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Abstract—In this study, we present a framework for phase-
space planning and control of agile bipedal locomotion while
robustly tracking a set of non-periodic keyframes. By using a
reduced-order model, we formulate a hybrid planning framework
where the center-of-mass motion is constrained to a general sur-
face manifold. This framework also proposes phase-space bundles
to characterize robustness and a robust hybrid automaton to
effectively design planning algorithms. A newly defined phase-
space locomotion manifold is used as a Riemannian metric to
measure the distance between the disturbed state and the planned
manifold. Based on this metric, a dynamic programming based
hybrid controller is introduced to produce robust locomotions.
The robustness of the proposed framework is validated by
using simulations of rough terrain locomotion recovery from
external disturbances. Additionally, the agility of this framework
is demonstrated by using simulations of the dynamic locomotion
over random rough terrains.

Index Terms—Phase-space planning, Rough terrain locomo-
tion, Non-periodic keyframes, Robust hybrid automaton, Dy-
namic programming.

I. INTRODUCTION

Humanoid and legged robots may soon nimbly maneu-
ver over highly rough and unstructured terrains. This study
formulates a new framework for the trajectory generation
and an optimal controller to achieve locomotion in those
types of terrains using phase-space formalism. From prismatic
inverted pendulum dynamics [1] and a desired path plan, we
present a phase-space planner that can negotiate the chal-
lenging terrains. The resulting trajectories are formulated as
phase-space manifolds. Borrowing from sliding mode control
theory, we use the newly defined manifolds and a Riemannian
metric to measure deviations due to external disturbances or
model uncertainties. A control strategy based on dynamic
programming is proposed, which steers the locomotion process
towards the planned trajectories.

Dynamic legged locomotion has been a center of attention
for the past few decades [2, 3, 4, 5, 6, 7]. The work in [8]
pioneered robust hopping locomotion of point-foot monoped
and bipedal robots using simple dynamical models but with
limited applicability to semi-periodic hopping motions. The
work in [9] achieved biped point foot walking using virtual
model control but is limited to planarized robots. Unassisted
biped point foot locomotion in moderately rough terrains has
been recently achieved by [10] and [11] using Poincaré maps
[12]. However, Poincaré maps cannot be leveraged to non-
periodic trajectories for highly irregular terrains. The work

[13] devised switching controllers for aperiodic walking of
planarized robots over flat terrains via re-defining the notion of
walking stability. In contrast, our work focuses on non-periodic
gaits for unsupported robots in random rough terrains.

The Capture Point method [14] provides one of the most
practical frameworks for locomotion. Sharing similar core
ideas, the divergent component of motion [15] and the extrapo-
lated center-of-mass [16] were independently proposed. Exten-
sions of the Capture Point method [17, 18], allow locomotion
over rough terrains. Recently, the work in [19] generalizes
the Capture Point method by proposing a “Nonlinear Inverted
Pendulum” model, but it is limited to the two-dimensional
case, and angular momentum control is ignored. The main dif-
ference from the above studies is that our controller provides
a robust optimal recovery strategy and ensures stability to
achieve under-actuated dynamic walking over rough terrains.

Optimal control for legged locomotion over rough terrains
is explored in [20, 21, 22, 23, 24]. The work in [25] proposed
an effective control technique to stabilize non-periodic mo-
tions of under-actuated robots, with a focus on walking over
uneven terrain. The controller is formulated by constructing
a lower-dimensional system of coordinates transverse to the
target cycle and then computing a receding-horizon optimal
controller to exponentially stabilize the linearized dynamics
of the transverse states. Recently, a follow-up to this research
enables the generations of non-periodic locomotion trajectories
[26]. In contrast with these works, we propose a robust
metric based optimal controller to recover from disturbances.
Additionally, our framework enables maneuvers in different
types of terrains, such as walking on acute slopes.

Numerous studies have focused on recovery strategies upon
disturbances [27, 28]. Various recovery methods are proposed:
ankle, hip, and stepping strategies [29]. In [30], a stepping
controller triggered by ground contact forces is implemented
in a humanoid robot. The study in [31] considers a counter-
acting hip angular momentum for planar biped locomotion.
In our study, we concentrate on torso angular momentum and
stepping strategies. Additionally, we control the center-of-mass
(CoM) apex height to modulate the ground reaction force.

Phase space techniques are analogous to kino-dynamic
planning [32]. However, a drawback of kino-dynamic planning
is its inability to incorporate feedback control policies and
robustness metrics. Our study proposes dynamic program-
ming to achieve robust control performance. Computational



Fig. 1: 3D prismatic inverted pendulum model. (a) We define a prismatic inverted pendulum model with all of its mass located at its base while equipping it with a flywheel to
generate moments. We restrict the movement of the center-of-mass to 3D planes SCoM. (b) shows motions of pendulum dynamics restricted to a 3D plane.

tractability is one of our targets. Our strategy is to design
optimal controllers in the phase-space of the robot center-of-
mass, which can characterize key locomotion states.

In light of the discussions above, our contributions are
summarized as follows: (1) we synthesize motion plans in
the phase-space to maneuver over irregular terrains, (2) a
phase-space manifold is formulated and used as a Riemannian
metric to measure trajectory deviations and create an in-step
controller, and (3) we derive a hybrid optimal controller to
recover from disturbances and study its stability.

II. PRISMATIC INVERTED PENDULUM DYNAMICS ON A
PARAMETRIC SURFACE

The dynamics of point foot bipedal robots in generic
terrain topologies during single contact can be mechanically
approximated as an inverted pendulum model [33] (see Fig. 1).
We propose a prismatic inverted pendulum model (PIPM) [1]
with a flywheel, and all of its mass is concentrated on the hip
position (defined as the 3D CoM position, pcom = (x, y, z)T

with flywheel orientation angles R = (φ, θ, ψ)T ). Since the
objective of the locomotion process is to move the robot’s
CoM along a certain path from point A to B over a terrain,
we first specify a 3D surface, SCoM, where the CoM path
exists via the implicit form,

SCoM =
{
pcom ∈ R3 | ψCoM(pcom) = 0

}
. (1)

This surface can be specified in various ways, such as via
piecewise arc geometries [34, 35]. Once the controller is
designed, the CoM will follow a concrete path PCoM (as
shown in Fig. 1), which we specify via piecewise splines
described by a progression variable, ζ ∈ [ζj−1, ζj ], for the
jth path manifold, i.e.

PCoM =
⋃

jPCoMj
⊆ SCoM,

where PCoMj
=
{
pcomj

∈ R3 | pcomj
=
∑np

k=0 ajkζ
k
}

,
and np is the order of the spline degree. The progression

variable ζ is therefore the arc length along the CoM path
acting as the Riemannian metric for distance. Each ajk ∈ R3

is the coefficient vector for the kth order. To guarantee the
spline smoothness, pcom requires the connection points, i.e.,
the knots at progression instant ζj , to be Cnp−1 continuous,

p[l]
comj

(ζj) =
dlpcomj

dζl
(ζj) = p[l]

comj+1
(ζj), ∀ 0 ≤ l ≤ np − 1

The purpose of introducing the CoM manifold SCoM is to
constrain CoM motions on the surfaces that are designed to
conform to generic terrains while allowing free motions within
this surface. Tracking a concrete path is achieved by selecting
proper control inputs, which will be described in Section IV.
The CoM path manifold, PCoM (embedded in SCoM), can be
represented in the phase-space ξ. We name this representation
the phase-space manifold and define it as,

MCoMj =
{
ξ ∈ R6 | σj(ξ) = 0

}
, (2)

withMCoM =
⋃
jMCoMj

, which is the key manifold used in
our phase-space planning and control framework. The function
σj(ξ) is a measure of the Riemannian distance to the nominal
phase-space manifold.

A. Dynamic Equations of Motion

The pendulum dynamics can be formulated via dynamic
balance of moments of the pendulum system. For our single
contact scenario, the sum of moments, mi, with respect to the
global reference frame (see Fig. 1) is∑
i

mi = −pfoot × fr + pcom ×
(
f com +m g

)
+ τ com = 0,

where, pfoot = (xfoot, yfoot, zfoot)
T is the position of the foot

contact point, fr is the three-dimensional vector of ground
reaction forces, f com = m(ẍ, ÿ, z̈)T is the vector of center-
of-mass inertial forces, τ com = (τx, τy, τz)

T is the vector
of angular moments of the modeled flywheel attached to
the inverted pendulum, m is the total mass, and g ∈ R3



corresponds to the gravity field. The linear force equilibrium
can be formulated as fr = f com+m g, allowing us to simplify
the equation above to:(

pcom − pfoot

)
× (f com +m g) = −τ com. (3)

For our purposes, we focus on the class of PIPM dynamics
whose center-of-mass is restricted to a path surface SCoM

as indicated in Eq. (1). Moreover, for simplicity we only
consider 3D piecewise linear surfaces. Considering as our
output state the CoM positions, pcom, the state space, ξ =
(pTcom, ṗ

T
com)T = (x, y, z, ẋ, ẏ, ż)T ∈ Ξ ⊆ R6 is the phase-

space vector. From Eq. (3) it can be shown that the PIPM
dynamics for a walking step, indexed by a discrete variable q,
are simplified to the control system

ξ̇ = F(q, ξ,u) =



ẋ
ẏ
ż

ω2
q (x− xfootq )−

ω2
q

mg
(τy + bqτz)︸ ︷︷ ︸

A

ω2
q (y − yfootq )−

ω2
q

mg
(τx + aqτz)︸ ︷︷ ︸

B

aqA+ bqB


,

(4)

where the phase-space asymptotic slope is defined as

ωq =

√
g

zapexq

, (5)

zapexq
= (aqxfootq + bqyfootq + cq − zfootq ), aq and bq

are the slope coefficients while cq is the constant coeffi-
cient for the linear CoM path surfaces that we consider,
i.e. ψCoMq (x, y, z) = z − aqx − bqy − cq = 0. We have
defined zapexq

such that it corresponds to the vertical distance
between the CoM and the location of the foot contact at the
instant when the CoM is on the top of the foot location. F
represents a vector field of inverted pendulum dynamics. In
general, there is an input control policy, u = π(q, ξ), where
we define a hybrid control vector for our control system as
u = {ωq, τ comq

,pfootq} ∈ U , where, U is an open set of
admissible control values.

Remark 1. Previously we observed that the CoM of human
walking approximately follows the slope of a terrain [1, 36].
Based on this observation, we, (i) design piecewise linear CoM
planes in parallel with terrain slopes; (ii) adjust the CoM
planes to approximate the ballistic trajectories observed in
human walking.

Remark 2. After producing the previous piecewise linear
CoM planes, we generate phase-space trajectories by using
the PIPM dynamics in Eq. (4), and smoothen the phase-space
transitions through a multi-contact process. To that end, we fit
a fifth-order polynomial to the multi-contact phase of each step
[1]. Additionally, to further guarantee the smoothness of the

Fig. 2: Phase-space invariant and recoverability bundles. This figure shows the invariant
bundle, B(ε) (shown in red) and the recoverability bundle, R(ε, ζf ) (shown in blue) in
Cartesian space. If the condition when we expect the transition to occur is at ζ = ζf , the
recoverability bundle shows the range of perturbations that can be tolerated at different
ζ – the system recovers to the invariant bundle before ζf .

contact forces during step transitions, we control the internal
forces between the contact feet. We will show the smooth CoM
accelerations and leg forces in the simulation section. A sim-
ilar multi-contact transition strategy, named as “Continuous
Double Support” trajectory generator, is proposed in [37] to
achieve smooth leg force profiles.

III. HYBRID PHASE-SPACE PLANNING

In this section we devise a robust hybrid automaton [38, 39]
with the following key features: i) an invariant bundle and a
recoverability bundle to characterize robustness, and ii) a non-
periodic step transition strategy. The hybrid automaton governs
the planning process across multiple walking steps and as such
constitutes the theoretical core of our proposed locomotion
planning framework.

A. Phase-Space Bundles

Let us focus on sagittal plane dynamics first. For practical
purposes we will use the symbol x = {x, ẋ} to describe the
sagittal CoM state space. Eq. (2) can thus be re-considered in
the output space as MCoMq

=
{
x ∈ X

∣∣ σq(x) = 0
}

, where
σq is the normal distance deviated from the manifoldMCoMq

.

Definition 1 (Invariant Bundle). A set Bq(ε) is an invariant
bundle if, given xζ0 ∈ Bq(ε), with ζ0 ∈ R≥0, and an increment
ε > 0, xζ stays within an ε-bounded region of MCoMq

,

Bq(ε) =
{
x ∈ X

∣∣∣ |σq(x)| ≤ ε
}
,

where, ζ0 and ζ are initial and current phase progression
variables, respectively. xζ0 is an initial condition.

This type of bundle characterizes “robust subspaces” (“tubes”)
around nominal phase-space trajectories which guarantee that,
if the state initializes within this space, it will remain on it.

Definition 2 (Finite-Phase Recoverability Bundle). The in-
variant bundle Bq(ε) around a phase-space manifoldMCoMq

has a finite-phase recoverability bundle, Rq(ε, ζf ) ⊆ X
defined as,

Rq(ε, ζf ) =
{
xζ ∈ X , ζ0 ≤ ζ ≤ ζf

∣∣∣ xζf ∈ Bq(ε)} .
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Fig. 3: This figure shows the hybrid locomotion automaton for a biped walking process.
This automaton has three generic discrete modes Q = {ql, qs, qr}, that represent
when the robot is in left leg contact (ql), in right leg contact (qr), and in dual stance
contact (qs), respectively. The guard G(qk, qk+1) and the transition map ∆qk→qk+1
are shown along the mode transition lines. This locomotion automaton has non-periodic
mode transitions.

Note that this bundle assumes the existence of a control
policy for recoverability. We will later use these metrics to
characterize robustness of our controllers. Visualization of
invariant and recoverability bundles are shown in Fig. 2.

B. Hybrid Locomotion Automaton

Legged locomotion is a naturally hybrid control process,
with both continuous and discrete dynamics. The set Q =
{q0, q1, . . . , qk} is a sequence of discrete states. Each discrete
state q chooses a mode from {ql, qr, qd} representing discrete
states where the support is left foot (ql) or right foot (qr) or
dual feet (qd) as shown in Fig. 3. On each mode, indexed by
q, the continuous dynamics are represented as F in Eq. (4)
over a domain D(q). If we represent the hybrid system as a
directed graph (Q, E), the nodes are represented by q ∈ Q and
the edges are tuples of states E(qk, qk+1), and qk, qk+1 ∈ Q,
that represent the transitions between the nodes qk → qk+1.
The condition that triggers the event (switching or jump) is
determined by a guard G(qk, qk+1) for the particular edge
E(qk, qk+1).1 We now formulate a robust hybrid automaton
for our locomotion planner.

Definition 3. A phase-space robust hybrid automaton
(PSRHA) is a dynamical system, described by a n-tuple

PSRHA := (ζ,Q,X ,U ,W,F , I,D,R,B, E ,G,∆), (6)

where ζ is the phase-space progression variable,Q is the set of
discrete states, X is the set of continuous states, U is the set of
control inputs, W is the set of disturbances, F is the vector
field, I is the initial condition, D is the domain, B and R
are the invariant and recoverability bundles, respectively, and
will be used in the next section to design robust controllers.
E := Q×Q is the edge, G : Q×Q → 2X is the guard, and
∆ is the transition map. More detailed definitions of ∆ can
be found in [39].

A directed diagram of this non-periodic automaton is shown in
Fig. 3. To demonstrate the usefulness of this hybrid automaton,
we provide an example of a planning process as follows.

1More definitions for various detailed transitions are in [38].

Fig. 4: Step transitions. This figure illustrates two types of step transitions in the sagittal
phase-space, associated with σ-isolines. (a) switches between two single contacts with
a multi-contact phase. (b) shows several guard alternatives for multi-contact transitions,
from the current single-contact manifold value σqk

to the next single-contact manifold
σqk+2

. In particular, the invariant bundle bounds, σqk
= ±ε are shown. The transition

phase in green reattaches to the nominal manifold, σqk+2
= 0, while the transition

phase in brown maintains its σ value, i.e., σqk+2
= σqk

.

Example 1. Consider a phase-space trajectory fragment that
contains two consecutive walking steps Q = {qk, qk+1}
(e.g., left and right feet). Given an initial condition
(ζ0, qk,xqk(ζ0)) ∈ I, the system will evolve following the
differential dynamical system Fqk as long as xqk remains
in D(qk) (left foot on the ground, right foot swinging). If at
some moment xqk reaches the guard G(qk, qk+1) (right foot
touches the ground) of some edge E(qk, qk+1), the discrete
state switches to qk+1. At the same time, the continuous state
gets reset to some value by ∆qk→qk+1

(left and right feet
switch). After this discrete transition, continuous evolution
resumes and the whole process repeats.

C. Step Transition Strategy

Step transitions can be characterized as an instantaneous
contact or a short multi-contact phase (Fig. 4(a)). We first
create a strategy for the instantaneous contact switch, and
then extend it to the multi-contact case. To characterize the
non-periodic mapping associated with the walking in rough
terrains, we define a return map between keyframe states.

Definition 4 (Return Map of Non-Periodic Gaits). We define
a return map of non-periodic locomotion gaits as the pro-
gression map, Φ, that takes the robot’s center-of-mass from
one desired keyframe state, (ẋapex,qk , zapex,qk , θqk), to the next
one, and via the control input ux, i.e.,

(ẋapex,qk+1
, zapex,qk+1

, θqk+1
) = Φ(ẋapex,qk , zapex,qk , θqk ,ux),

where θqk represents the heading of the qth
k walking step.

Users can design “non-periodic” keyframes to change the
speed or steer the direction of the robot. For this study, we
use heuristics to design keyframes. More recently, we have
proposed to use a keyframe decision maker based on temporal
logic [40, 41].

Definition 5 (Phase Progression Transition Value). A phase
progression transition value ζtrans : Q × X → R≥0 is the
value of the phase progression variable when the state xq
intersects a guard G, i.e.,

ζtrans := inf{ζ > 0 | xq ∈ G}.



Fig. 5: Chattering-free recoveries from disturbance by the proposed optimal recovery continuous control law. Subfigure (a) show two random disturbances with positive and negative
impulses, respectively. Control variables are piecewise constant within one stage as shown in subfigure (c). Simulation parameters are shown in Table I.

We propose an algorithm to find transitions between adjacent
steps, which occur at ζtrans. Given known step locations and
apex conditions, phase-space trajectories can be obtained by
the analytical solution described in the Proposition above. The
phase-space trajectories of pendulum systems have infinite
slopes when crossing the zero-velocity axis [42, 43]. Therefore
we fit non-uniform rational B-splines (NURBS)2 to the gener-
ated data. Subsequently, finding step transitions just consists
on finding the root difference between adjacent NURBSs.

D. Phase-space Manifold
Now let us focus on proposing an analytical phase-space

manifolds (PSM) and using it as a metric to measure deviations
from the planned trajectories.

Proposition (Phase-Space Manifold). Given the sagittal
PIPM dynamics in Eq. (4) with an initial condition (x0, ẋ0)
and foot placement xfoot, the phase-space manifold is

σ := (x0 − xfoot)
2
(
2ẋ2

0 − ẋ2 + ω2(x− x0)(x+ x0

− 2xfoot)
)
− ẋ2

0(x− xfoot)
2 + ẋ2

0(ẋ2 − ẋ2
0)/ω2, (7)

where the condition σ = 0 is equivalent to the nominal phase-
space manifold, representing the nominal sagittal phase-space
dynamics. Furthermore, σ represents the Riemannian distance
to the nominal phase-space trajectories.

Proof: In the nominal control case, τy = 0. The sagittal
dynamics are therefore simplied to ẍ = ω2(x− xfoot). Since
the foot placement xfoot is constant over the step, then ẍfoot =
ẋfoot = 0. Therefore the previous equation is equivalent to
ẍ− ẍfoot = ω2(x−xfoot). Defining a transformation x̃ = x−
xfoot, we can write ¨̃x = ω2x̃. Using Laplace transformations,
we have s2x̃(s)− x̃0− s ˙̃x0 = ω2x̃(s). Based on this, we get

x̃(t) = L −1{ x̃0 + s ˙̃x0

s2 − ω2
}. (8)

By this equation, we can derive an analytical solution

x̃(t) =
x̃0(eωt + e−ωt)

2
+

˙̃x0(eωt − e−ωt)
2ω

= x̃0cosh(ωt) +
1

ω
˙̃x0sinh(ωt), (9)

2Different from polynomials, non-rational splines or Bézier curves, NURBS
can be used to precisely represent conics and circular arcs by adding weights
to control points.

and by taking its derivative, we get

˙̃x(t) = ωx̃0sinh(ωt) + ˙̃x0cosh(ωt). (10)

These two equations can be further expressed as(
x(t)− xfoot

ẋ(t)

)
=

(
x0 − xfoot ẋ0/ω

ẋ0 ω(x0 − xfoot)

)(
cosh(ωt)
sinh(ωt)

)
By using cosh2(x)− sinh2(x) = 1, we get(
ω(x0 − xfoot)(x− xfoot)− ẋ0ẋ/ω

)2 − (− ẋ0(x− xfoot)

+ ẋ(x0 − xfoot)
)2

=
(
ω(x0 − xfoot)

2 − ẋ2
0/ω

)2
. (11)

After expanding the square terms and moving all terms to one
side, we obtain the phase-space tangent manifold σ defined in
the Proposition.
If we use the apex conditions as initial values, i.e. (x0, ẋ0) =
(xfoot, ẋapex), the manifold becomes

σ =
ẋ2

apex

ω2

(
ẋ2 − ẋ2

apex − ω2(x− xfoot)
2
)
. (12)

We note that this manifold constitutes the target phase-space
trajectory that we enforce the CoM to follow. This manifold
implies τy = 0. We account for changes of τy in the
optimal controller defined in the next section to recover from
disturbances. The same type of manifolds can be devised for
the lateral trajectory using the pendulum dynamics in Eq. (4).

IV. ROBUST HYBRID CONTROL STRATEGY

This section formulates a two-stage control procedure to
recover from disturbances. When a disturbance occurs, the
robot’s CoM deviates from the planned phase-space manifolds.
Various control policies can be used for the recovery. We
use dynamic programming to find an optimal policy of the
continuous control variables for recovery, and, when necessary,
feet placements are re-planned from their initial locations. Our
proposed controller relies on the distance metric of Eq. (12) to
steer the robot current’s trajectory to the planned manifolds.

A. First Stage: Dynamic Programming based Control

This subsection formulates the proposed dynamic program-
ming based controller for the continuous control of the sagittal
dynamics. A similar controller can be formulated for the lateral
and vertical CoM behaviors, given the PIPM dynamics of



TABLE I: Dynamic Programming Parameters

Parameter Value Parameter Value Parameter Value
nominal torque τ refy 0 Nm nominal asymptote slope ωref 3.13 1/s torque range τ rangey [-3, 3] Nm

asymptote slope range ωrange [2.83, 3.43] 1/s foot placement xfoot 1.2 m stage range [0.9, 1.5] m
state range [0.03, 1.5] m/s stage resolution 0.01 m state resolution 0.01 m/s

disturbed initial state sinitial (1.1 m ,0.7 m/s) desired apex velocity ẋapex 0.6 m/s weighting scalar Γ1 5
weighting scalar Γ2 5 weighting scalar β 4 × 104 weighting scalar α 100

Eq. (4). To robustly track the planned CoM manifolds, we
minimize a finite-phase quadratic cost function and solve for
the continuous control parameters as follows

min
uc

x

VN (q, xN ) +

N−1∑
n=0

ηnLn(q,xn,u
c
x)

subject to : ẋ = Fx(x,ucx, d),

ωmin ≤ ω ≤ ωmax, τmin
y ≤ τy ≤ τmax

y ,

(13)

where ucx = {ω, τy} corresponds to the continuous variables
of the hybrid control input ux, ω defined in Eq. (5) is
equivalent to modulating the ground reaction force, 0 ≤ η ≤ 1
is a discount factor, N is the number of discretized stages
until the next step transition3, ζtrans, the terminal cost is
VN = α(ẋ(ζtrans) − ẋ(ζtrans)

des)2. Here, ẋ(ζtrans) is the
final velocity at the instant of the next step transition and
ẋ(ζtrans)

des is the desired nominal velocity at the transition
instant. The first constraint Fx(·) is defined by the sagittal
PIPM dynamics of Eq. (4) with an extra input disturbance d.
Additionally, Ln is the one step cost-to-go function at the nth

stage defined as a weighted square sum of the tracking errors
and control variables:

Ln =

∫ ζq,n+1

ζq,n

[βσ2 + Γ1τ
2
y + Γ2(ω − ωref)2]dζ,

where, σ is the phase-space manifold of Section III-D used as
a feedback control parameter, ζq,n and ζq,n+1 are the starting
and ending phase progression values at the nth and (n+ 1)th

stage for the qth walking step, α, β, Γ1 and Γ2 are weights,
and ωref is the reference phase-space asymptote slope. This
algorithm generates optimal control policies, which imply
bounded values for ω and τy . It does not consider flywheel
position limits at this moment as our focus has been on
outlining a proof-of-concept control approach. To implement
this type of controller in the future, we will need to account
for the flywheel dynamics and the constraint on its position.

To avoid chattering effects4 in the neighborhood of the
planned manifold, a ε-boundary layer is defined and used to
saturate the controls, i.e.

uc
′

x =


ucx |σ| > ε

|σ|
ε
uc,εx +

ε− |σ|
ε

uc,ref
x |σ| ≤ ε

(14a)

(14b)

3We use phase-space intersection as the step transition strategy [1].
4This chattering is caused by digital controllers with finite sampling rate. In

theory, an infinite switching frequency will be required. However, the control
input in practice is constant within a sampling interval, and thus, the real
switching frequency can not exceed the sampling frequency. This limitation
leads to the chattering.

where ε corresponds to the boundary value of an invariant
bundle B(ε) as defined in Def. 1, uc,εx = {ωε, τ εy} are control
inputs at the instant when the trajectory enters the invariant
bundle B(ε), uc,ref

x = {ωref , τ ref
y } are nominal control inputs.

The smoothness of the above controller is studied in [44]. As
Eq. (14) shows, when |σ| ≤ ε, the control effort, uc

′

x is scaled
between uc,εx and uc,ref

x . This control law is composed of an
“inner” and an “outer” controller. The “outer” controller steers
states into B(ε) while the “inner” controller maintains states
within B(ε). Recovery trajectories are shown in Fig. 5 for two
scenarios in the presence of random disturbances.

Since the control is bounded, we need to define a new
control-dependent recoverability bundle. Given an accept-
able deviation ε0 from the manifold, the invariant bundle is
B(ε0). The control policy of Eq. (14) generates a control-
dependent recoverability bundle (a.k.a., region of attraction
to the “boundary-layer”) defined as R(ε, ζtrans) =

{
xζ ∈

R2, ζ0 ≤ ζ ≤ ζtrans

∣∣ xζtrans ∈ B(ε), ucx ∈ uc,range
x

}
,

where uc,range
x are the control bounds shown in Eq. (13).

Theorem (Existence of Recoverability Bundle). Given the
phase progression transition value ζtrans and the control policy
of Eq. (14), a recoverability bundle R(ε, ζtrans) exists and can
be estimated by a maximum tube radius σmax

0 .

Proof: Given an initial disturbed state σ0 > ε and assum-
ing the existence of a control policy such that σtrans ≤ ε, then
the recoverability bundle R(ε, ζtrans) exists. Let us consider
a Lyapunov function V = σ2/2. Taking the derivative of V
along the pendulum dynamics of Eq. (4), we get

V̇ = σẋ2
apex

(
− 2ẋ(x− xfoot) + 2ẋẍ/ω2

)
= σẋ2

apex

(
− 2ẋ(x− xfoot) + 2ẋ

(
(x− xfoot)−

τy
mg

))
= −

2ẋ2
apexσẋτy

mg
= −

2
√

2ẋ2
apexẋτy · sign(σ)

mg

√
V ≤ 0.

which can be used to prove the stability (i.e., attractiveness)
of σ = 0. For example, consider the case of forward walking,
ẋ > 0. Then, as long as σ · τy > 0, i.e., the pitch torque has
the same sign as σ, the attractiveness is guaranteed. That is,
if σ > 0 (the robot moves forward faster than expected), then
we need τy > 0 to slow down, and vice-versa. If τy = 0, then
V̇ = 0, which implies a zero convergence rate. This means
that the CoM state will follow its natural inverted pendulum
dynamics without converging. As such, in order to converge
to the desired invariant bundle, control action τy is required.
To estimate R(ε, ζtrans), we use the optimal control policy
proposed in Eq. (14). Assuming σ ·τy > 0 (i.e., τy · sign(σ) =



Fig. 6: Traversing various rough terrains. The subfigures on the left block show dynamic
locomotion over rough terrains with varying heights. The block on the right shows the
lateral phase-space trajectory and height variation distribution over 100-steps.

|τy|) and a minimum torque action is applied, i.e., |τy| >
|τmin
y |, the equation above becomes

V̇ < −
2
√

2ẋ2
apexẋ|τmin

y |
mg

√
V < 0. (15)

The bounded V̇ above can be integrated from the initial state
to the next transition instant∫ Vtrans

V0

dV√
V
< −

∫ ttrans

t0

µẋ|τmin
y |dt = −µ|τmin

y |(xtrans−x0),

where µ = (2
√

2ẋ2
apex)/(mg). The equation above can be

developed to
√
V0 <

√
Vtrans + µ · (xtrans − x0) · |τmin

y |/2.
Since V0 = σ2

0/2, Vtrans = σ2
trans/2 ≤ ε2/2, we have

σ0 < ε+

√
2

2
µ · (xtrans − x0) · |τmin

y | = σmax
0 .

where σmax
0 defines the maximum tube radius at the initial

instant from which the robot can recover from. Therefore we
can re-write the recoverability bundle of Def. 2 as:

R(ε, ζtrans) =
{
xζ ∈ R2, ζ0 ≤ ζ ≤ ζtrans

∣∣ σ0 ≤ σmax
0

}
.

The existence of a recoverability bundle has been proven with
a maximum tube radius.

Remark 3. Our algorithm is applicable to forward, backward
walking or forward-to-backward transitions just by planning
the proper sequence of apex states.

B. Second-stage: Discrete Foot Placement Control

When a disturbance is large enough to bring the CoM state
outside its recoverability bundleR(ε, ζtrans), the controller can
not recover to the invariant bundle. Let us consider planning
the next transition step to occur when the CoM is at the same
position than it was originally planned for. We also assume that
we keep the previously planned apex velocity ẋapex,qk+1

for
the next step. We can solve for a new foot placement by using
the analytical solution of Section III-D. Let us consider the
disturbed phase-space transition state, (xtrans, ẋ

dist
trans). Using

Eq. (12), we get

xfoot,qk+1
:= xtrans +

1

ω
(ẋdist2

trans − ẋ2
apex,qk+1

)1/2. (16)

Fig. 7: Circular walking over random rough terrain. The 3D figure above shows dynamic
walking while steering. The terrain height randomly varies within [−0.24, 0.3] m.
Subfigure (a) shows the top view of the CoM trajectory and the foot locations given
the terrain contour. (b) shows each leg’s ground reaction forces in local coordinate. The
reaction forces at step transitions are smooth thanks to the multi-contact control phase.
(c) shows the angle of reaction forces is constrained within the 45◦ friction cone. (d)
and (e) show smooth CoM sagittal and lateral accelerations.

For forward walking, xfoot,qk+1
> xtrans, so we ignore the

solution with the negative square root. Note that if ẋapexq+1
=

0, i.e., coming to a stop, Eq. (16) becomes xrep
footq+1

= xtrans +

ẋdist
trans/ω. In such case, this equation is the same as the Capture

Point dynamics in [45].
Once this sagittal foot placement is re-computed, a lateral

foot position is also planned using a searching strategy [1]. To
conclude, this two-stage procedure defines our robust optimal
phase-space planning strategy5.

V. DYNAMIC MANEUVERING OVER VARIOUS TERRAINS

In this section, our hybrid phase-space planning and robust
optimal controller is tested over various terrains and subject
to external disturbances. Inverse kinematics are used to map
three-dimensional CoM and foot positions to joint angles. An
accompanying video of the dynamic walking over various
terrains is available at https://youtu.be/F8uTHsqn1dc.

Example 2 (Dynamic Walking over Rough Terrains). Three
challenging terrains with random but known height variations
are tested as shown in Fig. 6: (a) a terrain with convex steps,
(b) a terrain with concave steps and (c) a terrain with inclined
steps. The height variation, ∆hk, of two consecutive steps is
randomly generated based on the uniform distribution,

∆hk ∼ Uniform {(−∆hmax,−∆hmin) ∪ (∆hmin,∆hmax)} ,
5Our recovery strategies are computationally efficient: (i) Once disturbance

is applied, an optimal policy is obtained by quickly searching a previously
generated offline policy table. (ii) If the trajectory cannot recover before
ζtrans, a new foot placement is re-planned using Eq. (16). Relying on an
analytical foot placement strategy allows to speed up computation.

https://youtu.be/F8uTHsqn1dc


Fig. 8: Rough terrain recovery from sagittal disturbance by hybrid control strategy. The
planner uses both first-stage DP for continuous control and second-stage discrete foot
placement re-planning to recover from a CoM sagittal push. As subfigures (a) and (b)
show, a multi-contact transition is used in this walking. Subfigures (c) and (d) show the
sagittal and lateral kinematic CoM and foot trajectories.

where ∆hmin = 0.1 m, ∆hmax = 0.3 m. A 10◦ tilt angle is
used for the slope of the steps. Foot placements are chosen a
priori using simple kinematic rules. We design apex velocities
according to a heuristic accounting for terrain heights, and
we use an average apex velocity of 0.6 m/s. Finally we design
piecewise linear CoM surfaces that conform to the terrain.
We then apply the proposed planning pipeline to generate
trajectories and search step transitions. The lateral CoM phase
portrait in Fig. 6 (d) shows stable walking over 25 steps. The
bar graph in Fig. 6 (e) shows the distribution of the randomly
generated terrain heights over 100 steps.

Example 3 (Circular Walking over Random Rough Terrain).
Circular walking over random rough terrain is shown in Fig. 7.
We use this example to validate the steering capability of our
planner. The walking direction is defined by the heading angle
θ shown in Def. 4. The planning process is performed in the
robot’s local coordinate with respect to the heading angle. We
then apply a local-to-global transformation.

Example 4 (Recovery from Sagittal Disturbance). A sagittal
push is applied to the robot as shown in Fig. 8 (a). This
disturbance is considerably large such that the phase-space
state can not recover to its nominal PSM before the next
step transition. Thus, a sagittal foot placement needs to be
re-planned as previously explained. The dashed line of Fig. 8
(a) represents the original phase-space trajectory while the
solid line represents the re-planned trajectory.

Example 5 (Recovery from Lateral Disturbance). At the third
step, the robot receives a lateral CoM disturbance, which
causes a CoM lateral drift shown in Fig. 9 (b) and a
lateral velocity jump shown in Fig. 9 (c). To deal with this
disturbance, a new lateral foot placement is re-planned while

Fig. 9: Rough terrain dynamic walking under lateral disturbance. During the lateral
disturbance phase, the robot re-plans its foot placement to achieve balanced walking.

ensuring that a lateral quasi-limit cycle is maintained.

VI. CONCLUSIONS

The main focus of this paper has been on addressing
the needs for robust planning and control of non-periodic
bipedal locomotion behaviors. These types of behaviors arise
in situations where terrains are highly irregular. Many bipedal
locomotion frameworks have been historically focused on
flat terrain or mildly rough terrain locomotion behaviors.
An increasing number of them are making their way into
planning locomotion over rougher or inclined terrains. In
contrast, our effort is centered around the goals of (i) providing
metrics of robustness in rough terrain for robust control of
the locomotion behaviors, (ii) generalizing gaits to any types
of terrain topologies, (iii) providing formal tools to study
planning, robustness, and recoverability of the non-periodic
gaits, and (iv) demonstrating the ability of our framework
to deal with large external disturbances. Our future work
will focus on: (i) experimental validations of the proposed
optimal control strategy, where pose estimation and kinematic
errors, among other problems, will greatly impact the real
performance; (ii) a realistic terrain perception model that does
not assume perfect terrain information; (iii) a more realistic
robot model that incorporates swing leg dynamics.
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[2] Jia-chi Wu and Zoran Popović. Terrain-adaptive bipedal loco-
motion control. In ACM Transactions on Graphics, volume 29,
page 72. ACM, 2010.

[3] Tomomichi Sugihara. Dynamics morphing from regulator
to oscillator on bipedal control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2940–
2945, 2009.

[4] Ko Yamamoto and Takuya Shitaka. Maximal output admissible
set for limit cycle controller of humanoid robot. In IEEE-RAS
International Conference on Robotics and Automation, pages
5690–5697, 2015.

[5] Camille Brasseur, Alexander Sherikov, Cyrille Collette, Dim-
itar Dimitrov, and Pierre-Brice Wieber. A robust linear mpc
approach to online generation of 3d biped walking motion.
In IEEE-RAS International Conference on Humanoid Robots,
pages 595–601, 2015.

[6] Hui-Hua Zhao, Wen-Loong Ma, Michael B Zeagler, and
Aaron D Ames. Human-inspired multi-contact locomotion with
amber2. In ICCPS’14: ACM/IEEE 5th International Conference
on Cyber-Physical Systems, pages 199–210, 2014.

[7] Quan Nguyen and Koushil Sreenath. Optimal robust control
for bipedal robots through control lyapunov function based
quadratic programs. In Robotics: Science and Systems, 2015.

[8] Marc H Raibert. Legged robots that balance. MIT press, 1986.
[9] Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and

Gill Pratt. Virtual model control: An intuitive approach for
bipedal locomotion. The International Journal of Robotics
Research, 20(2):129–143, 2001.

[10] Jessy W Grizzle, Christine Chevallereau, Ryan W Sinnet, and
Aaron D Ames. Models, feedback control, and open problems
of 3d bipedal robotic walking. Automatica, 50(8):1955–1988,
2014.

[11] Alireza Ramezani, Jonathan W Hurst, Kaveh Akbari Hamed,
and JW Grizzle. Performance analysis and feedback control of
atrias, a three-dimensional bipedal robot. Journal of Dynamic
Systems, Measurement, and Control, 136(2):021012, 2014.

[12] Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau,
Jun Ho Choi, and Benjamin Morris. Feedback control of
dynamic bipedal robot locomotion, volume 28. CRC press,
2007.

[13] T Yang, ER Westervelt, A Serrani, and James P Schmiedeler.
A framework for the control of stable aperiodic walking in
underactuated planar bipeds. Autonomous Robots, 27(3):277–
290, 2009.

[14] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish
Goswami. Capture point: A step toward humanoid push
recovery. In IEEE-RAS International Conference on Humanoid
Robots, pages 200–207, 2006.

[15] Toru Takenaka, Takashi Matsumoto, and Takahide Yoshiike.
Real time motion generation and control for biped robot-1st
report: Walking gait pattern generation. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages
1084–1091, 2009.

[16] At L Hof. The ’extrapolated center of mass’ concept suggests
a simple control of balance in walking. Human Movement
Science, 27(1):112–125, 2008.

[17] Johannes Englsberger, Christian Ott, and Alin Albu-Schaffer.
Three-dimensional bipedal walking control based on divergent
component of motion. IEEE Transactions on Robotics, 31(2):
355–368, 2015.

[18] Mitsuharu Morisawa, Shuuji Kajita, Fumio Kanehiro, Kenji

Kaneko, Kanako Miura, and Kazuhito Yokoi. Balance control
based on capture point error compensation for biped walking
on uneven terrain. In IEEE-RAS International Conference on
Humanoid Robots, pages 734–740, 2012.

[19] Oscar E Ramos and Kris Hauser. Generalizations of the capture
point to nonlinear center of mass paths and uneven terrain.
In IEEE-RAS International Conference on Humanoid Robots,
pages 851–858, 2015.

[20] Yiping Liu, Patrick M Wensing, David E Orin, and Yuan F
Zheng. Trajectory generation for dynamic walking in a hu-
manoid over uneven terrain using a 3d-actuated dual-slip model.
In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 374–380, 2015.

[21] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valen-
zuela, Hongkai Dai, Frank Permenter, Twan Koolen, Pat Mar-
ion, and Russ Tedrake. Optimization-based locomotion plan-
ning, estimation, and control design for the atlas humanoid
robot. Autonomous Robots, pages 1–27, 2015.

[22] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G
Atkeson. Optimization-based full body control for the darpa
robotics challenge. Journal of Field Robotics, 32(2):293–312,
2015.

[23] Hongkai Dai and Russ Tedrake. Optimizing robust limit cycles
for legged locomotion on unknown terrain. In IEEE Conference
on Control and Decision, pages 1207–1213, 2012.

[24] Katie Byl and Russ Tedrake. Metastable walking machines. The
International Journal of Robotics Research, 28(8):1040–1064,
2009.

[25] Ian R Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake.
Stable dynamic walking over uneven terrain. The International
Journal of Robotics Research, 30(3):265–279, 2011.

[26] Ian R Manchester and Jack Umenberger. Real-time planning
with primitives for dynamic walking over uneven terrain. In
IEEE International Conference on Robotics and Automation,
pages 4639–4646, 2014.

[27] Andreas Hofmann. Robust execution of bipedal walking tasks
from biomechanical principles. PhD thesis, Massachusetts
Institute of Technology, 2006.

[28] Zhibin Li, Chengxu Zhou, Juan Castano, Xin Wang, Francesca
Negrello, Nikos G Tsagarakis, and Darwin G Caldwell. Fall
prediction of legged robots based on energy state and its
implication of balance augmentation: A study on the humanoid.
In IEEE-RAS International Conference on Robotics and Au-
tomation, pages 5094–5100, 2015.

[29] Benjamin Stephens. Humanoid push recovery. In IEEE-RAS
International Conference on Humanoid Robots, pages 589–595,
2007.

[30] S Hyon and Gordon Cheng. Disturbance rejection for biped
humanoids. In IEEE-RAS International Conference on Robotics
and Automation, pages 2668–2675, 2007.

[31] Taku Komura, Howard Leung, Shunsuke Kudoh, and James
Kuffner. A feedback controller for biped humanoids that
can counteract large perturbations during gait. In IEEE-RAS
International Conference on Robotics and Automation, pages
1989–1995, 2005.

[32] Steven M LaValle. Planning algorithms. In Cambridge univer-
sity press, 2006.

[33] Shuuji Kajita and Kazuo Tan. Study of dynamic biped lo-
comotion on rugged terrain-derivation and application of the
linear inverted pendulum mode. In IEEE-RAS International
Conference on Robotics and Automation, pages 1405–1411,
1991.

[34] Igor Mordatch, Martin De Lasa, and Aaron Hertzmann. Ro-
bust physics-based locomotion using low-dimensional planning.
ACM Transactions on Graphics, 29(4):71, 2010.

[35] Manoj Srinivasan and Andy Ruina. Computer optimization of
a minimal biped model discovers walking and running. Nature,



439(7072):72–75, 2006.
[36] Ye Zhao, Jonathan Samir Matthis, Sean L. Barton, Mary Hay-

hoe, and Luis Sentis. Exploring visually guided locomotion over
complex terrain: A phase-space planning method. In Dynamic
Walking Conference, 2016.

[37] Johannes Englsberger, Twan Koolen, Sylvain Bertrand, Jerry
Pratt, Christian Ott, and Alin Albu-Schaffer. Trajectory gen-
eration for continuous leg forces during double support and
heel-to-toe shift based on divergent component of motion. In
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4022–4029, 2014.

[38] Michael S Branicky, Vivek S Borkar, and Sanjoy K Mitter.
A unified framework for hybrid control: Model and optimal
control theory. IEEE Transactions Automatic Control, 43(1):
31–45, 1998.

[39] Emilio Frazzoli. Robust hybrid control for autonomous vehicle
motion planning. PhD thesis, Massachusetts Institute of Tech-
nology, 2001.

[40] Ye Zhao, Ufuk Topcu, and Luis Sentis. Towards formal
planner synthesis for unified legged and armed locomotion in
constrained environments. In Dynamic Walking Conference,
2016.

[41] Ye Zhao, Ufuk Topcu, and Luis Sentis. High-level reactive
planner synthesis for unified legged and armed locomotion in
constrained environments. In IEEE Conference on Decision and
Control, Under Review, 2016.

[42] Ye Zhao, Donghyun Kim, Benito Fernandez, and Luis Sentis.
Phase space planning and robust control for data-driven loco-
motion behaviors. In IEEE-RAS International Conference on
Humanoid Robots, 2013.

[43] Ye Zhao. Phase Space Planning for Robust Locomotion. Master
thesis, The University of Texas at Austin, 2013.

[44] Vadim I Utkin. Sliding modes in control and optimization.
Springer Science & Business Media, 2013.

[45] Johannes Engelsberger, Christian Ott, Mximo A. Roa, Alin
Albu-Schaffer, and Gerhard Hirzinger. Bipedal walking control
based on capture point dynamics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4420–
4427, 2011.


	Introduction
	Prismatic Inverted Pendulum Dynamics on a Parametric Surface
	Dynamic Equations of Motion

	Hybrid Phase-Space Planning
	Phase-Space Bundles
	Hybrid Locomotion Automaton
	Step Transition Strategy
	Phase-space Manifold

	Robust Hybrid Control Strategy
	First Stage: Dynamic Programming based Control
	Second-stage: Discrete Foot Placement Control

	Dynamic Maneuvering over Various Terrains
	CONCLUSIONS

