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Abstract— Humanoid robots promise transformative capa-
bilities for industrial and service applications. While recent
advances in Reinforcement Learning (RL) yield impressive
results in locomotion, manipulation, and navigation, the pro-
posed methods typically require enormous simulation samples
to account for real-world variability. This work proposes a novel
one-stage training framework—Learn to Teach (L2T)—which
unifies teacher and student policy learning. Our approach
recycles simulator samples and synchronizes the learning trajec-
tories through shared dynamics, significantly reducing sample
complexities and training time while achieving state-of-the-art
performance. Furthermore, we validate the RL variant (L2T-
RL) through extensive simulations and hardware tests on the
Digit robot, demonstrating zero-shot sim-to-real transfer and
robust performance over 12+ challenging terrains without depth
estimation modules. Experimental videos are available online 1.

I. INTRODUCTION

Reinforcement Learning (RL) has revolutionized robotic
control by tackling complex tasks such as dynamic locomo-
tion [1]–[3]. Despite these achievements, policies trained in
simulators often falter when deployed into the real world due
to the inevitable simulation-to-reality gap [4]. Although do-
main randomization [5] is widely used to mitigate these dis-
crepancies, it incurs significantly higher sample complexity
as agents must explore extensive environmental variations.

Recently, teacher-student learning methods have demon-
strated promising results by leveraging an expert teacher
to guide students with restricted observation spaces [6]–
[8]. However, the conventional two-stage training discards
valuable teacher interactions with the environment and of-
ten suffers from mismatches between independently trained
teachers and students. To address these issues, we propose
Learn-to-Teach (L2T): a unified training framework that co-
trains teacher and student agents in a single, interactive stage,
where the student fully utilizes the collected samples.

To quantify L2T’s advantages, we implement L2T-RL, an
RL variant, and benchmark its performance on humanoid lo-
comotion tasks using the Digit robot in Isaac Lab—a state-of-
the-art GPU-accelerated simulator [9]. Our results show that
L2T-RL can achieve stable and superior performance com-
pared to the conventional teacher-student learning paradigm,
requiring 50% fewer samples. Consequently, we deploy our
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trained policy on the robot Digit and conduct extensive
hardware experiments in indoor and outdoor environments.
Strikingly, the resulting student agent, a lightweight LSTM-
based policy, exhibits zero-shot sim2real transfer on the
physical Digit robot across a wide range of terrains, including
gravel, sand, grass, and slopes (Fig. 1). We also test our
control policy on various perturbations such as push recovery,
walking under payload, and walking on slippery or wet
terrains or with the wind blowing (see Fig. 6 and the
supplementary video). Our contributions are as follows:

Efficient training framework: We propose a joint
teacher-student training paradigm that optimizes both poli-
cies simultaneously. Unlike prior decoupled approaches, our
framework enables cross-agent knowledge transfer to the
student policy by dynamically utilizing the teacher’s training
samples directly within a single training stage, avoiding the
need for training from scratch in a separate stage.

Mitigation of teacher-student policy divergence: We
propose a sample mixing strategy to alleviate the imita-
tion gap between the teacher and student, which traditional
privileged learning is unable to address [10]. Both agents
will contribute to the replay buffer following a predefined
schedule when collecting samples. Mixing samples enables
a joint optimization process that mitigates policy divergence
while promoting sample efficiency by letting both agents
explore Out-of-Distribution (OOD) data.

Humanoid RL agent deployment: We demonstrate real-
world locomotion agility through hardware experiments. Our
policy, trained entirely in simulation, enables a physical
humanoid robot to reliably traverse 12+ real-world terrains
(concrete, gravel, slopes, stairs, etc.) and withstand dynamic
perturbations (pushes and payloads) without offline fine-
tuning. The policy achieves high success in unstructured en-
vironments, matching the teacher’s robustness despite using
only proprioceptive inputs without depth estimation modules.

II. RELATED WORK

Teacher-student learning: In the robotics learning com-
munity, teacher-student learning [6]–[8] has gained signif-
icant attention due to its applicability and effectiveness
in addressing sim2real challenges. In this framework, the
teacher agent is trained with complete knowledge of the state
space. After obtaining an expert-level teacher, a student agent
is trained in an observation space that follows the available
sensor configurations on hardware, where the goal is to
imitate the teacher’s action [8]. In this work, we extend this
learning framework by training the teacher and the student
simultaneously in a single stage. Prior work [11] proposed a
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Fig. 1: We implement our L2T-RL algorithm on our bipedal walking robot Digit and deploy it on diverse terrain with various
environmental conditions such as wet grass, gravel, sandy terrain, and slippery surfaces.

method termed Concurrent Teacher Student (CTS) learning,
which also explored the idea of co-training both agents.
However, CTS trains a shared policy across the teacher and
the student, only differentiating the observation encoder and
the critic. This potentially disrupts the training process as
the privileged critic naturally rewards actions that might not
seem valuable to the student. In comparison, L2T trains
two separate agents, with the option of sharing an encoder
network or using an asymmetric learning style critic.

Learning with partial observation: Recent advance-
ments in RL under partial observability have significantly
improved the ability of robotic systems to operate in com-
plex, uncertain environments [8]. Contemporary approaches
often leverage deep recurrent architectures, such as [12],
to infer latent state representations from sequential data,
effectively bridging traditional POMDP solvers with mod-
ern deep RL frameworks. In robotics control, practitioners
construct history-dependent policies from a sliding-window
style observation or rely on the recurrent architecture of
the policy network. At the same time, asymmetric learning
has emerged as another effective strategy to bridge the gap
between training and execution [13]. In these approaches,
the critic network is provided access to privileged, full-
state information during training. Recent works have demon-
strated that such asymmetric actor-critic frameworks improve
sample efficiency and enhance policy robustness [14]. In
this work, we combine these learning techniques, utilizing
a recurrent network and an asymmetric critic, to solve the
underlying POMDP problem efficiently.

Learning from demonstrations: Learning from demon-
strations (LfD) has attracted significant interest in the robot
learning field due to the growing abundance of robot data and
the popularity of simple yet effective imitation learning (IL)
frameworks [15]. LfD has demonstrated impressive results

in controlling robot manipulators for tabletop tasks [16]. A
recent surge of LfD studies in humanoids and bipeds have
shown the promising potential of whole-body control and
loco-manipulation [16]–[19]. However, supervised learning
demands high-quality behavior data, oftentimes through elab-
orate data collection pipelines [16], [19] and/or needs accu-
rate re-targeting to robot states from datasets with different
morphologies On the other hand, the prevalent IL loss is
known to be suboptimal from a pure learning perspective
in previous studies [20]. Thus, in this work, we focus on
a generic algorithm framework to address the sim2real gap
alone, without the interference of possible issues brought up
by LfD methods. Furthermore, our proposed framework can
be easily extended to the LfD setting, which we leave as a
future direction.

Bipedal locomotion over complex terrain: Humanoid
robots recently have gained increasing interest due to their
applicability and versatility [17]–[19], [21]–[25], ranging
from locomotion [26], to manipulation [27]. Prior bipedal
locomotion works [26], [28] have explored the conventional
teacher-student learning paradigm in locomotion tasks. How-
ever, the training process can take significant samples even
with an elaborate training environment design. Concurrent
works also incorporate memory structure into the policy
architecture [11], [26], [29], or learning from demonstrations
collected from various data sources such as human motion
data [30] or data generation using model-based methods [27].
In comparison, we design straightforward and intuitive re-
ward functions for bipeds in general terrain settings, offering
a simple yet effective solution.

III. METHODS

This section introduces our problem setup and notations
and presents our learning framework. A Markov Decision
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Fig. 2: Learn to Teach (L2T) training pipeline. The teacher agent utilizes a neural network for the policy, which comprises
three fully connected layers with sizes [512, 256, 128]. The student agent’s policy network deployed on the robot is an LSTM
network with a hidden layer of 128 units, followed by fully connected layers with shape [512, 256, 128]. The teacher learns
via conventional RL methods, while the student updates its policy by imitating the teacher.

Process (MDP), denoted as M, is described by a tuple:
M = ⟨S,A, R,P,Π, γ⟩, where an agent starts with a given
state s0 following the initial state distribution p(s0). At any
time step t, the agent at the current state st ∈ S takes
an action at ∈ A following the agent’s policy π ∈ Π,
which defines a probability distribution over action space
for each state. While receiving an instantaneous scalar reward
r(st, at) ∈ R, the state of the agent transitions to a new state
st+1 ∈ S following a transition model P(·|st, at). γ specifies
the discount factor. The goal of the agent is to maximize
the expected discounted sum of rewards the agent receives
over time maxπ E [

∑∞
t=0 γ

tr(st, at)], where the expectation
is taken over actions at ∼ π(·|st), and transition probabilities
st+1 ∼ P(·|st, at) and initial distribution s0 ∼ p(s0). A
Partially Observable Markov Decision Process (POMDP) is
further coupled with an observation model O(·|st), which is
generally hidden from the agent. At each time step, the agent
only observes ot ∼ O(·|st) sampled from the observation
model. Then, the agent takes an action based on ot, following
its policy π(·|ot), and subsequently receives a reward from
the environment r(st, at). To train a policy robust to various
observation models, domain randomization is often applied.
For example, by adding noise to the state st, the trained
agent’s policy can handle observations ot = st + ϵ, where ϵ
can be any noise distribution.

We train the teacher with a generic actor-critic method.
During training, the teacher interacts with the environment,
generates samples, and stores them in a replay buffer [31]. In
standard teacher-student frameworks, the teacher’s collected
samples are used solely for training the teacher policy πt

and then discarded. In contrast, our L2T framework co-trains
the student with the teacher, reusing the teacher’s samples
across all iterations. Fig. 2 illustrates our learning framework,
and Algorithm 1 presents the pseudo-code. Specifically,
as the teacher interacts with the environment, we record
samples (s, a, r, s′), where s′ denotes the next observation,
the corresponding noisy observations o generated by domain
randomization, and o′, the next observation. In other words,
we store (s, o, a, r, s′, o′) as training data in the replay buffer.
The student updates its policy at each iteration by sampling
mini-batches from the replay buffer, but its policy relies
solely on the collected noisy data. This joint training proce-
dure greatly improves sample efficiency as both agents learn
together, without the need for a separate student training
stage as that used in the traditional set-up.

Another key challenge in the teacher-student framework is
the discrepancy between the teacher’s and the student’s ob-
servation spaces. Traditional teacher-student learning meth-
ods fall short because the teacher does not account for the
limitations of the student’s observations, leading to subop-
timal guidance [10]. To bridge this gap, we introduce a
sample-mixing mechanism in which the student collects its
own samples directly from the environment. These student-
generated samples—including actions and the resulting ob-
servations—are incorporated into the replay buffer as if they
were produced by the teacher. This injection of OOD data
helps reduce the imitation gap between the two agents.

To systematically blend teacher and student experiences,
we define a mixture coefficient αmix. At each time step,
the action a is determined by a probabilistic mixture of the



teacher’s policy πt and the student’s policy πs. Specifically,
the action selection is defined as follows:

a =

{
sample πs(· | o), with probability αmix,

sample πt(· | s), with probability 1− αmix.
(1)

Additionally, αmix is scheduled linearly from 0 to a prede-
fined constant over the course of training, which is 0.2 in
our implementation. This formulation ensures that, initially,
the teacher’s guidance dominates the action selection, but
as training progresses, the student’s policy increasingly in-
fluences the learning. The scheduling of αmix helps balance
the contributions of both policies and guarantees the stability
of the training process. By combining these strategies, our
framework leverages both the teacher’s guidance and the
student’s explorative capabilities to achieve more robust
learning outcomes.

We implement a variant of our framework, L2T-RL. We
apply policy gradient methods to update the teacher policy
πt. At each iteration k, the critic is updated by estimating the
value functions: V π(s) := Eπ [

∑∞
t=0 γ

t r(st, at) | s0 = s] ,
Qπ(s, a) := Eπ [

∑∞
t=0 γ

t r(st, at) | s0 = s, a0 = a] , where
V π(s) is the value function, and Qπ(s, a) is the discounted
action-value function. For brevity, we will only use the
subscript t to denote the teacher from now on and use
subscript s to denote the student. Subsequently, the teacher’s
policy is updated via a Policy Mirror Descent [32] step with
a step size β:

min
pt

−β⟨Qπt(s, ·), pt(·|s)⟩+ KL(πt∥pt) ∀s ∈ S, (2)

where the optimal pt represents the teacher policy in the
next iteration. Any policy improvement scheme can be fit
into the L2T framework. This formulation encompasses a
range of policy gradient methods [32], such as Proximal
Policy Optimization (PPO) [33] and Soft Actor-Critic (SAC)
[34]. In our experiments on the Digit robot, we employ a
PPO-style update. However, our framework can be easily
extended to various learning methods, including imitation
learning methods, or Inverse Reinforcement Learning (IRL)
methods such as in [20].

For the student policy, we consider two choices for loss
functions. First, we can minimize an imitation loss between
the teacher’s and the student’s policies:

min
ps

LIL = Es, o∼D ∥ps(·|o)− πt(·|s)∥2 , (3)

where D denotes the replay buffer and the optimal ps rep-
resents the student policy in the next iteration. Alternatively,
one may minimize the KL divergence between the two:

min
ps

LKL = Es,∼D KL (ps(·|o) ∥ πt(·|s)) , (4)

or any statistical distance metric that fits the action space.
Besides the imitation loss, the student can be updated

using an asymmetric learning approach [13] that leverages
the teacher’s critic, i.e., the value functions:

min
ps

LAsym = −β⟨Qπt(s, ·), ps(·|o)⟩+ KL(ps∥πt). (5)

We denote the general loss function for student agents as Ls.
In our application on the Digit robot, we observed that using
the L2 imitation loss yields the best performance, while the
addition of LAsym does not affect the overall performance
by a large margin. We conjecture that the L2 loss allows the
student policy to have a slightly higher exploration capability
as we observe that LAsym + L2 will reach a training plateau
that is inferior in performance than using L2 alone.

Algorithm 1 Learn to Teach - RL (L2T-RL)

1: Input: initial teacher policy π0
t , student policy π0

s , and
step size sequences {βk

t } and {βk
s }.

2: for k = 0 to K do
3: Sample a mini-batch Dk from replay buffer D.
4: Update the teacher critic by estimating:

Qπk+1
t (s, a), V πk+1

t (s).

5: Update the teacher policy:

πk+1
t = argmin

pt

−βk
t ⟨Qπk

t (s, ·), pt(·|s)⟩+ KL(πk
t ∥pt).

6: Update the student policy:

πk+1
s = argmin

πs

Ls(π
k
s ).

7: Roll out to collect new samples D′ according to the
scheduling in Eq. 1.

8: Update the replay buffer: D ← D ∪D′.
9: end for

IV. ENVIRONMENT DESIGN

The Digit robot is a bipedal walking robot with 30 degrees
of freedom, which includes 20 actuated joints with 4 per arm
and 6 per leg. All joints are revolute joints except for the shin
and heel joints, which are spring-based. Notably, the Digit
robot features three closed kinematic chains per leg. Two
of these chains involve motors controlling the foot, assisted
by additional rods, while the third chain is responsible for
controlling the heel via a rod extending from the hip. This
leg design makes it a significantly challenging task for RL
algorithms due to the high-dimensional action space and the
complex dynamics of the robot.

We highlight a significant portion of our work is to
reconstruct a faithful Universal Scene Description (USD)
model of the robot in IsaacLab [9], although this is not
claimed as an algorithmic contribution. As a result, we build
a velocity-tracking RL task with accurate dynamics w.r.t the
robot hardware, facilitating the sim2real transfer.

A. Observation space

The observation space (see table I) is constructed using
data provided by the robot’s sensors, including base linear
velocity, base angular velocity, joint positions, and joint
velocities. Additionally, we include the commanded velocity
that the robot will receive from an external controller during
execution and the computed projected gravity and gait phase



based on the IMU data and the robot execution time. Finally,
the actions in a previous time step are also incorporated into
the observation space, which allows us to learn a history-
dependent policy using recurrent neural nets. We model
measurement noise as ot = st+αϵ where α is the scale, and ϵ
is either Gaussian or uniform noise. We add this noise to the
student’s observation space to mimic the hardware sensors
while keeping the teacher’s observation noise-free, except for
the ones that incorporate the student’s observations in order
to alleviate the imitation gap, which is considered a common
practice. Additionally, privileged information (lower half of
Table I) is provided for the teacher for easier training.

TABLE I: Observation Terms for Teacher and Student
Agents

Observation Terms Dim Noise Student πs Teacher πt

Clock 2 ✓ ✓
Base lin. vel. 3 ✓ ✓ ✓
Base ang. vel. 3 ✓ ✓ ✓

Projected gravity 3 ✓ ✓ ✓
Velocity command 3 ✓ ✓

Joint pos. 30 ✓ ✓ ✓
Joint vel. 30 ✓ ✓ ✓

Last action 20 ✓ ✓
Base lin. vel. 3 ✓
Base ang. vel. 3 ✓
Joint position 48 ✓
Joint velocity 48 ✓
Root state (w) 7 ✓

Base lin. vel. (w) 3 ✓
Base ang. vel. (w) 3 ✓

Base pos. (w) 3 ✓
Base quant. (w) 4 ✓

Env params 316 ✓
Height scan 187 ✓

B. Action space

The action space is designed as the target full-body
joint positions qtarget, which a Proportional Derivative (PD)
controller will aim to track during execution. At a frequency
of 50 Hz, the policy predicts the current targeted joint based
on the current observation, and then at a higher frequency (1
kHz), the PD controller computes the torque τ as inputs to
the motors to control the robot’s joints. The target velocity
is set to zero, which is commonly employed in legged robot
research. The PD gains are determined through empirical
tuning to ensure stable joint control. We use a standard PD
control law for computing the torque, i.e, τ = Kp(qtarget −
q) + Kd(q̇target − q̇), where q represents the measured joint
positions and q̇ represents the measured joint velocities.

C. Reward functions

Our reward function design is summarized in Table II.
We adopt some of the existing reward functions in Isaa-
cLab across other velocity command tasks for bipeds and
quadrupeds, including termination penalty, action rate, joint
deviation, etc. In addition, we design specific reward func-
tions for training the Digit robot, for which we highlight two
of them. For implementation details, please refer to our code.

Track Foot Height: We reward the agent for following
a desired foot height trajectory, which is precomputed as a

TABLE II: Reward Functions and Their Weights

Reward Weight Reward Weight
Termination penalty -200.0 Foot contact 2.0

Being alive 0.01 Track foot height 0.5
Action rate -0.015 Foot clearance 0.5

DOF velocity -5e-4 Track lin vel XY 0.5
Undesired contacts -1.0 Track ang vel Z 1.0

Flat orientation -10.0 Lin vel XY -2.0
Feet air time 0.25 Ang vel Z -0.1
Feet sliding -1.0 DOF torques -1.0e-5

DOF pos limits -0.5 DOF acc -2.5e-7
Joint deviation hip -5.0 Feet air time 0.125

Joint deviation arms -0.3 Joint deviation toes -0.1

quintic polynomial.

rfoot−track = exp{−∥hfoot traj − hfoot traj target∥2}, (6)

hfoot traj is the actual foot height and hfoot traj target is the
target foot height. We adjust the desired foot height based
on the current CoM position to adapt to uneven terrains.
Specifically, instead of tracking the absolute height of the
foot, we track the relative distance of the foot and the CoM
position to compensate for the terrain height, which is hard
to obtain at run time. This reward seems to be the most
important reward term, without which we are unable to train
an agent robust to challenging terrains.

Foot Contact Matching:

rcontact =

{
c1, sign(ϕ(t)) = sign(FGRF > 0)

−c2, otherwise.
(7)

where ϕ(t) = sin(2πt/h), h = 0.68 is the gait cycle
duration, c1, c2 ∈ R+ are constants. We reward the agent
when the foot contact matches the desired gait cycle. For
example, if ϕ(t) > 0 (indicating the foot should be in contact
with the ground) and FGRF > 0 (indicating the foot is actually
in contact), we assign a positive reward c1. Otherwise, a
penalty −c2 is applied.

TABLE III: Event Terms for Domain Randomization

Name Name
Rand. friction coeff Add base mass
Rand. gravity Add external force
Rand. base location Push robot
Rand. robot joints

D. Domain randomization and curriculum

We dynamically change the observation space and perturb
the physical dynamics of the environment in the hope of
capturing the randomness and variation of the real world.
We list all the domain randomization schemes used in the
training in Table. III. In practice, we find that randomizing
friction coefficients and adding external pushes can greatly
improve the robustness of the trained policy.

Additionally, we adopt the curriculum training setup im-
plemented by IsaacLab. We utilize the existing terrain map,
which includes seven different terrains: flat ground, slopes,
stepping stones, and pyramid stairs up and down.



0 1 2 3 4 5 6
Samples 1e8

0

2

4

6
Te

rr
ai

n 
Pr

og
re

ss
io

n 5.72 5.43

(a)

L2T
TSL Student
TSL Teacher
PPO MLP
PPO Recurrent
TSL student start

CoMxy cmdxy 2 CoMyaw cmdyaw 2
Tracking Metric

0.0

0.5

1.0

1.5

Tr
ac

ki
ng

 E
rr

or

(b)

L2T
TSL Student
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V. COMPUTATIONAL RESULTS

A. Rough terrain difficulty progression

First, we show the progression of terrain difficulty (cur-
riculum progression) throughout training, representing the
overall task completion, i.e., the level of terrain difficulty
the agent can walk over with the CoM velocity maintained
within a specific range from the velocity command. This
metric is calculated as the average difficulty level across
the 6 terrain setups mentioned earlier. In essence, faster
learning corresponds to a steeper curve in terrain difficulty
progression. Fig. 3(a) illustrates the terrain progression dur-
ing training. The purple curve illustrates the training curve
of L2T, reaching a maximum of 5.72 level of difficulty.
Compared to a two-stage traditional teacher-student learning
(TSL) paradigm, which is represented by two curves: the
teal curve represents the TSL teacher agent, and the blue
curve represents the TSL student agent. Notice that in TSL,
the student agent can only be trained after the teacher. The
TSL teacher has an MLP-based policy, while the student
is LSTM-based, sharing the same network architecture and
hyperparameter as in L2T. It is noteworthy to mention that
we can only obtain a reasonable training result by using
data aggregation (DAGGER) [35], i.e., when training the
student, periodically use the teacher to predict the action.
Additionally, we include two RL methods for learning with
student observation space using vanilla PPO, and recur-
rent PPO. It turns out that these two baselines perform
significantly inferior. Since IsaacLab cannot be evaluated
during training, the L2T curves represent the joint training
progression between the L2T teacher and the student. One
might think that the true performance of L2T students can
be much worse than what the curve shows. However, as
we observe that the L2T curve eventually goes higher than
the TSL teacher, we argue that this curve is rather the
performance lower bound for the L2T student.

B. Flat terrain velocity tracking error

Next, we investigate the agent velocity tracking perfor-
mance. Unfortunately velocity tracking is not a valid metric
on general terrain due to the variability of the terrain dif-
ficulty. For example, the same agent might exhibit signif-
icantly different velocity tracking abilities either on slopes
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Fig. 4: Left: in conventional TSL, the teacher supervises
student. Right: L2T co-trains both agents together, where
the student provides feedback to the teacher through mixed
samples.
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Fig. 5: (a) Ablation study on the mixture coefficient αmix. (b)
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with x direction command.

or stairs. To make a fair comparison, we re-train separate
agents and collect the results on flat terrain, as it presents
the most straightforward task for locomotion. We compare
the velocity tracking between the CoM velocity and the
commanded velocity on the xy plane and the yaw angle.
The results are plotted in Fig. 3(b). The L2T agent and the
student from the traditional teacher-student learning (TSL)
paradigm are comparable, with L2T better at yaw tracking
and worse at tracking in the xy plane. This shows that
on the flat surface, L2T performs similarly to traditional
teacher-student training paradigms but saves 50% of the total
samples. It is noteworthy to mention that we use the same
network architecture and hyperparameters for both training
frameworks. In Fig. 5(b)-(c), we also plot the recorded robot
CoM sagittal velocity versus the commanded velocity and
the robot’s CoM trajectory in the horizontal plane.



C. Mitigation of policy divergence

We observe that mixing samples can alleviate the imi-
tation gap, which is caused by the teacher having access
to privileged information that is unavailable to the student.
This privileged information is marginalized during imitation
learning for the student agent, resulting in the student agent
requiring more exploration and acting more conservatively.
For example, since the student does not know if it is at the
edge of the stairs, they will act less confidently when walking
downstairs. However, a trained expert teacher agent might act
more confidently as it knows the structure of the stairs due
to the privileged information of a local depth map. This is
generally true due to the existence of observational noise. In
the presence of the imitation gap, the teacher agent might
generate desirable demonstrations only for the teacher itself,
but not necessarily desirable ones for the student agent [10].

In traditional TSL paradigms, this problem can be partially
addressed by DAGGER or asymmetric learning. In L2T,
all these techniques are naturally blended together as a
single-stage co-training process, providing an efficient and
elegant solution to address the imitation gap and policy
divergence issue. We show that in Fig. 4, the walking gait
of the student trained by DAGGER is significantly different
from the teacher policy, while L2T can faithfully imitate the
teacher. Notice the shape of the toe pad from the L2T student,
which slightly tilts up from the horizontal plane, accurately
mimicking the teacher’s toe. In contrast, the DAGGER-
trained student agent has a flat-ground walking gait, with
the toe pad parallel to the horizontal plane.

D. Ablation study on the mixture coefficient

We conduct an ablation study on the critical components
to further explore key design choices within our algorithm
framework. Fig. 5(a) demonstrates the importance of the
mixture coefficient αmix in the training process. We observe
that while the algorithm becomes unstable with a large αmix,
which is caused by letting a highly suboptimal student agent
inject too many samples, an appropriate chosen αmix can
benefit the overall training process. We hypothesize that
the discrepancies between the student and teacher promote
exploration within the action space, enabling both agents to
learn from a broader region around the teacher’s actions.

VI. HARDWARE EXPERIMENTS

A. Locomotion over challenging terrains

We report the results of deploying our policy in various
outdoor environments, as illustrated in Fig. 1 and the supple-
mentary video. These experiments were conducted around a
university campus, including pedestrian walkways, wooden
bridges, grass-covered hills, beach volleyball courts, and
gravel paths. Extensive outdoor testing highlights the policy’s
capability to maintain a reliable and natural walking gait and
withstand diverse environmental conditions, such as walking
on wet surfaces and operating with strong wind.

Surprisingly, the policy shows generalization ability to
scenarios not included in the training. For example, on grass
hills, due to rain, the grass and the soil underneath exhibit

a certain level of deformation upon impact, which increases
the difficulty of state estimation and thus further increases
the observation noise. Moreover, the policy can walk on the
beach volleyball court with sandy terrain, as shown in Fig. 1.
Despite the robot not being calibrated or trained for such
conditions, the policy adapts to the environmental changes
without additional training. This demonstrates the robustness
and adaptability of our approach. Next, we examine the
policy’s performance on terrains with obstacles. The first
test involves a crate of gravel shown in Fig. 6(b). The
robot consistently performs stepping-in-place actions with
a stable motion. Even when the robot occasionally strikes
the crate’s edge, it recovers and resumes normal a stepping
gait. In the second test, we deploy the robot on a slippery
terrain, where we distribute poppy seeds on a whiteboard
shown in Fig. 6(c). Surprisingly, our robot does not exhibit
any perceptible shaking motions. In contrast, the company
controller provided by Agility Robotics fails to walk over.
Furthermore, the policy enables omnidirectional control of
the robot. Experiments with velocity commands demonstrate
the robot’s directional control, which is crucial for practical
deployment. Readers can find these experiments in the video.

Fig. 6: (a) we perturb the robot with a harness. (b) we test
the step-in-place motion on a crate of gravel. We let the
robot walk over (c) a slippery terrain with (left) the Agility
company controller and (right) our L2T controller. (d) rocky
terrain with slopes. (e) elevated platforms. (f) hill with gravel.

B. Perturbation experiments

We evaluate the policy’s response to external perturbations
applied during locomotion. Two scenarios are considered:
pushing the robot’s center of mass (CoM) from the front,



and back using a stick. The policy demonstrates robustness
to withstand frontal and rearward pushes while maintaining
a stable walking gait. We could not push the robot to failure
even when applying a large force. Additionally, we apply
a more substantial perturbation by using a harness to pull
the robot with an impulsive force (see Fig. 6(a)). The robot
adapts dynamically, exhibiting agile adjustments to its gait
to compensate for the external perturbations.

VII. CONCLUSION

We introduced L2T-RL, a novel single-stage learning
framework that unifies teacher and student training to ad-
dress sample inefficiency and enhance real-world perfor-
mance. Our extensive simulation and hardware experiments
demonstrate that L2T-RL achieves robust, agile, and pre-
cise locomotion while reducing sample complexity by 50%
and dramatically saving training time. These results high-
light our contributions to redefining teacher-student learning
paradigms and paving the way for practical RL-based robotic
systems.
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