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Anonymous Author(s)
Affiliation
Address
email

　
H

um
an

 T
ac

til
e 

  D
em

on
st

ra
tio

ns
Ta

ct
ile

-b
as

ed
 

Ro
bo

t E
xe

cu
tio

n
Ze

ro
-s

ho
t 

G
en

er
al

iz
at

io
n

Tilting Shifting Two-stage Packing Assembly

Time

Multi-material Packing
TissueSponge

Pen

Figure 1: The first row shows the human tactile demonstrations, including the tactile and proprio-
ception data. The second row shows the robot execution with tactile feedback. The third row below
the dashed line describes the policy’s zero-shot generalization capability in five different domains.

Abstract: Tactile sensing is critical to fine-grained, contact-rich manipulation1

tasks, such as insertion and assembly. Prior research has shown the possibility2

of learning tactile-guided policy from teleoperated demonstration data. However,3

to provide the demonstration, human users often rely on visual feedback to con-4

trol the robot. This creates a gap between the sensing modality used for con-5

trolling the robot (visual) and the modality of interest (tactile). To bridge this6

gap, we introduce “MimicTouch”, a novel framework for learning policies di-7

rectly from demonstrations provided by human users with their hands. The key8

innovations are i) a human tactile data collection system which collects multi-9

modal tactile dataset for learning human’s tactile-guided control strategy, ii) an10

imitation learning-based framework for learning human’s tactile-guided control11

strategy through such data, and iii) an online residual RL framework to bridge the12

embodiment gap between the human hand and the robot gripper. Through compre-13

hensive experiments, we highlight the efficacy of utilizing human’s tactile-guided14

control strategy to resolve contact-rich manipulation tasks. The project website is15

at https://sites.google.com/view/MimicTouch.16

Keywords: Tactile Sensing, Learning from Human, Imitation Learning17

1 Introduction18

Enabling robots to perform contact-rich tasks such as insertion remains a formidable challenge in19

robotics. The primary reason is the complex dynamic interaction between the robot and the object20
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Figure 2: Illustration of the MimicTouch Framework. In part (a), we collect the multi-modal human
tactile demonstrations. In part (b), we learn compact low-dimensional tactile representations. In part
(c), we derive an offline policy through a non-parametric imitation learning method. In part (d), we
refine the offline policy through online residual reinforcement learning on a physical robot.

which is influenced by various factors including intricate material properties and low tolerance for21

error. This necessitates an adaptive, data-centric insertion mechanism that utilizes real-time sensor22

feedback. Recent methods have heavily explored vision-based solutions to tackle this problem [1–23

4]. Notably, NVIDIA’s sim-to-real transfer approach [1] achieves success rates of up to 99.2%24

in transferring assembly tasks using their customized “Factory” simulator [2]. However, vision-25

based approaches can fall short when visual feedback is compromised by cluttered occlusions or26

bad lighting conditions.27

Humans exhibit fine-grained manipulation skills through tactile sensing, which allows for successful28

insertions by solely using tactile feedback to generate complex, continuous, and precise motions [5].29

Motivated by this, recent studies collect demonstrations that combine various sensory inputs for pol-30

icy learning [6–8]. However, these methods assume a limited action space, e.g., only 3D translations,31

to compensate for the complexity of collecting dynamic demonstrations. They also heavily rely on32

robot teleoperation systems [9–11], which inevitably creates a gap between the visual sensing used33

for data collection and the recorded tactile sensing for policy learning. As a result, these methods34

are unable to emulate human’s tactile-guided control strategy for contact-rich tasks.35

To tackle these challenges, we present “MimicTouch” (shown in Fig. 2), a novel framework that36

enables robots to learn human’s tactile-guided control strategy. Specifically, MimicTouch first intro-37

duces a human tactile-guided data collection system to gather multi-modal tactile feedback (tactile +38

audio) directly from human demonstrators. Next, it incorporates a representation learning model to39

capture task-specific sensor input features. These compact representations enhance the performance40

of subsequent imitation learning by abstracting essential sensory information. Then, it employs a41

non-parametric imitation learning method [12] to derive an offline policy from the collected human42

tactile demonstrations. Finally, it leverages online residual reinforcement learning (RL) to fine-tune43

the offline policy on the physical robot, aiming to bridge the embodiment gap between the human44

hand and the robot gripper and enrich contact reasoning.45

We conduct comprehensive experiments on contact-rich insertion tasks to evaluate the offline pol-46

icy derived from demonstrations and the final policy fine-tuned via RL. We find that MimicTouch47

can collect tactile demonstrations more efficiently than teleoperation. More importantly, the Mim-48

icTouch policy can be effectively learned from such demonstrations and significantly outperforms49

the policy learned from teleoperation data. Additionally, we set up seven generalization tasks in five50

different domains and show the final policy exhibits superior zero-shot generalization capability.51

2 Related Works52

Multi-modal tactile sensing. Vision-based tactile sensing is integral to robotic manipulation as53

it excels at estimating local contact geometry and frictional properties [13–16]. It further enables54

imitation learning-based methods through policy observations [6, 7, 17] or reinforcement learning55

methods through reward signals [18–20] for various complex manipulation tasks. Additionally, it is56
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also widely used in shape reconstruction [21–23] and grasping [24–27]. On the other hand, audio-57

based tactile sensors, such as contact microphones have also been demonstrated effective in robotics58

applications such as manipulation [28], classification [29, 30], and dynamics modelling [31, 32].59

These sensors can emulate nerve endings within human skin to better detect vibrations during tactile60

interactions. Therefore, incorporating both sensor modalities can yield tactile feedback more akin61

to human sensations, enabling the robot to learn a human-like tactile-guided control strategy.62

Learning from human demonstrations. Learning from human demonstrations is a long-standing63

research topic. One group of methods learns the robot behaviors from human videos [33–35]. How-64

ever, these methods adopt only visual sensing, which can be easily collected by low-cost cameras65

or accessed via online videos. As a result, they mostly focus on high-level scene reasoning rather66

than fine-grained, contact-rich tasks, which often require tactile feedback for reliable execution. To67

incorporate the tactile data into the demonstrations, recent works have turned to using robot teleop-68

eration systems [6–8, 36–38], where a robot is equipped with all necessary sensors, including tactile69

sensors, and is directly controlled by a human operator during task execution. This multi-modal70

dataset will then be used to train robot policies. However, human operators must guide the robot71

using visual feedback, thereby creating a gap between the visual sensing used for data collection and72

the tactile sensing recorded for policy learning. Furthermore, collecting 6D dynamic motions for73

contact-rich manipulations via teleoperation is challenging. Therefore, in this work, we propose to74

collect human tactile demonstrations, in which the sensing gap is addressed and the demonstration75

motions are more versatile and dynamic.76

Imitation learning. Offline imitation learning (IL) is an effective strategy to learn robot policies77

in the real world. We consider two classes of IL methods: parametric methods [39–41] and non-78

parametric methods [12, 42, 43]. Parametric methods typically train neural networks to map ob-79

servations to expert actions. While general in principle, they are prone to covariant shift and com-80

pounding errors [44]. Our method instead adopts a non-parametric imitation learning method. These81

methods constrain robot behaviors to the demonstrated data via techniques such as nearest-neighbor82

lookup [12]. While they may be less general, they offer a safer alternative to their parametric coun-83

terparts, which is crucial for the real-world contact-rich manipulation tasks considered in this work.84

3 MimicTouch Framework85

We aim to enable the robot to resolve contact-rich manipulation tasks by learning control strat-86

egy from human tactile demonstrations. To achieve this, we propose a novel learning framework87

named “MimicTouch”. It first introduces a human tactile-guided data collection system (Sec. 3.1)88

to collect a multi-modal tactile dataset from human demonstrators. Then, to emulate the human’s89

tactile-guided control strategy for successful robot execution, MimicTouch has three distinct learn-90

ing phases. Firstly, it learns lower dimensional tactile representations from the human tactile demon-91

strations in a self-supervised manner (Sec. 3.2). Next, it derives an offline policy with the learned92

representations using a non-parametric imitation learning method [12] (Sec. 3.3). Lastly, it refines93

the offline policy through online residual reinforcement learning (Sec. 3.4). Note that this refinement94

phase is efficient and reliable as the offline policy encodes human’s tactile-guided control strategy.95

The overall MimicTouch framework is shown in Fig. 2.96

3.1 Collecting Human Tactile Demonstrations97

To collect tactile demonstrations, current teleoperation systems have three key limitations: i). limited98

scalability due to the need for a robot to collect demonstrations [10], ii). long training time and99

expertise to become proficient with the system for fine-grained manipulation, and iii). sensing gap100

between the visual sensing used for collection and recorded tactile sensing. To address these, our101

key innovation is a system that enables humans to provide tactile demonstrations with their hands.102

The system is elaborated in Fig. 6 (Appendix. A), and it collects the pose of human fingertips, tactile103

images, and audio signals when human demonstrators perform contact-rich insertion tasks.104

The data collection system consists of the following components. We use the RealSense camera105

with Aruco Marker [45] for human fingertip pose tracking. The tracked fingertip poses are then106

treated as the robot end-effector’s poses after calibration and filtering (Appendix. C.2). We also107

use the GelSight Mini [46], a compact vision-based tactile sensor that is conveniently mounted onto108

human fingertips using a custom fixture, to estimate the contacts between the object and the fingertip.109
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Notably, we only use one tactile sensor in our experiment setup instead of two. The Audio data,110

which is helpful for manipulation tasks due to its sensitivity to contact vibration signals [28, 47],111

is captured using the HOYUJI TD-11 piezo-electric contact microphone. Considering the potential112

discrepancies in the mechanical vibrations between the human and the robot, the microphone is113

placed at the base of the insertion hole to ensure signal consistency.114

3.2 Learning Tactile Representation115

The policy learning on high-dimensional sensor inputs struggles with real-world deployment due116

to computational burden and sensor noise. Additionally, in this work, variations may exist be-117

tween sensor inputs from human tactile demonstrations and real-time robot sensor feedback due to118

discrepancies in finger-object contact force. Therefore, inspired by recent works that learn lower-119

dimensional embeddings for image-guided imitation learning [6, 12, 48] which can discover the120

appropriate features that are helpful for policy learning, we first learn the compact representation121

for both tactile and audio sensor data using self-supervised learning methods (part (b) in Fig. 2).122

Intuitively, it identifies a low-dimensional embedding space where differently augmented images,123

such as tactile images or audio spectrum, are projected to a similar embedding. As a result, these124

embeddings are more efficient for online processing and more robust to task-irrelevant sensor noise.125

This learning phase consists of the following two parts.126

Data collection. We collect task-specific tactile-audio data from the human demonstrator. The127

dataset encompasses successful, failed, and sub-optimal demonstrations. For each, we segment the128

audio data at 2Hz. In total, we collect 7657 tactile images and 1,000 audio segments. More details129

are shown in Appendix. B130

Self-supervised learning. We employ the Bootstrap Your Own Latent (BYOL) [49] for tactile131

images and BYOL for audio (BYOL-A) for audio segments [50], since they have demonstrated132

desired performance in computer vision [49], audio representation [50], and robotics [7, 28, 36]133

tasks. Details about BYOL and BYOL-A are included in the Appendix. B.134

3.3 Learning Offline Policy from Human Tactile Demonstrations135

Leveraging the learned representations, we then learn the robot policy from the human tactile demon-136

strations. Here, one unique challenge is that the human hand moves much faster than the robot,137

resulting in sparse temporal observation-action samples (i.e., large action values per observation).138

Also, human tactile demonstrations might partially be out-of-domain (OOD) demonstrations for139

robot policy due to the embodiment gap (e.g., different motion capability and finger-object contact140

forces). Therefore, executing a parametric policy might exhibit unreasonable robot behaviors as they141

are prone to covariant shift [44] (see Sec. 4.2.1 for experimental validation). As a result, we use a142

non-parametric imitation learning method [12] to ensure the execution efficacy of the policy learned143

from human tactile demonstrations (part (c) in Fig. 2). In addition to the learning algorithm, data144

pre-processing is necessary for synchronization and the details are included in Appendix. C.145

Non-parametric imitation learning. We build our algorithm on the VINN framework [12] by146

extending it to tactile-audio representation. At the i-th time step, the observations and actions are147

denoted as (oTi , o
A
i , o

EE , ai), where oT is the tactile representation, oA is the audio representation,148

oEE is the robot end-effector pose, and the action a is defined by the 6D delta pose of the robot149

end-effector, including a delta position and a delta Euler angle. Then, we extract tactile and audio150

features (yTi , y
A
i ) from (oTi , o

A
i ) using the pre-trained representation encoders, respectively. These151

tactile embeddings and the robot end-effector pose (yTi , y
A
i , o

EE
i ) are formulated as the key features152

of the demonstration library, with each associated with a corresponding action value ai. Given the153

varying scales of these inputs, we normalize them such that the maximum distance for each input154

is unity in the library. In robot execution, for a given real-time observation (ôTi , ô
A
i , ô

EE
i ), we first155

obtain the query feature (ŷTt , ŷ
A
t , ô

EE
t ), and then search the demonstration library for a nearest-156

neighbor-based action prediction.157

3.4 Learning Residual Policy through Online Reinforcement Learning158

The offline policy learned from human tactile demonstrations might not guarantee task success when159

deployed on the physical robot. This could be due to: i). morphological differences between the160
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human hand and the robot gripper, ii). inaccurate fingertip tracking caused by fast movements, and161

iii). underexplored contact effects. Therefore, motivated by recent works using pure RL [17–20, 51]162

to learn tactile policies, we further leverage online reinforcement learning that allows in-domain163

robot interactions (part (d) of Fig. 2). It is noteworthy that the previous pure RL methods often164

generate quasi-static motions and utilize a limited action space [17–19, 51] because they learn from165

scratch without effective priors. On the contrary, we intend to leverage the best of both advantages166

by RL fine-tuning the offline policy learned from human tactile demonstrations.167

Since it is infeasible to directly fine-tune the non-parametric policy, we instead learn a residual168

policy. Same as the offline policy, the input to the residual policy πr is (ŷTt , ŷ
A
t , ô

EE
t ) and output169

is the residual action ari . Considering we use 6D continuous action space and sparse observation-170

action pairs (around 70 actions per trajectory), we opt for SAC [52] to handle the continuous action171

space with entropy regularization and to generate a replay buffer to increase the size of training data.172

The pseudocode of the RL training is included in Appendix. D. Finally, the robot action is the sum173

of the action generated from offline policy πi and the action from the residual policy πr.174

Another critical component of residual RL is the reward design, which must balance exploitation and175

exploration. To address this, we combine an expert-aligned reward with a task-specific reward. The176

expert-aligned reward encourages a policy distribution that mimics the demonstrations, whereas the177

task-specific reward drives exploration to optimize the in-domain robot policy. More details about178

pseudocode, policy design, and rewards are included in Appendix. D.179

4 Experiments180

In this section, we first describe the experiment setting and the data collection throughput to high-181

light that MimicTouch can efficiently collect useful demonstrations (Sec. 4.1). Then we introduce182

the Offline Policy Evaluation to validate the efficacy of the offline policy and highlight the benefits183

of using human tactile demonstrations (Sec. 4.2), and the Online Policy Improvement and General-184

ization Evaluation to demonstrate the efficiency of learning the residual policy through online RL185

and the superior zero-shot generalization capability (Sec. 4.3).186

Hardware setting. All experiments are conducted on a Franka Emika Panda Arm. For each task,187

the learned policy generates the 6-DoF pose command and then maps it to 7-DoF joint torque actions188

using an inverse kinematics solver and a low-level built-in controller.189

Teleoperation setting. We compare our human tactile-guided data collection system with190

Spacemouse-based teleoperation, a popular teleoperation interface for manipulation tasks [9–11].191

To collect a similar number of observation-action pairs for each trajectory, we collect one robot192

state, one tactile image, and 0.5s audio segment at 5Hz. Since collecting teleoperation data necessi-193

tates considerable expertise, we allocate approximately 5 hours to practice with this system.194

Tasks. We focus on two-piece insertion tasks that exemplify the challenge of many contact-rich195

manipulation settings. We 3D-print a cylinder and an insertion hole base and set up the same task196

environments for both data collection settings. An example of this task has been shown in Fig. 1197

4.1 Human Tactile Demonstration Collection System198

In this section, we demonstrate that Human Tactile Demonstrations can greatly improve data col-199

lection throughput for contact-rich manipulation tasks. We begin by determining the usability of200

a demonstration trajectory based on the following two metrics: i) the robot successfully inserts the201

object into the hole without any slipping or falling, and ii) the robot completes the task within 100202

actions. Using these criteria, we record the time length of collecting 20 usable demonstration tra-203

jectories by using our customized system (3.1) and teleoperation system (4). Then, we evaluate the204

data collection throughput (see Table. 1) in two metrics: i). the number of usable demonstrations205

collected per hour, and ii). the success rate for collecting usable demonstrations.206

The results in Table. 1 support our insights: i). human tactile demonstrations can be collected sig-207

nificantly more efficiently than teleoperation systems for contact-rich tasks, and ii). human tactile208

demonstrations can seamlessly integrate human’s tactile feedback and motion capability, whereas209

teleoperation systems struggle to capture such dynamic tactile-guided motions. These factors to-210

gether result in much lower data collection efficiency and success rates of the teleoperation system.211
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Methods Frequency Success Rate
Human Tactile Demonstrations 104 traj/hr 83.3% (20/24)
Teleoperation 19 traj/hr 38.5% (20/52)

Table 1: Data collection throughput for human tactile demonstrations and teleoperation.

4.2 Offline Policy Evaluation212

4.2.1 MimicTouch effectively learns from human tactile demonstrations213

In this subsection, we evaluate the offline policy learned from the human tactile demonstrations214

using both VINN and a parametric imitation learning method. Specifically, we aim to test whether215

the offline policies can be deployed in real-world environments within the desired error tolerance,216

which is crucial for physical robot execution. To evaluate it, we used the data collection system (Sec.217

3.1) to collect 20 noise-free data sequences as the datasets to learn both offline policies. For testing,218

we gather another 5 data sequences with random noise to emulate the real-world environments219

(details are in Appendix. E). We then compute the mean square error loss (MSE Loss, defined220

in Appendix. F) to evaluate the policies on the testing set.221

For the baseline parametric imitation learning method, we select the MULSA [6], which has been222

previously demonstrated effective in multisensory robot learning for insertion tasks. In our setting,223

we use the same sensor input (yTi , y
A
i , o

EE
i ) as in the VINN method to generate the continuous 6D224

delta action ai. The same MSE loss is used for policy training and validation.225

For both offline policies, we calculate the MSE losses between the generated action sequence and226

the ground truth action sequence in the testing set. We observed that the MSE loss from the VINN227

policy is 0.21, which is significantly lower than that of MULSA policy (1.53). This suggests that228

the VINN policy can generate more accurate 6D continuous actions, indicating it is more suitable229

for subsequent online real-world RL fine-tuning. Notably, since the MSE Loss of MULSA is signif-230

icantly higher, we do not use it for further real-world experiments.231

Additionally, we conduct the ablation study on the choice of multi-modal sensor inputs in Ap-232

pendix. G. The results suggest that multi-modal tactile feedback is crucial for the success of contact-233

rich insertion tasks, particularly during the insertion phase when most contact occurs.234

4.2.2 Human tactile demonstrations trains better policies than teleoperated demonstrations235

In this subsection, we compare the performance of the offline policies trained from human tactile236

demonstrations and teleoperation demonstrations. We collect 20 trajectories for each, and then we237

use the same VINN method to learn the offline policies for both sets of demonstrations. We evaluate238

the policies in two manners: i) the task success rate over 25 policy rollouts, and ii) the action serial239

numbers (right part of Fig. 3), i.e., the indexed numbers of the selected actions in the corresponding240

trajectory of the demonstration library, for each action of the rollout trajectories.241

We first report that the task success rate of the offline policy rollouts from human tactile demonstra-242

tion is 40%, whereas that of the policy rollouts from teleoperation data is only 12%. Then, in the243

right part of Fig. 3, we show the mean and variance of the action serial numbers of three successful244

rollout trajectories for each offline policy. For the human tactile demonstrations, we observe a linear245

relationship with minimal variance. On the contrary, the action serial numbers for the teleoperation246

policy exhibit a non-linear relationship with a significantly larger variance, particularly during the247

insertion phase. This performance discrepancy arises because the majority of contacts occur dur-248

ing this phase, and the teleoperation lack of human tactile feedback is not well-suited for capturing249

these contact-rich events. Therefore, the indexes of the selected key features tend to be more disor-250

dered. A similar conclusion can be drawn from the screenshots (left part of Fig. 3) for one successful251

rollout of both policies. The Human Tactile Demonstrations policy exhibits dynamic tilting for ob-252

ject insertion, which emulates the demonstrated human’s tactile-guided control strategy (see Fig. 1).253

However, the teleoperation policy forcefully inserts the object with little orientation, indicating that254

teleoperation demonstrations capture less versatile motions that are necessary for contact-rich tasks.255

Therefore, combined with the results in Sec. 4.1, MimicTouch not only efficiently collects human256

tactile demonstrations, but also enables effective policy learning using these demonstrations.257
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Figure 3: Left: Qualitative results for Human Tactile Demonstrations policy and Teleoperation
policy. Right: Visualization of the action serial numbers for three trajectories generated by both
policies. Solid red lines indicate mean trends and shaded areas show± standard deviations. The left
side of the dashed orange line is the Reach phase, and the right side is the Insertion phase.
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Figure 4: Left: Demonstrations of the online RL fine-tuning process, which further improves the
task performance. Right: Quantitative task evaluations for offline policies learned from human
tactile demonstrations (Human) and teleoperation (TeleOp) during online RL fine-tuning show that
Human significantly outperforms TeleOp in terms of task success rate and RL training efficiency.

4.3 Online Policy Improvement and Generalization to New Settings258

In this section, we evaluate the final policy trained through online reinforcement learning (RL). To259

ensure the robustness of the RL policy, we perform domain randomization on the robot’s starting260

position so that the initial object-hole contact is located differently. For the policy update, at each261

iteration, we use five newly collected trajectories along with another five randomly selected trajec-262

tories from the replay buffer.263

Online RL fine-tuning significantly and efficiently improves task performance. We evaluate264

the trained policy every 20 minutes, approximately after every 13 RL epochs. After each hour,265

we compute the task success rates over 25 policy rollouts, in alignment with the offline policy266

evaluation. For other time instances, we only compute the task success rates over 10 policy rollouts267

to minimize sensor wear. The evaluation results are shown in Fig. 4, and we can observe that the268

policy can reach 96% task success rate in 3 hours. Additionally, the offline policy can reach 88%269

task success rate after 2-hour RL fine-tuning, which is significantly more training efficient than the270

policy learned from teleoperation, which could only achieve 32% task success rate at that time. This271

result supports the effectiveness of online RL fine-tuning, as it allows the robot to further interact272
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Figure 5: Setup of zero-shot generalization tasks.

with the task environment. Moreover, it once again highlights the importance of using human tactile273

demonstrations since the offline policy learned from teleoperation demonstration exhibit significant274

training inefficiency in the subsequent online RL fine-tuning.275

MimicTouch policy exhibits superior zero-shot generalization capability. We evaluate the zero-276

shot generalizability of the MimicTouch final policy. We consider the following generalization set-277

tings: i). Shifting Positions: an insertion task with the hole positions shifted for 0.8cm in either278

±x or ±y horizontal directions, ii). Tilting Angles: an insertion task with the hole angle tilted for279

10 degrees or 20 degrees, iii). Two-stage Dense Packing: a two-stage dense insertion task, which280

requires the robot to perform two consecutive insertion alignments, iv). Multi-material Dense Pack-281

ing: an insertion task where the hole contains multiple objects, such as a pen, tissues, or a sponge,282

and v) Furniture Assembly [53, 54]: an insertion task, which requires the robot to insert and adjust283

the leg into a small hole in a table for screwing. Each setting is depicted in Fig. 5. Additionally, to284

demonstrate the complexity of these tasks, we introduce another baseline: Openloop Policy, where285

we collect five successful insertion trajectories in the initial setting and execute each of these trajec-286

tories for those generalization tasks five times for each of the tasks. See Appendix. H for the details287

of each task and the policy evaluation process.288

Policy Shift 10◦ 20◦ Two-stage Rigid Soft Assem (I) Assem (A) Assem
Openloop 60% 56% 40% 52% 52% 36% 32% 37.5% 12%
MimicTouch 92.5% 92% 80% 88% 80% 64% 76% 68.4% 52%

Table 2: Task success rate for each generalization task. Specifically, Shift is Shifting Position,
10◦and 20◦are different tilted angles for Tilting Angles, Two-stage is two-stage Dense Packing,
Rigid means the object contacts the pen in Multi-material Dense Packing, Soft means the object
contacts the tissue and sponge in Multi-material Dense Packing, Assem (I), Assem (A), and Assem
are the insertion, adjustment, and overall results for Furniture Assembly respectively.

We report the task success rate of both policies in Table. 2. Based on these results, we can observe289

that the MimicTouch policy can significantly outperform all the openloop policies in all those gen-290

eralization tasks. Also, since the Openloop policy has lower success rates in all the generalization291

tasks, it indicates the robustness of the MimicTouch policy in different challenging generalization292

domains. We also include the qualitative results and detailed analysis in Appendix. I.293

5 Limitation and Future Work294

MimicTouch pioneers the pathway to learning human tactile-guided control strategies from human295

tactile demonstrations. However, it still has several limitations for future improvements. Firstly,296

MimicTouch still requires several hours to RL fine-tune the policy to address the embodiment gap297

and enrich the contact reasoning. We will explore a better representation learning method to fur-298

ther reduce the gap between humans and robots. Secondly, MimicTouch is task-specific and can299

not directly generalize human’s tactile-guided control strategy to other contact-rich manipulation300

tasks. One potential solution is to learn a generalizable tactile-based dynamic model, rather than a301

task-specific control policy. Finally, the method of learning to perform contact-rich manipulation302

tasks from human tactile demonstrations could be extended to other robot tasks, such as dexterous303

manipulation, bimanual manipulation, and deformable object manipulation.304

6 Conclusion305

We presented MimicTouch, a multi-modal imitation learning framework that: i) enables humans306

to perform tactile demonstrations with their hands without a robot in the loop ii) learns from such307

demonstrations and safety transfer to robot with non-parametric imitation learning, and iii) improves308

the policy performance with residual-based online RL to bridge the human-robot embodiment gap.309

We show that MimicTouch enables high-throughput data collection and achieves high success rate310

and generalization across a wide range of two-piece insertion and assembly tasks.311
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Appendices489

A Data Collection490

In this section, we show the novel data collection system in Fig. 6.

Proprioception

Tactile Images

Audio Signals

Figure 6: The human tactile demonstrations collection system.
491

B Representation Learning492

Data Collection For Representation Learning, we collect a large task-specific dataset that contains493

7657 tactile images and 1000 audio sequences. We collect 100 trajectories, each of them approxi-494

mately five seconds long and containing around 70 tactile images and 10 audio sequences. These495

trajectories contain various data qualities, which include successful cases, failure cases, and sub-496

optimal cases. In detail, successful cases refer to the cases that human finishes the task with smooth497

trajectories; failure cases mean that human did not insert the object successfully or used more than498

five seconds to finish this task; sub-optimal cases mean that human used unnecessary motions to499

finish the insertion task.500

BYOL BYOL [49] generates two augmented views, v ∆
= t(x) and v′

∆
= t′(x), from a given x by501

applying image augmentations t ∼ T and t′ ∼ T ′ respectively, where T and T ′ represent distinct502

augmentation distributions. The architecture of BYOL comprises a primary encoder fθ and a target503

encoder fξ, where the latter being an exponential moving average of the former. Given the aug-504

mented views v and v′, they are processed to yield representations y and y′. These representations505

are subsequently transformed by projectors gθ and gξ to produce higher-dimensional vectors z and506

z′. The primary encoder and its associated projector are designed to predict the output from the tar-507

get projector, resulting in qθ(zθ) and sg(z′ξ). The model’s output consists of l2-normalized versions508

of these predictions, which are trained using a similarity loss function. Post-training, the encoder fθ509

is utilized for feature extraction from observations.510

To utilize BYOL in tactile images, we scale the tactile image up to 256x256 to work with standard511

image encoders. We use the ResNet [55] architecture, also starting with pre-trained weights. Un-512

like SSL (self-supervised learning) techniques used in visual images, we only apply the Gaussian513
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blur and small center-resized crop augmentations, since other augmentations such as color jitter and514

grayscale would violate the assumption that augmentations do not change the tactile signal signifi-515

cantly. For each input, the trained model will generate a 1× 2048 representation vector.516

Audio Representation Learning BYOL-A [50] is an extended version of BYOL to audio rep-517

resentation learning, processing log-scaled mel-spectrograms through a specialized augmentation518

module. To utilize BYOL-A in our audio data, we down-sampled signals from 44.1kHz to 16kHz,519

with a window size of 64 ms, a hop size of 10 ms, and mel-spaced frequency bins F = 64 in the range520

60–7,800 Hz. Then, the Pre-Normalization step stabilizes the input audio for subsequent augmenta-521

tions. Once normalized, the Mixup step introduces contrasts in the audio’s background, defined by522

the log-mixup-exp formula:523

x̃i = log((1− λ) exp(xi) + λ exp(xk))

where xk is a mixing counterpart and λ is a ratio from a uniform distribution. The next one is the524

RRC block, an augmentation technique, that captures content details and emulates pitch shifts and525

time stretches. For each input, the trained model will generate a 1× 2048 representation vector.526

C Data Pre-processing527

C.1 Sensor Data Alignment528

Each sensor operates at different frequency: i) RealSense operates at 60 Hz with a resolution of529

320x240 pixels, ii) GelSight Mini streams tactile images at 15 Hz with 400x300 pixel resolution,530

and iii) HOYUJI TD-11 piezo-electric contact microphone has a 44.1kHz sampling rate, and the531

audio data is segmented at 2Hz.532

Therefore, to ensure synchronization across our sensors, we first address the disparate sampling533

rates of the fingertip poses, tactile images, and audio sequences, which are 60Hz, 15Hz, and 2Hz,534

respectively. Specifically, we downsample the fingertip poses to 15 Hz. For the audio data, instead535

of collecting entirely new 0.5-second segments, we record the extended audio signals at intervals536

of every 0.07 seconds. As a result, the new 0.5s segment has a new-collected 0.07s interval and537

an old overlapped 0.43s segment in the past, which results in an overlap of 0.43 seconds between538

consecutive audio segments. Therefore, all sensor inputs are sampled at 15Hz.539

C.2 Calibration and Filtering of Fingertip Poses540

The 6D human fingertip poses extracted from the AruCo marker include 3D positions along with541

rotation vectors. To use these fingertip poses as the end-effector’s poses for robot policy learning,542

we need to address two problems: i). developing a calibration method to align the data collection543

system with the robot execution system, and ii). implementing a filtering method to generate smooth544

trajectories.545

Calibration Given that data collection and robot experiments occur in disparate scenarios, it is546

crucial to align our human-centric data collection system with the physical robot system. Initially,547

we record the distance between the object (starting point) and the base (ending point) within the data548

collection system and replicate this setup in the robot environment. Following this, six equidistant549

positions between the starting and ending points are identified within both systems. The object is550

gripped at these predetermined positions using both hands and the robot’s end-effector so that we551

can capture the corresponding poses. In this calibration process, the hand poses, denoted as the552

“Eye” in the calibration function, are referenced to the camera frame, while the end-effector poses,553

represented as the “Hand” in the calibration system, are referenced to the robot frame. Conclusively,554

we employ the calibrateHandEye function from OpenCV, using the six captured poses, to calibrate555

these two frames (camera frame and robot frame).556

Filtering Given the inherent noise and occasional outliers in the poses obtained from the RealSense557

and AruCo markers, it is imperative to implement post-processing techniques to ensure the quality558

and smoothness of the trajectories. For each pose sequence, outliers are detected by sorting the559

values of each delta transformation (i.e., the delta translations and the delta Euler angles). The560

Interquartile Range (IQR) method is employed to establish the upper and lower bounds, which are561

then used to identify outliers. The IQR is defined as: IQR = Q3 − Q1 where Q3 and Q1 are the562

third and first quartiles, respectively. Outliers are replaced using a median filter with a window size563
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Algorithm 1 Online Residual Reinforcement Learning

1: Input: offline policy πi, randomly initialized residual policy πr
2: Input: step size sequences {βt}, number of iterations K, Replay Buffer D
3: Initialize replay buffer D with pre-collected data
4: for k = 1 to K do
5: Sample mini-batch Dk from Replay Buffer D
6: Obtain current trajectory Ck by executing πi + πr
7: To collect more data in D: D ← D ∪ Ck
8: Combine Dk and Ck to form batch Bk for update
9: for all (s, ai, r, s′) ∈ Bk do

10: ai ← πi(s) . Obtain latent action
11: ar ← πr(s) . Obtain residual action
12: â← ai + ar . Combine latent and residual actions
13: Qr ← Qr(s, ai) + r + γQr(s

′, πi(s
′))

14: πr ← πr − α∇πr
L(πr) . Update residual policy with gradient step

15: end for
16: end for
17: Return: Trained residual policy πr

of 3. To enhance the temporal consistency of the estimated hand and object pose, a digital low-pass564

filter is applied to eliminate high-frequency noise. Specifically, the filter has a sampling frequency565

of 5Hz and a cutoff frequency of 2Hz. The low-pass filter can be represented as:H(f) = 1

1+( f
fc
)
2566

where f is the sampling frequency and fc is the cutoff frequency.567

D Details of RL training568

Training pipeline The overall pseudo-code for RL Training is given in Alg. 1.569

RL policy details For the residual policy πr within our framework, we employ the Soft Actor-570

Critic (SAC) algorithm with an MLP architecture. The training strategy aims to effectively combine571

reinforcement learning principles with residual corrections, thus enhancing the overall performance572

of the system. The following formula represents the objective for training the residual policy:573

πr = argmax
π

{
E(s,a)∼D [Q(s, a+ π(s))− α log π(a|s)]

}
• Q(s, a+ π(s)): The Q-value function, which estimates the value of executing the residual574

action π(s) in addition to the base action a in the state s. This represents the total action575

influenced by both the offline policy and the residual corrections suggested by πr.576

• E(s,a)∼D: The expectation over state-action pairs sampled from the replay buffer D, which577

contains data from both past experiences and current new explorations.578

• α log π(a|s): The entropy regularization term for the policy π, which encourages explo-579

ration by penalizing the certainty of the policy’s action selection. This term is crucial in580

SAC to ensure sufficient exploration and avoid premature convergence to suboptimal poli-581

cies.582

• π(a|s): The policy network (MLP) outputs the probability distribution over actions given583

the state s, from which the action a is sampled.584

This formula ensures that the residual policy πr learns to adjust the actions generated by the offline585

policy by optimizing the SAC objective. It balances the maximization of expected returns (via586

Q-values) and the maintenance of behavioral diversity (via entropy regularization), allowing πr to587

adapt and refine actions based on real-time environmental feedback and historical data from the588

replay buffer.589

RL Reward Design We will give a detailed explanation for each component in our reward design.590

Distance Reward:591

d = 1− tanh(10.0 ∗ ||distance||2)
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where the distance is between the current position of the gripper center and the target gripper center.592

Orientation Reward:593

o = 1− tanh(7.5 ∗ ||diff ori||2)
where the diff ori stands as the quaternion difference between the current gripper orientation and594

the target gripper orientation.595

Penalty for blocking596

c =

{
0.2, successfully complete this action
0, cannot complete this action in 0.5s

(1)

Penalty for Slippery597

s =

{
0.5, ||yit − yi−1

t || ≥ 0.5

0, otherwise
(2)

The yit and yi−1
t stands for the embeddings of the tactile images in the current step i and the last step598

i− 1.599

Overall Rewards600

R =

{
1, if success
αDKL(P‖Q) + βd+ γ · o− c− s, otherwise

(3)

In Eqn. 3, P is the executed trajectory, Q is the expert trajectory, DKL(P‖Q) is the KL Divergence601

between the executed trajectory and the expert trajectory, d, o, c, s are defined above. The setup of602

each weight: α = 0.5, β = 0.3, γ = 0.2.603

E Emulate the Physical Environment for Policy Evaluation604

To emulate the physical robot environment, we introduce random noise to those 10 unseen data605

sequences. The robot state space input undergoes a random position noise within the range606

[−3cm,+3cm] for each axis. Gaussian noise, denoted asN (0, σ), is added to both the tactile image607

and audio signal. In this notation, N (0, σ) signifies a Gaussian distribution with a mean of 0 and a608

standard deviation of σ. For tactile images, the noise affects pixel values in the range [0, 255], while609

for audio data, it impacts signal values in the range [0, 1]. Given their distinct ranges, we apply610

Gaussian noise with standard deviations of σ = 100 for tactile images and σ = 0.4 for audio data.611

F MSE Loss612

For calculating the MSE Loss between two action sequences, we need to normalize the actions’613

translation vectors and rotation vectors since they have different scales. Specifically, we use min-614

max normalization on both the translation vectors and rotation vectors, where the max vector and615

min vector are selected from the training set. As a result, translation vectors and rotation vectors616

will have the same scale for calculating the MSE Loss. The formula is shown as:617

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Where: yi represents the ground truth normalized action, ŷi represents the generated normalized618

action, and n is the number of all action steps.619

G Ablation Study: Do Multi-Modal Tactile Feedback Improve the Task620

Performance?621

In this section, we evaluate the performance of our multi-modal tactile embeddings. We consider622

the following baselines: i). MimicTouch w/o T & A: MimicTouch without tactile or audio embed-623

dings, ii). MimicTouch (T): MimicTouch incorporating only tactile embeddings, iii). MimicTouch624
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Models MimicTouch w/o T & A MimicTouch (T) MimicTouch (A) MimicTouch (T + A)
MSE Loss 0.62 0.38 0.48 0.21
Success Rate 4% 24% 16% 40%

Table 3: MSE Loss over test sets and Task success rates of 25 policy rollouts.

Figure 7: Visualization of the impact of each sensor modality during policy execution. The left side
of the dashed orange line is Reach Phase, and the right side is Insertion Phase.

(A): MimicTouch incorporating only audio embeddings., and iv). MimicTouch (T + A, Ours): Mim-625

icTouch incorporating both tactile and audio embeddings. We evaluate the policy performance in626

terms of the MSE losses over the test sets (see Sec. 4.2.1) and task success rates over 25 policy627

rollouts. In addition, we visualize the impact of each sensor modality during policy execution.628

Specifically, we plot the normalized distance between the query feature and the selected key feature629

for each sensor input. A larger distance means that the corresponding sensor modality contributes630

more in selecting the key feature from the demonstration library.631

From Table. 3, we observe that without using both tactile images and audio signals, the MSE loss632

(task success rate) is 0.62 (4%), which is significantly higher (lower) than the others. By incorporat-633

ing both tactile and audio feedback, the MSE loss can be as low as 0.21, and more importantly, the634

task success rate can reach 40%.635
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Figure 8: Policy rollouts of some failure examples with only tactile feedback or only audio feedback.

As shown in Fig. 7, tactile and audio inputs start to play important components during the Insertion636

phase, when most contacts occur. We also have qualitative results shown in the Fig. 8. According637

to those results, we can find that a lack of tactile feedback easily leads to incorrect motion when638

contact appears, whereas the lack of audio feedback easily leads to an inability to detect external639

collisions.640
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Therefore, we can conclude that the multi-modal tactile feedback is crucial for the success of641

contact-rich insertion tasks.642

H Generalization Setting643

In this section, we describe the setting of each generalization task.644

Shifting Positions: In this generalization task, we shift the hole positions for 0.8 cm in either ±x645

or ±y to test the generalization ability for finishing the insertion task with under varied alignment646

conditions.647

Tilting Angles: In this generalization task, we tilted the hole angle for 10 degrees or 20 degrees to648

test the generalization ability for finishing the insertion task with different contact positions.649

Two-stage Dense Packing: We introduce the two-stage dense packing task, which requires the robot650

to perform two consecutive alignment adjustments to complete the dense packing process. Each hole651

will challenge the robot’s ability to adjust its alignment according to tactile feedback efficiently.652

Multi-material Dense Packing: In this generalization task, the robot is required to insert the cylin-653

der into the hole which contains multiple objects: pen, tissue, and sponge. This setting has rigid654

objects (pen) and deformable soft objects (tissue and sponge) with different materials and shapes,655

which challenge the robot’s ability to accomplish the task with different tactile feedback from dif-656

ferent materials.657

Furniture Assembly: In this generalization task, the robot is required to insert the cylinder into a658

small hole in a table for screwing. This task will test two aspects of our policy: whether the robot659

can insert the object into a smaller hole, and whether the robot can adjust it to a position, that is deep660

enough to be skewed by a human-defined simple script (to rotate the end-effector for 120◦), based661

on the tactile feedback from the threads in the hole.662

Policy Evaluation Process: We evaluate the policy performance in those five different generaliza-663

tion settings for both MimicTouch final policy and the Openloop Policy. For Shifting Positions, we664

rollout the policies 10 times in each direction of±x or±y, resulting in a total of 40 evaluations. For665

Tilting Angles, we rollout the policies 25 times for both tilting directions in ±x, resulting in a total666

of 50 evaluations for the 10◦ tilting and 20◦ tilting, respectively. For Two-stage Dense Packing, we667

rollout the policies 25 times. For Multi-material Dense Packing, we rollout the policies 25 times on668

both rigid object “pen” (Rigid in the table) and deformable soft objects “tissue and sponge” (Soft in669

the table). For Furniture Assembly (Assem in the table), we rollout the policies 25 times. This task670

has two sub-evaluation metrics: insertion (Assem (I) in the table) and adjustment (Assem (A) in the671

table). Notably, the success rate for Assem (I) is the success rate for the number of attempts (25),672

and the success rate for Assem (A) is the success rate when the insertion is successful.673

I Generalization Results674

In this section, we summarize the zero-shot generalization results based on the quantitative results675

shown in Table. 2, and the qualitative results shown in Fig. 9.676

• MimicTouch policy can zero-shot transferring to insertion tasks with different contact po-677

sitions, tilted angles, and even different sizes of holes (Aseembly (Insertion)).678

• For the Two-stage Dense Packing, MimicTouch policy displays its robustness to adjust679

according to multiple stages of contact information according to the quantitative result and680

the video. This shows that our model can make continuous and correct adjustments based681

on the continuously varied contact information.682

• MimicTouch policy also shows its power in the multi-material task domains. Due to dif-683

ferent materials in the environment, the sensor feedback will be different from the training684

environment. In this case, our policy still has great performance on other rigid objects (pen).685

For the deformable soft object (tissue and sponge), The success rate is a bit lower because686

of two challenging issues: i). it’s hard to get audio feedback for contact with soft objects,687

ii). sponge sometimes is too soft to get tactile feedback. With those issues, our policy still688

gets 64% success rate. Moreover, the qualitative result from the video shows impressive689

performance in adjusting continuously according to the deformation of the tissue.690
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Figure 9: Task setup and qualitative results for zero-shot generalization tasks

• In the assembly task, MimicTouch policy not only can insert the object into a small hole but691

also can adjust the object to a correct pose and insert it to a deep-enough position according692

to the tactile feedback from the contact between screw threads. This allows us to use a very693

simple script (to rotate the end-effector for 120◦) to solve the assembly task.694
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