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Abstract—We utilize here regression tools to plan dynamic
locomotion in the Phase Space of the robot’s center of mass
behavior and state feedback controllers to accomplish the
desired plans. In real robotic systems, simplified locomotion
models and disturbances in the control processes result in
deviations from the actual closed loop dynamics with respect to
the desired locomotion trajectories. To tackle these challenges,
we propose here the use of two control strategies: (1) support
vector regression to approximate complex nonlinear center of
mass dynamics and plan the feet contact transitions, and (2)
sliding mode control to track feet trajectories given the contact
timing and location plans. First, support vector regression
is utilized to learn a data set obtained through numerical
simulation, providing an analytical approximation of the center
of mass behavior. To approximate Phase Plane curves, which are
characterized by vertical tangents and loop or cyclic behaviors,
we use implicit functions for regression as opposed to explicit
methods. Based on the proposed regression approximations of
the dynamics, we develop contact transition plans and apply
robust controllers to converge to the desired feet trajectories. In
particular, state feedback controllers might be more convenient
than time based controllers in terms of robustness to distur-
bances. Overall, our methods are capable of learning complex
center of mass trajectories and might benefit from the use of
robust control techniques. Various case studies are analyzed to
validate the effectiveness of the methods including single and
multi step planning in a numerical simulation, and swing leg
trajectory control on our Hume bipedal robot.

I. INTRODUCTION

An important goal in locomotion is to develop models and
control policies that can tackle the difficulty of moving in
rough terrains. Data driven models are an attractive solution
since they can capture the robot’s center of mass nonlinear
behavior in the complex terrains. Simple regression models
such as polynomial fitting are often used [1], but suffer
from conditioning problems, trajectory over-fitting and lack
of support to fit curves with infinite slopes or cyclic loops.
Among various data-driven fitting methods, support vector
regression (SVR) is one of the most interesting approaches
and will be leveraged here for locomotion planning and
control. SVR is derived from support vector machines, which
was first developed to solve classification problems [2], and
later extended to solve regression problems [3].

The basic goal of SVRs is to map data sets onto a higher
dimensional space via nonlinear mapping. In our study, we
employ SVRs to robustly plan biped locomotion behaviors
given simulated data sets of the robot’s center of mass
behavior in the Phase Space. The output of our training
model is defined as an implicit surface function that allows to
represent the complex center of mass trajectories. The Phase

Space is an ideal coordinate system to study stability and
robustness of the locomotion behaviors in the rough terrains.
As we will soon see, it will allow us to derive stable contact
transition policies for switching the locomotion behaviors
associated with the hybrid dynamics of the biped.

In the second part of the paper, we will develop feed-
forward controllers based on the planned trajectories, and
robust feedback servos to provide robustness to disturbances.
In particular, sliding mode control will be used to enable
convergence to the desired feet trajectories. Given our long
term focus on acceleration controllers (i.e., Whole-Body
Compliant Control [4]), the State Space motion plans derived
here are easily transformed into acceleration control policies
and then implemented into hour Hume bipedal robot. The va-
lidity of our methods is tested in various simplified dynamic
simulations and in an experimental setup involving swing leg
trajectory control using our bipedal robot Hume.

Motion planning in robotics has been a focus of attention
since obstacle-free mobility became a research topic. We will
not attempt here to cover the full scope of motion planning,
but a good reference can be found at [5]. Early works on
motion planning focused on graph based search, but didn’t
scale well to highly articulated robotic systems. To solve
this issue, randomized search methods were proposed, such
as rapidly-exploring randomized trees [6], or probabilistic
roadmaps [7], among others. However, these methods only
consider the robot’s configuration space, but not its dynamic
behavior. As a result, extensions to kinodynamic planning
were later proposed, e.g. [8], [9]. One problem on these
early methods is that motor control policies were separated
from the motion plans preventing robustness and realtime
responsiveness. Researchers in locomotion have addressed
this problem in the form of preview controllers [10], although
much of the work has been limited to linearized versions of
the robot’s center of mass dynamics. Motion planners that
incorporate the feedback controller into the trajectory design
have been furthered by [11] among others. Disturbances and
uncertainty of the motion plans have been recently studied
for realtime control in [12]. Synthesis of complex contact
behaviors has been thoroughly studied by [13], though not
explicitly focusing on dynamic bipedal locomotion. Learning
switching policies has been addressed in [14] in the context
of planar locomotion and using model reduction, and more
recently in [15] using full joint dynamics but limited to planar
gaits.

Overall, the main contribution of this paper is two fold:
(1) fitting analytical functions to the nonlinear center of mass



Fig. 1. Explicit Support Vector Regression of Inverted Pendulum
Dynamics performed in the Phase Space. This figure shows SVR based on
a Gaussian kernel (implemented using the software LibSVM [16]). Random
noise is added to the position and velocity data (red star dots). The blue
line is the nominal learned trajectory after the training. The two red dashed
lines surround a ε-insensitive tube. Note that some data still exists outside
the insensitive tube, which will cause some positive ξ errors. The SVR
parameters used here are C = 2, g = 10, ε = 0.1, b = 0.2937 (Their
meanings will be explained in the optimization formulation.). 11 out of
total 88 data sets are selected as support vectors. The main deficiency of
this explicit method is that the blue nominal trajectory can not reflect true
pendulum dynamics, where the slope around vx = 0 has finite slope. Infinity
slope cannot be captured with explicit functions.

Phase Space behaviors using implicit regression; and (2)
developing robust controllers for the swing foot that lever-
age the hybrid trajectory plans learned from the regression
process.

II. BACKGROUND ON SUPPORT VECTOR REGRESSION

We introduce a basic overview of support vector re-
gression. SVR is a convenient fitting method that offers
higher stability than simple regression methods, enables the
adjustment of the fitting sensitivity to noise, and can easily
represent high dimensional models.

Suppose that we have a training data set {X1,X2, . . . ,Xn},
where Xj ∈ RN , j = 1, . . . , n are data pairs, which
correspond to physical states such as the position and velocity
of the robot’s center of mass. The target of SVR is to learn
the parameters of a function Φ(ω, b,X ), expressed as the
hyperplane

Φ(ω, b,X ) , 〈ω,X〉+ b (1)

where 〈·, ·〉 represents the dot product in RN and ω ∈ RN
denotes the normal vector to the hyperplane. Note that ω
and b are the parameters to be learned. Based on the support
vector regression theory [3], these parameters can be obtained

by solving the optimization problem

min
ω,b

1

2
||ω||2 + C

l∑
i=1

(ξ+i + ξ−i )

s.t. − ε− ξ−i ≤ Φ(ω, b,Xi) ≤ ε+ ξ+i ,

0 ≤ ξ+i , ξ
−
i .

(2)

where i is the index of ith support vector Xi, l is the total
number of support vectors, and ε defines the fitting tolerance.
Data points are allowed to deviate from the fitting function
Φ(ω, b,X ) with a maximum ε value. Additionally, ξ+i and
ξ−i represent soft margins that allow to reject outliers from
the ε tolerance tube. Because the number of support vectors
decreases with the tolerance ε, the larger it is, the smaller
the number of support vectors are needed, thus reducing the
computational effort. On the other hand, too large ε will lead
to under-fitting. So choosing the right ε value is key to the
solution.

It can be shown that the previous optimization problem can
be expressed in the following manner (details are omitted)

maximize
α,α∗

−1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )〈Xi,Xj〉

−ε
l∑
i=1

(αi + α∗i ) +

l∑
i=1

yi(αi − α∗i )

subject to
l∑
i=1

(αi − α∗i ) = 0, αi, α
∗
i ∈ [0, C].

(3)

where α and α∗ are Lagrange multipliers representing the
first inequality constraint in Equation (2) and the normal vec-
tor ω is substituted by the equation ω =

∑l
i=1(αi − α∗i )Xi.

Moreover, Equation (1) can be generalized to

Φ(ω, b,X ) =

l∑
i=1

(αi − α∗i )k(Xi,X ) + b (4)

where k(Xi,X ) is a kernel function. There are several
choices for kernels in the SVR literature. In this paper, we
will use Gaussian kernels only, i.e.

k(Xi,X ) = exp(−γ||Xi −X||2) (5)

where γ defines the Gaussian kernel width. Notice that
sigmoid and polynomial kernels are also popular for curve
fitting. For notation convenience, Φ(X ) will be used for the
rest of the paper as a shorthand version of Φ(ω, b,X ).

III. SVR-BASED MOTION PLANNING

We approximate the single contact center of mass behav-
ior of bipeds using nonlinear prismatic inverted pendulum
dynamics and then use numerical simulation to obtain data
points. Notice that the dynamics of single contact behaviors
do not have a closed form trajectory solution in the general
case of variable center of mass height. We will tackle the
main advantage of using implicit versus explicit functions
for regression. First, let us consider an explicit regression
problem with two dimensional states.



Fig. 2. Two Dimensional Implicit Regression with Gaussian Kernel: The SVR parameters are selected as C = 2, g = 1, ε = 0.02, b = 0.0073.
The number of support vectors is 87. Subfigures (a) - (c) show the fitting surface from different viewpoints. Green is the data points obtained through
simulation of a prismatic inverted pendulum while red is the surface fitting. Notice that in (c) we demonstrate that the fitting is accurate even when the
slope is infinite on the (x, ẋ) plane. Subfigures (d) - (f) show the same surface with a longer range of values.

A. Explicit Regression

We assume data points in the Phase Plane represented by
a position coordinate, x and a velocity coordinate ẋ. In
explicit regression based on support vectors, a trained model
y, expressed by the SVR function

y ,
l∑
i=1

(αi − α∗i )k(xi, x) + b, (6)

is solved such that the surface φ(x, ẋ) , ẋ − y approaches
zero for all data points with a desired tolerance.

In Fig. 1, we show an example of fitting data points from
a nonlinear pendulum simulation using the above explicit
function. However, there exist major drawbacks to using
explicit functions. First, they cannot represent cyclic loops,
such as a circular curves in the Phase Plane. Notice that loop
behaviors in the Phase Space are characteristic of locomotion
behaviors, representing the periodic cycles. Second, explicit
continuous functions cannot, except for a few exceptions,
represent vertical tangents (i.e. infinite slopes). For instance,
the tangent of the general explicit Gaussian function that we
use for regression and given below

dy

dx
= −2γ

l∑
i=1

(αi − α∗i )(x− xi)exp(−γ(x− xi)2) (7)

can never be infinity since it is the sum of finite positive num-
bers. However, one of the properties of pendulum dynamics is

having infinite slope when approaching the zero velocity axis,
e.g. when stopping locomotion at a given step. Given those
limitations, we propose instead the use of implicit functions
for regression.

B. Implicit Regression

In the case of implicit regression, the fitting function has the
expression

Φ(X ) =

l∑
i=1

(αi − α∗i )k(Xi,X ) + b (8)

where the implicit state is X = (x, ẋ) and Φ(X ) is a
continuous differentiable function that defines the sliding
manifold. Here, it can be seen that compared with explicit
regression, the velocity is coupled with the position state.
The partial derivatives are now

∂Φ(X )

∂x
= −2γ

l∑
i=1

(αi − α∗i )(x− xi)Aexp (9)

∂Φ(X )

∂ẋ
= −2γ

l∑
i=1

(αi − α∗i )(ẋ− ẋi)Aexp (10)

where Aexp , exp(−γ((x − xi)
2 + (ẋ − ẋi)

2)). For vi-
sualization, the output response can be treated as a surface
and therefore displayed as a third dimension besides the
position and velocity states. In Fig. 2 we use once more



prismatic pendulum dynamics to generate data points and
use Equation (8) to fit the surface. We then display the three
dimensions from various perspectives. As we can see, we are
now able to fit the data even if the slope in the Phase Plane
is infinity at some point. Moreover, the same implicit method
could be used to fit loop trajectories typical of locomotion
behaviors in the Phase Plane.

Since the two dimensional hyper-surface Φ(X ) is a dif-
ferentiable manifold in 3D space, the surface normal can be
represented by the gradient

N ,

[
∂Φ

∂x
,
∂Φ

∂ẋ
, 1

]T
(11)

Using Equations (9) and (10) and projecting the normal
vector in the horizontal plane yields

dẋ

dx
=
∂Φ/∂x

∂Φ/∂ẋ
=

∑l
i=1(αi − α∗i )(x− xi)Aexp∑l
i=1(αi − α∗i )(ẋ− ẋi)Aexp

(12)

when ẋ→ 0 it becomes,

dẋ

dx
=

∑l
i=1(αi − α∗i )(x− xi)exp(−γ((x− xi)2 + ẋ2i ))

−
∑l
i=1(αi − α∗i )ẋiexp(−γ((x− xi)2 + ẋ2i ))

(13)
It turns out that the denominator of the above equation
becomes very small when approaching the zero velocity
axis, thus illustrating that implicit regression can correctly
represent vertical tangents, as shown in Fig. 2 (c).

C. Data Generation

The data points shown in Figs. 1 and 2 can be obtained
in several ways. In an experimental oriented scenario, the
real robot could be controlled to move along predefined
geometric paths and starting with various initial conditions.
Then data points of the center of mass position and velocity
would be recorded for every path. Although this method is
an interesting research direction, it is unclear how doable it
would be given the large sample space of the center of mass
behavior. Instead, for this paper, we will use a simplified
model of the dynamics. In the past, we have used a well
known nonlinear center of mass dynamic model and applied
it to rough terrains [17], represented as

ẍ =
(x− px)(z̈ + g)

z − pz
(14)

where x and z are the Sagittal and vertical coordinates of the
center of mass and px and pz are the Sagittal and vertical
coordinates of the support leg. As it was described in our
previous publication about rough terrain locomotion [18], we
use geometric primitives to describe the center of mass path
above the rough terrain in the form of a nonlinear function,
z = g(x). In such case

z̈ = g′′(x)ẋ2 + g′(x)ẍ, (15)

which can be used to transform Equation (14) into a nonlinear
ordinary differential equation (ODE) with form

ẍ = func(x, ẋ). (16)

(a) Single Step Planner

(b) Multi Step Planner

Fig. 3. Contact Transition Planner: (a) Illustrates the transition point
between two adjacent contact dynamics (i.e. two consecutive steps). The
upper intersection between the adjacent green color curves represents the
contact event that will switch the hybrid dynamics (i.e. the new step). (b)
Illustrates the same method applied to multiple steps. In both graphs, the red
data is the contour line when the model surface Φ is zero while the green
data is the training data used for regression.

Using numerical simulation allows to solve the above equa-
tion for the desired geometric path and deliver the data set
needed to apply regression.

D. Contact Switching Policy

Once the implicit surfaces for a sequence of contact states
have been generated based on the data points, we extract
contour lines defined as

Hc(Φ) ,
{
X | Φ(X ) = 0

}
(17)

which give us analytical trajectories to the nonlinear locomo-
tion dynamics. Note that analytical trajectories could not have
been directly derived from the nonlinear prismatic pendulum
models. The solution for extracting the contact transition
points between two adjacent Phase Space trajectories, i.e.



Φ1(X ), and Φ2(X ) is obtained by finding the roots of the
differential surface

F (X ) , Φ1(X )− Φ2(X ) = 0 (18)

The solution to the above difference function corresponds
to the desired contact transitions. Those transitions will
force the robot’s center of mass dynamics to move from
one trajectory to the next producing the desired locomotion
behavior. Single step and multi step examples are shown in
Figs. 3 (a) and (b).

IV. ROBUST CONTROL

The second contribution of this paper, is the design of
a robust control approach for locomotion based on the
previous hybrid dynamic planner. In the previous section,
we developed tools to design a contact switching policy for
stable locomotion. And to illustrate the idea, we applied the
technique for planing locomotion in the Sagittal plane. In
biped locomotion, center of mass Sagittal behavior is not
directly controllable due to the dominance of the passive
dynamics associated with the small footprint. Instead, it is
more convenient to control the swing leg movement so it
forces a change of dynamics at the moment where the contact
transitions where planned. The idea was presented in [17] but
no controller was proposed at the time.

Let us assume for now, that a Phase Space plan has
been designed given predefined foot positions and step apex
conditions (i.e. the velocity of the center of mass when
passing the contact foot), according to the methods de-
scribed in the previous section. Given the planned contact
transitions, we subsequently extract contact timing events
from the Phase Space plan. Moreover, once the contact
timings are known, time-based foot trajectories can be easily
designed. An example of a time based trajectory to swing
to a desired contact position is shown in Fig. 4. A valid
control approach would be to implement a linear time-based
controller, e.g. a proportional-derivative controller based on
the trajectory error. However, we consider here the addition
of a feedforward term and a robust control term to enhance
the tracking performance.

In particular, we consider sliding mode control (SMC) for
robustness [19]. Consider the implicit surface s , Φ(X ) and
its time derivative

ṡ =
dΦ(X )

dt
=
∂Φ(X )

∂x
ẋ+

∂Φ(X )

∂ẋ
ẍ

= −2γ

l∑
i=1

(αi − α∗i )[(x− xi)ẋ+ (ẋ− ẋi)ẍ]Aexp (19)

Notice that the state X above now corresponds to the foot
Cartesian trajectory and not to the robot’s center of mass
trajectory we had considered for the planning phase. We
leverage sliding mode control theory for asymptotic conver-
gence to the desired trajectory, e.g.

ṡ = −η · tanh(s), (20)

where η is a control gain and tahn(.) is the hyperbolic
tangent function. The control form above is standard in the
SMC literature and it can be easily used to demonstrate that
it steers the control variables toward the desired Phase Space
trajectory.

One class of controllers that we advocate for is whole-
body compliant control [4]. This type of control structure
achieves feedback linearization to render full control of task
accelerations, i.e.

ẍ = u (21)

where x is the variable to be controlled and u is the desired
control policy. Observing Equations (19) and (20), we isolate
the acceleration term and use it as a feedforward term for the
above closed loop dynamics, rendering the robust control law

u =

η·tanh(s)
2γ −

∑l
i=1(αi − α∗i )[(x− xi)ẋ]Aexp∑l

i=1(αi − α∗i )(ẋ− ẋi)Aexp
(22)

This law is composed of two parts,

ur ,
η · tanh(s)

2γ
∑l
i=1(αi − α∗i )(ẋ− ẋi)Aexp

(23)

ueq ,
−
∑l
i=1(αi − α∗i )[(x− xi)ẋ]Aexp∑l
i=1(αi − α∗i )(ẋ− ẋi)Aexp

. (24)

where the term ur corresponds to the so-called reaching
controller, which drives the system dynamics to the desired
surface (i.e. the feedback controller), and the second term
ueq is the equivalent controller, which forces the system
dynamics to move along the surface (i.e. the feedforward
term).

In Fig. 5, we show numerical simulations of the above ro-
bust control approach to track desired Phase Plane trajectories
of the foot swing. Robustness to initial conditions are shown
in Fig. 5 (c)-(d) where an initial condition region is chosen
to test the SMC law. To avoid chattering due to numerical
integration, we use variable step integration. We also simulate
external disturbances via velocity impulses. The results are
shown in Fig. 5 (e) - (f).

V. FOOT SWING IMPLEMENTATION

Initial experiments on controlling the robot’s swinging leg
are shown in Figs. 6 and 7. A software implementation of
whole-body compliant control as described in [4] has been
developed to run the experiments on the biped. The robot is
supported with a boom system that allows for vertical and
pitch motion of the torso. Multiple task frames are defined
to control the height of the torso, its orientation and the
Cartesian position of the swing foot. Contact constraints on
the support foot are accounted for to solve the whole-body
torques. A geometric trajectory to swing the foot up and
forward then back to its original position is implemented
and converted to the Phase Plane for robust control. The
regression process described in Equation (8) and the non-
linear controller described in Equation (22) are implemented
to track the desired trajectories.



Fig. 4. SVR-based Foot Trajectory Fitting. (a) depicts the foot’s desired geometric trajectory. (b) and (c) show Sagittal time and phase plane trajectories
while (d) and (e) show the corresponding vertical trajectories. In (f), the regression process is shown for those trajectories with the red line corresponding
to the zero contour line. (g) and (h) illustrate the Sagittal SVR model from different viewpoints. Notice that in (h), regression captures correctly the infinity
slopes near the zero velocity axis.

Fig. 5. Sliding Mode Control Applied to a Trajectory with Various Initial Conditions and Simulated Disturbances: (a) and (b) show the SMC
controller tracking trajectory, undisturbed. (c) and (d) show trajectory tracking under various starting conditions, away from the planned Trajectory. (e) and
(f), show the response under a velocity disturbance in both the x and z directions. (g) shows the error surface value for the disturbances applied in (e)
and (f). (h) shows the control effort associated with (g).



Fig. 6. Leg Swing Experiment on Hume: In this sequence we show the implementation of swing leg motions as described in Fig. 4, and based on the
implicit regression process with sliding mode control described in Equation (23). The experiment shows the leg swinging to a height, as if it was moving
toward a staircase. The controller is effective on tracking the desired path, with accuracy of less than 5 mm.

Fig. 7. Leg swing experiments under Disturbances. The robust controller is implemented for foot trajectory control. In (a) the leg hits a wooden board
which causes sudden velocity reduction. Subsequently the leg pushes the board away to track the nominal path. (b) shows an external force applied to
the swing leg, which causes the foot velocity to momentarily reverse direction. In (c), we demonstrate the leg movement when the leg is tied up with an
elastic band. As the band tightens up, the leg displays some oscillations.



For further validation of the robustness of our controllers,
Fig. 7 narrates three types of external disturbances applied to
the swinging leg. The regression based sliding mode control
demonstrates satisfactory robust performance. First, Hume’s
leg hits a wooden board pushing it away in. Second, the leg
is hit with a sharp external force. Finally, an elastic band is
attached to the robot’s leg which tightens up as the leg moves
forward.

The experiment suggests that converting the contact transi-
tion plans to foot trajectories in the Phase Plane and applying
robust controllers for swing leg control could allow bipeds
to maneuver and adapt to rugged terrains.

VI. DISCUSSION AND CONCLUSION

Data driven strategies for all terrain locomotion require
general models that can determine the contact transitions of
the hybrid system. In particular, regression using implicit
functions becomes a necessity to fit complex data sets in
the Phase Space which normally contain infinite slopes and
loop behaviors.

After designing the hybrid control plans, swinging foot tra-
jectories need to be controlled to accurately achieve contact
at the desired time and location. Time-based linear controllers
are a starting point, but a trajectory based feedforward control
policy and robust controller can be key to achieve the needed
fast response and robustness to external disturbances. In this
context, we have developed a sliding mode control strategy
based on Phase Plane plans of a swinging leg and test their
effectiveness in simulation and in the Hume bipedal robot.

The two main contributions of our work are utilizing
regression tools to deal with nonlinear locomotion models
and applying robust controllers for swing leg control based
on the contact transition plans. In the future, we will aim
at deriving center of mass models from full joint dynamic
simulations or using real experimental data from Hume. We
also plan to test the locomotion processes during real walking
behaviors. To conduct those experiments, a new boom system
allowing for Sagittal locomotion is already on its way. Further
along, extensions to 3D locomotion of our methods are also
on their works.
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