncertainty (Figure 7B), although there are exceptions
which could be due to the highly nonlinear and nonconvex nature
of the problem. However, we note that the chance constraints do
not completely eliminate the force-at-a-distance effect introduced
by the ERM; only in the strict case where θ � β � 0.5, the chance

constraints eliminate force-at-a-distance from the expected
terrain. Thus, although the chance constraints reduce the
contact infeasibility, unless the risk bounds are made
sufficiently close to 0.5, the planned motions could still be
dangerous to execute. Nonetheless, by bringing the foot closer
to the expected terrain, the chance constraints reduce the risk
associated with expecting a large force at a distance from the
terrain, as the robot would need to accelerate the foot over a
shorter distance to make contact compared to the larger distance
prescribed using the ERM only. Finally, we note that neither the
ERM nor the ERM with chance constraints had much effect on
the optimized reaction forces; in this example, the effects were
limited mainly to the contact distance.

By using the merit score, we also observed that the contact
distance infeasibility decreased with both decreasing uncertainty
and decreasing the risk parameters (Figure 7A). While the
reference case provides a lower bound for the infeasibility, as
it did in the block example, in this example the ERM only
trajectory was not strictly the upper bound for all
uncertainties, although this may be due to the presence of
multiple local minima in the optimization.

6 DISCUSSION AND CONCLUSION

In this work we proposed a novel framework for accounting for
contact uncertainty in TO. As previously explored, the ERM cost
represents a robust contact-averse objective but also results in
infeasible trajectories as the contact uncertainty grows (Drnach
and Zhao, 2021). Here we developed chance complementarity
constraints to convert the stochastic constraints into
deterministic constraints and showed that the chance
constraints can mediate a trade-off between feasibility and
robustness by changing the risk bounds θ and β. The
improved feasibility is achieved because the chance constraints
limit the region of allowable solutions to the ERM to those near
the non-negative mF and z axes, i.e., the solution set of the non-
stochastic complementarity constraints; moreover, as the risk
bounds are decreased, the allowable set approaches the

FIGURE 5 | Effects of chance constraints on robustness of sliding block controls in open loop simulations. (A)Mean and range of final position errors for the ERM
with and without chance constraints planned under different uncertainties, compared to those of the reference. The addition of chance constraints maintains the low
range of final position errors produced by the ERM, but at high uncertainty the chance constraints reduce the average final position error. (B) Mean and range of final
position error of simulated chance constraint controls under different risk tolerances compared to the mean and range for the ERM under the highest friction
uncertainty case (σ �1.0). Increasing the upper risk bound β has little effect, while increasing the lower risk bound θ can increase the average final position error.
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complementarity solution under the mean values of the
constraints, representing the limit of perfect feasibility under
the mean but no robustness.

Our work with chance-constraints is similar to previous
works which have applied chance-constraints to obstacle
avoidance (Gazar et al., 2020) or to modeling frictional
uncertainty (Shirai et al., 2020) for locomotion. These works
claim that the chance constraints provide a measure of
robustness by using risk bounds to make the constraints
more conservative, which can be thought of as making an
obstacle larger or by making the friction cone narrower. This
type of robustness is similar to worst-case robustness; the
generated plan accounts for the worst possible constraint
violations, but may still be sensitive to variations in the
constraint parameters (Drnach and Zhao, 2021). In this
work, we applied chance constraints to problems which
require intermittent contact, and we noted that the

complementarity constraints cannot be made more
conservative as their solution sets have an empty interior.
Instead, we demonstrated that chance constraints relaxed the
contact constraints and improved the physical feasibility of
trajectories generated with a robust cost; lower risk bounds
produced trajectories which were feasible under the expected
constraints but were potentially sensitive to variations, while
higher risk bounds allowed trajectories to violate the expected
constraints to achieve robustness.

Here we considered solely the problem of accounting for
uncertainty in contact during motion planning; we specifically
have not investigated handling uncertainty in contact with
control. Future work could convert our technique into a
feedback control policy by re-planning in a receding horizon
fashion; however, current methods for solving contact-implicit
problems are too slow to be used reactively in real-time. Thus,
advancements in efficient solvers for contact-implicit problems

FIGURE 6 | Effect of including chance constraints on hopping under distance uncertainty. (A) Selected frames of the hopper trajectory comparing the reference,
non-robust trajectory, the ERM only trajectory, and the ERMwith chance constraints trajectory. Only the θ � 0.6 case is illustrated for brevity. (B) Planned foot heights for
the hopper under high distance uncertainty (σ � 0.5 m) for different risk bounds, compared to the ERM and reference trajectories, and (C) the associated normal ground
reaction forces. The ERM cost allows for contact forces to be applied at nonzero distances; however, as the risk bounds decrease, the distance at which forces are
applied also decreases.

FIGURE 7 | Chance constraint mediated trade-off between contact distance feasibility and average foot height for robustness. (A) Merit scores across distance
uncertainty and risk bounds, quantifying the violation of the expected contact distance constraint. (B) Average foot height across uncertainty and risk bounds, where
higher average height indicates more contact-robust hopping. Both constraint violation and maximum foot height increase with increasing uncertainty and with
increasing risk bounds. Missing data points indicate the optimization was not solved successfully.
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are necessary before our work can be used in a receding horizon
control fashion, such as those used in hybrid optimization to
generate gait libraries (Hereid et al., 2019). Apart from
replanning, other methods for controlling through contact
have already been developed, including contact mode-
invariant stabilizing control using Lyapunov analysis (Posa
et al., 2016) and a risk-sensitive impedance optimization for
handing control through uncertain contact (Hammoud et al.,
2021). Although these approaches show promise for stabilizing
and controlling locomotion through contact, the former has yet
to be demonstrated on terrain with variations and the latter
requires a reference trajectory with a contact schedule. The
overarching goal of our work is to complement these
approaches by generating a reference trajectory, including
the contact sequence, which is robust to terrain variations.
By planning trajectories which are robust to contact uncertainty
- for example, by avoiding areas of the terrain with large
variations - we aim to alleviate some of the burden on the
controller and improve the overall performance of the system.

In this work, we parameterized uncertainty in the distance to
the terrain and in the friction coefficient using Gaussian
distributions, as this distribution provides analytical formulas
for the ERM cost and for the chance constraints. Having access
to analytical formulas means we only needed to generate one
robust trajectory, instead of generating multiple samples to
achieve robustness (Mordatch et al., 2015; Seyde et al., 2019).
Given that generating a single trajectory using the contact-
implicit approach requires substantial computation time, the
analytical formulas saved us considerable computation time by
avoiding solving the problem for multiple samples of the terrain
geometry or friction coefficient. However, using the Gaussian
distribution has distinct disadvantages in theory, as it places
non-zero probability mass over regions which are physically
impossible, such as over negative friction coefficients or over
terrain heights which result in interpenetration (e.g., terrain
heights that are above the current contact point location). Such
physically impossible regions could be avoided in future works
by using distributions over a subset of the reals, such as the
truncated Gaussian distribution or the Gamma distribution.
However, using such distributions might require considerable
effort to evaluate the ERM cost and chance constraints, which
have so far been developed largely for Gaussian distributed
variables.

One challenge in developing a contact-robust TO is in
propagating contact uncertainty through the system
dynamics as the state evolves, as contact events are
intermittent. In this work, we introduced an ERM cost to
improve trajectory robustness as the ERM cost minimizes the
sensitivity of the solutions to variations in the contact
parameters (Chen et al., 2009); nonetheless, we note that
neither the ERM nor the chance constraints propagate
uncertainty through the dynamics. Following other robust
TO approaches, an alternative to our work would be to
sample the uncertain contact models and then minimize
either the expected cost (Dai and Tedrake, 2012;
Kuindersma et al., 2013; Mordatch et al., 2015) or an
expected exponential transformation of the cost (Jacobson,

1973; Farshidian and Buchli, 2015; Ponton et al., 2018),
taking the expectation numerically over an ensemble of
trajectories. However, developing an ensemble approach to
contact-robust optimization is not without its challenges.
Unlike state uncertainty, which can be propagated directly
through the dynamics, contact model uncertainty enters in
through additional constraints, and the effects of these
constraints are only propagated intermittently to the
dynamics through potentially impulsive contact forces.
Propagating uncertainty through impulsive forces and
nonlinear dynamics could cause the state uncertainty tube
(or equivalently the idea of “funnel”) to diverge from the
nominal state trajectory, making calculating the expected
cost challenging. Apart from diverging state uncertainty
tube, different trajectories within the ensemble will likely
also have different implicit contact mode sequences, due to
sampling the underlying contact models. In this case, it’s not
clear how the expectation should be calculated and whether it
represent an appropriate metric to quantify uncertainty. Our
work here with the ERM cost and chance constraints made an
attempt to develop contact-robust optimization by
circumventing these problems; future works may instead
aim to solve the aforementioned challenges by developing
an alternative strategy more in line with ensemble
techniques.

The main advantage of our chance-constrained ERM
approach is that we can generate trajectories with varying
degrees of robustness to contact uncertainty without changing
the uncertainty. Thus, when faced with uncertain terrain, we can
choose between being robust to terrain variations or being
optimal with respect to our original objective without
artificially changing the uncertainty in the model. Our work
here focused on investigating these behaviors in simple
systems on 2-dimensional terrain. In future works we could
scale up our approach to full-scale robots traversing 3-
dimensional terrain. We expect the complexity of solving the
ERM and chance constraints to scale only with the number of
contacts and not with the state dimension of the robot, as the
number of complementarity constraints, and therefore the
number of ERM costs and chance constraints, is linear in
the number of contact points and not dependent on the
state dimension - for example, adding several contact points
to the sliding block and putting obstacles in the environment
would make the contact problem more challenging, even
though the state dimension is the same. Once we have
scaled up to three dimensions, we could also evaluate our
methods experimentally on full-scale robots, such as a
quadruped, and compare the performance of our robust
motion plans against the traditional approach using a simple
controller, and against other risk-sensitive control approaches
such as (Hammoud et al., 2021).
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