
Towards Safe Locomotion Navigation in Partially Observable
Environments with Uneven Terrain

Jonas Warnke?, Abdulaziz Shamsah?, Yingke Li?, and Ye Zhao∗

Abstract— This study proposes an integrated task and mo-
tion planning method for dynamic locomotion in partially
observable environments with multi-level safety guarantees.
This layered planning framework is composed of a high-level
symbolic task planner and a low-level phase-space motion
planner. A belief abstraction at the task planning level enables
belief estimation of dynamic obstacle locations and guarantees
navigation safety with collision avoidance. The high-level task
planner, i.e., a two-level navigation planner, employs linear
temporal logic for a reactive game synthesis between the robot
and its environment while incorporating low-level safe keyframe
policies into formal task specification design. The synthesized
task planner commands a series of locomotion actions including
walking step length, step height, and heading angle changes, to
the underlying keyframe decision-maker, which further deter-
mines the robot center-of-mass apex velocity keyframe. The
low-level phase-space planner uses a reduced-order locomotion
model to generate non-periodic trajectories meeting balancing
safety criteria for straight and steering walking. These criteria
are characterized by constraints on locomotion keyframe states,
and are used to define keyframe transition policies via viability
kernels. Simulation results of a Cassie bipedal robot designed
by Agility Robotics demonstrate locomotion maneuvering in a
three-dimensional, partially observable environment consisting
of dynamic obstacles and uneven terrain.

I. INTRODUCTION

Safety scalable to high-dimensional robotic systems be-
comes imperative as legged robots maneuver over uneven
and unpredictable environments, and ought to be reasoned
about from various perspectives such as balance and collision
avoidance. In the robot mobility field, navigation safety is
conventionally studied from the collision avoidance perspec-
tive [1]–[3]. However, in the context of dynamic legged
locomotion, maintaining dynamic balancing, i.e., avoiding a
fall [4]–[6], becomes an essential safety criterion. Reasoning
about safety from both levels has been largely under-explored
in the field. As one closely-related line of research, Wieber’s
recent studies [7], [8] proposed a model predictive control
(MPC) method to address safe navigation problems for
bipedal walking robots in a crowded environment. Never-
theless, their work mainly focused on passive safety, i.e.,
the robot comes to a stop for collision avoidance. Their
MPC optimization weighs the safety criteria and lacks formal
guarantees on navigation safety. To address these issues, our
method takes one step towards using a symbolic planning
method to design active navigation decisions for safety

∗The authors are with the Laboratory for Intelligent Decision and
Autonomous Robots, Woodruff School of Mechanical Engineering, Geor-
gia Institute of Technology, Atlanta, GA 30313, USA {jwarnke,
ashamsah3, yli3225, yzhao301}@gatech.edu

?the first three authors are equally contributed.

Fig. 1: An illustration of safe locomotion navigation in a crowded environ-
ment simulation with dynamic mobile robot obstacles and uneven terrain.

guarantees, i.e., the robot steers its walking direction to avoid
collisions besides the coming-to-a-stop strategy. Meanwhile,
we incorporate a belief abstraction approach to assure safe
navigation in a partially observable environment.

Phase-space planning (PSP) is a general planning frame-
work for non-periodic dynamic legged locomotion over
rough terrain [9], [10]. This study further generalizes the
previous PSP framework by (i) studying more complex
locomotion scenarios by incorporating navigation keyframe
states; (ii) avoiding collisions with dynamic obstacles in
partially observable 3D environments (see Fig. 1) (iii) taking
safety criteria into account for viability kernel and keyframe
policy design. Compared to other well-established locomo-
tion planning frameworks – Capture Point [4], Divergent
Component of Motion [11], Zero Moment Point [12] – our
framework has a large focus on providing safety guarantees
for simultaneously maintaining balance and avoiding colli-
sions in partially observable environments with rough terrain.

Temporal-logic-based motion planning has been widely
studied for mobile robot navigation in partially observable
domains through exploration [13], re-synthesis [14] when
encountering unexpected obstacles, and receding-horizon
planning [15]. These approaches are better suited for guar-
anteeing successful navigation and collision avoidance in en-
vironments with static obstacles and simple robot dynamics.
On the contrary, our framework takes into account dynamic
obstacles that are only visible within a limited range. We
devise a variant of the approach in [16] via a combined top-
down and bottom-up strategy to design the navigation strat-
egy in a partially observable environment while guaranteeing
collision avoidance. This work generalizes our previous work
on temporal-logic-based locomotion [17]–[19].

A challenge of linear-temporal-logic-based navigation



Fig. 2: Reduced-order modeling of Cassie robot as a 3D prismatic inverted
pendulum model with all of its mass concentrated on its CoM and a
telescopic leg to comply to the varying CoM height. ∆y1 is the relative
lateral distance between lateral CoM apex position and the high-level
waypoint w, and ∆y2 is the lateral distance between the CoM lateral apex
position and the lateral foot placement.

planning is to guarantee successful execution of the com-
mands from the high-level planner in the presence of com-
plex low-level robot dynamics. Our study explicitly addresses
this challenge by encoding low-level physics-consistent
safety criteria into the high-level task specification design.
This strategy ensures that, on top of collision avoidance, the
task planner commands actions that can be safely executed
by the low-level planner. The safety properties are expressed
as viability kernel via viability theory [20], [21]. This safety-
coherent hierarchy is scalable to more complex robot systems
and environments through appropriate specifications.

The main contributions of this study are fourfold: (i) de-
sign two-level safety criteria for locomotion motion planning,
which guarantees the simultaneous dynamic balancing and
navigation safety as well as waypoint tracking. (ii) devise
a keyframe transition map based on low-level motion planer
constraints and design a keyframe policy for locomotion safe
navigation. (iii) employ a belief abstraction method for a
reactive navigation game to expand navigation choices in a
partially observable environment. (iv) design a hierarchical
planning structure that integrates safety for the high-level
task planner and low-level motion planner cohesively.

II. SAFE LOCOMOTION PLANNING

This section will introduce a locomotion planner based on
a reduced-order model and then propose safety locomotion
criteria for different walking scenarios. The reduced-order
model refers to the dynamics of the prismatic inverted
pendulum model [10] in our study, and is used to derive
an analytical solution for the robot phase-space trajectories.

A. Reduced-order Locomotion Planning

This subsection first introduces mathematical notations of
our reduced-order model. As shown in Fig. 2, the center-
of-mass (CoM) position p = (x, y, z)T is composed of
the sagittal, lateral, and vertical positions. We denote the

Navigation Planner

desired transition 
in navigation game

Action Planner

Keyframe Decision-maker

action a

Motion Planner

next state sn

navigation 
specification

locomotion 
specification

environment
event

state sc

High-level
Task Planner

offline synthesis

Low-level 
Phase-space

Planner

online execution

Fig. 3: Block diagram of the proposed locomotion planning framework. The
task planner employs a linear temporal logic approach to synthesize actions.
At the low-level, the keyframe decision-maker generates the keyframe states
sent to the motion planner. Locomotion specifications from the low-level
will be incorporated into the task planner. Details of the state and action is
introduced in Definition 2.1. More discussions will be in Section V.

apex position as papex = (xapex, yapex, zapex)T , the foot
placement as pfoot = (xfoot, yfoot, zfoot)

T , and hapex is the
relative apex CoM height with respect to the stance foot
height. vapex denotes the CoM velocity at papex. ∆y1 is the
relative lateral distance between lateral apex position and the
high-level waypoint w. ∆y2 := yapex−yfoot is defined to be
the lateral distance between the CoM lateral apex position
and the lateral foot placement. This parameter will be used
to determine the allowable steering angle in Section II-B.

Phase space planning is a keyframe-based non-periodic
planning method for dynamic locomotion [10]. Our study
generalizes the keyframe definition in our previous work by
introducing diverse navigation actions in 3D environments.

Definition 2.1 (Locomotion Keyframe State): A keyframe
state of our reduced-order model is defined as k =
(d,∆θ,∆zfoot, ist, cstop, vapex, zapex) ∈ K, where
• d := xapex,n − xapex,c is the walking step length 1;
• ∆θ := θvapex,n

−θvapex,c
is the heading angle change at

two consecutive CoM apex states;
• ∆zfoot := zfoot,n − zfoot,c is the height change for

successive foot placements;
• ist is the desired stance foot index;
• cstop is a boolean informing the motion planner to stop

(stop) at the next keyframe;
• vapex is the CoM sagittal apex velocity;
• zapex is the apex CoM height with respect to the

absolute zero height reference, selected as the level
ground height in this study.

The parameters d, ∆θ, ∆zfoot, ist, and cstop are determined
by the navigation policy that will be designed in the task
planning section. These six parameters are defined as the
action, i.e., a = (d,∆θ,∆zfoot, ist, cstop) ∈ A. We represent
the parameters d, ∆θ, and ∆zfoot in the cartesian space with

1while in straight walking d represents the step length, the step length
during steering walking is adjusted to reach the next waypoint on the new
local coordinate.



Fig. 4: Phase-space safety region for steering walking: (a) shows three consecutive keyframes with a heading angle change (∆θ) between the current
keyframe and the next keyframe. The CoM sagittal-lateral geometric trajectory is represented by the solid thick black line. The direction change introduces
a new local coordinate shown in red dashed line. Subfigures (b) and (c) show the sagittal and lateral phase-space plots respectively, both satisfying the
safety criteria proposed in Proposition 2.1. The subscripts p, c and n denote the previous, current, and next walking steps, respectively.

the high-level waypoints w. On the other hand, the state is
s = (vapex, zapex) ∈ S. The state and action will be used to
define a keyframe transition map in Section III.

When the CoM motion is constrained within a piece-wise
linear surface parameterized by h = k(x − xfoot) + hapex,
where h denotes the CoM height from the stance foot,
the reduced-order model becomes linear and an analytical
solution exists:

ṗcom = ±
√
ω2((pcom − pfoot)2 − (p0 − pfoot)2) + ṗ2

0 (1)

where the asymptote slope ω =
√
g/hapex. Note that

Eq. (1) holds for both sagittal and lateral directions, i.e.,
pcom ∈ {x, y}. The initial condition (p0, ṗ0) is chosen as
the CoM apex state. Detailed derivations are elaborated in
the supplementary document linked here.

B. Safe Locomotion Criteria

Avoiding a fall is an essential capability of dynamic
legged locomotion. Numerous studies have been proposed to
quantify locomotion safety and design recovery controllers
[5], [22]. Before proposing safety locomotion criteria, let us
first define locomotion balancing safety.

Definition 2.2 (Balancing Safety): The balancing safety
region Rs for one locomotion step is defined as the set of
viable keyframe states k ∈ K such that the robot maintains
its balance, i.e., avoids a fall.
Note that, the keyframe state k includes the action a so the
control is implicit in the balancing safety region.

The balancing safety region Rs requires satisfying multi-
ple safety criteria that will be proposed in Propositions 2.1-
2.2. We will delve into safety criteria for both straight and
steering walking. As a general principle of balancing safety,
the sagittal CoM position should be able to cross the sagittal
apex with a positive CoM velocity while the lateral CoM
velocity should be able to reach the zero lateral velocity
threshold at the next apex state. Ruling out the fall situations
provides us upper and lower bounds of the balancing safety
region. The safety criteria are proposed as follows.

Proposition 2.1: For steering walking, the current sagittal
CoM apex velocity vapex,c in the original local coordinate is

bounded by

∆y2,c · ω · tan ∆θ ≤ vapex,c ≤
∆y2,c · ω
tan ∆θ

(2)

A fall will occur when vapex,c is out of this safety range
such that either the lateral CoM velocity cannot reach zero
at the next apex state or the sagittal CoM can not climb over
the next sagittal CoM apex. Fig. 4 shows a steering walking
trajectory and phase-space plot that satisfy Proposition 2.1.
Namely, the CoM in the sagittal and lateral phase-space
should not cross the asymptote line of the shaded safety
region as seen in Fig. 4. This criterion is specific to steering
walking, as the heading change (∆θ) introduces a new local
frame, which yields the current state sc to no longer be
an apex state in the new coordinate. As such, it has non-
apex sagittal and lateral components, i.e., vy,c 6= 0, and
xapex,c 6= xfoot,c. Next, we study the constraints between
apex velocities of two consecutive walking steps and propose
the following proposition and corollaries.

Proposition 2.2: For straight walking, given d and ω, the
apex velocity for two consecutive walking steps ought to
satisfy the following velocity constraint:

− ω2d2 ≤ v2
apex,n − v2

apex,c ≤ ω2d2 (3)

where d2 = (xapex,n−xapex,c)(xapex,c+xapex,n−2xfoot,c).
Proof: First, the sagittal switching position can be

obtained from the analytical solution in Eq. (1):

xswitch =
1

2
(

C

xfoot,n − xfoot,c
+ (xfoot,c + xfoot,n)) (4)

where C = (xapex,c − xfoot,c)
2 − (xapex,n − xfoot,n)2 +

(ẋ2
apex,n− ẋ2

apex,c)/ω
2. This walking step switching position

is required to stay between the two consecutive CoM apex
positions, i.e.,

xapex,c ≤ xswitch ≤ xapex,n (5)

which introduces the sagittal apex velocity constraints for
two consecutive keyframes as follows.

ω2(xapex,n − xapex,c)(xapex,c + xapex,n − 2xfoot,n)

≤ ẋ2
apex,n − ẋ2

apex,c ≤
ω2(xapex,n − xapex,c)(xapex,c + xapex,n − 2xfoot,c)

(6)

https://www.dropbox.com/s/s353qvw6qp7peij/CDC_safe_locomotion_suppl_material.pdf?dl=0


Given this bounded difference between two consecutive
CoM apex velocity squares, the corresponding safe criterion
for straight walking can be expressed as Eq. (3).

Corollary 1: For steering walking in Proposition 2.1,
given d, ∆θ, ∆y2,c and ω, two consecutive apex velocities
ought to satisfy the following velocity constraint:

− ω2d2 ≤ v2
apex,n − (vapex,c cos ∆θ)2 ≤ ω2d2

+ (7)

where d2
+ = d2 + 2∆y2,cd sin ∆θ.

Corollary 2: For steering walking in Proposition 2.1, sim-
ilarly, given d, ∆θ, ∆y2,c, and ω, two consecutive apex
velocities ought to satisfy the following velocity constraints,

− ω2d2 ≤ v2
apex,n − (vapex,c cos ∆θ)2 ≤ ω2d2

− (8)

where d2
− = d2 − 2∆y2,cd sin ∆θ. Note that, parameters

vapex,n, d, and ∆θ in Eqs. (3)-(8) are the keyframe states.

III. KEYFRAME DECISION-MAKING

Given the aforementioned keyframe-based safety crite-
ria for one walking step, we now focus on the keyframe
decision-making, an interface between the high-level and
low-level planners as seen in Fig. 3. Given a high-level
action, the keyframe decision-maker will choose appropriate
keyframe states for the motion planner. According to the
keyframe definition in Def. 2.1, we propose the following
non-deterministic keyframe transition map.

Definition 3.1 (Transition Map): A keyframe transition
map is non-deterministic and defined as sn = T (sc,a)
where the action a = (d,∆θ,∆zfoot, ist, cstop), the state
si = (vapex,i, zapex,i) ∈ Si, i ∈ {c, n} denotes current and
next walking step indices, respectively.
The objective of our keyframe decision-maker is: given an
action a from the task planner and the current state sc, a
transition policy will make a decision on the next state sn.

To define this keyframe transition map, we will first
investigate the viability of a keyframe transition map and
then use it to design a policy of choosing safe keyframe
states and the induced task specifications.

A. Keyframe Transition Map Viability

To achieve locomotion transition viability, the CoM tra-
jectory needs to (i) maintain balancing safety in Def. 2.2,
and (ii) accurately track the high-level waypoints w. As
illustrated in Sec. II-B, to maintain balancing safety, the
constraint for ∆y2 in Proposition 2.1 should be satisfied at
each walking step. To this end, we choose ∆y2 as a safety
indicator of the apex state s and analyze how ∆y2 varies
with respect to different keyframe transition maps. Given
the safety indicator ∆y2,c for the current step, the safety
indicator ∆y2,n for the next step is determined uniquely
by (sc, sn,a) and the locomotion dynamics in Eq. (1). As
shown in Proposition 2.1, vapex,c is directly bounded by
∆y2,c. Thus, the viability of the safety indicator represents
a precondition of this viability for the keyframe transition
map sn = T (sc,a). To quantify whether the CoM trajectory
tracks the high-level waypoints w, we use ∆y1 as a tracking

Fig. 5: An illustration of keyframe policy design from the viability mapping.
Both subfigures (a) and (b) corresponds to steering walking to the right
with the right foot in stance. (a) shows ∆y1,n for steering walking with
∆θ = 22.5◦ for two different step lengths 0.3 and 0.4 m, as a function of
both vapex and ∆y2,c. In (b), it shows ∆y1,n for steering walking with
d = 0.3 m for two different heading angle changes (∆θ), as a function of
both vapex and ∆y2,c. In this mapping, vapex,c and vapex,n are equal.
In both (a) and (b), the blue surface represents a more robust keyframe
transition policy, since it allows for a wider range of vapex and ∆y2,c that
yields ∆y1,n ∈ R∆y1 . The red dotted line represents an example of viable
∆y1,n range given vapex = 0.4 m/s in the sampled range.

measure. Namely, ∆y1 needs to be within a bounded range,
an additional viability criterion of the transition map.

Theorem 3.1: The keyframe transition map sn =
T (sc,a) is viable only if (i) the transition satisfies the
safe criteria in Propositions 2.1-2.2, (ii) the safety indicator
∆y2 and tracking indicator ∆y1 are bounded within their
respective viable ranges, i.e., ∆y2 ∈ R∆y2

and ∆y1 ∈ R∆y1
,

and (iii) ∆y1 and ∆y2 have a matching sign which alternates
between consecutive keyframes across two walking steps.

To obtain the viable keyframe transition map, we sample
different keyframe transitions that satisfy Theorem 3.1. An
example of this analysis is shown in Fig. 5. For each
given action, we sample different combinations of ∆y2,c and
vapex, and determine ∆y1,n consequently. Each point in the
3D figure represents a unique, viable keyframe transition.
We heuristically choose the viable range for ∆y1 to be
[−0.3, 0.3] m to limit the amplitude of the lateral CoM
oscillations. In Fig. 5(a), it is observed that steering walking
with a shorter step length would allow a wider range of vapex

and ∆y2,c. The same conclusion is reached when choosing
the heading change angle (∆θ) as shown in Fig. 5(b). The
analysis shown in Fig. 5 is an example of this mapping, and
other mappings with different keyframe parameter set-ups are
implemented in a similar way but not shown due to space
limit. For example, a similar mapping is designed for ∆y2,
to maintain ∆y2,n to be within the viable range [−0.2, 0.2]
m given the Cassie leg configuration.

B. Viability-Kernel-Guided Keyframe Policy

As illustrated in the viable keyframe transition map in
Sec.III-A, given an action a and the current state sc, there



are multiple choices for the next state sn since the keyframe
transition map is non-deterministic. In this subsection, we
will design a keyframe policy to choose a deterministic next
state sn based on sc and a.

Definition 3.2 (Locomotion Keyframe Policy): The
keyframe policy is a deterministic keyframe transition map
sn = P(sc, a) that satisfies the viable keyframe transition
map sn = T (sc, a) while obeying the following set of
locomotion properties under different walking scenarios.
• For straight, obstacle-free walking on level ground, (i)

the apex velocity is continuous within the allowable
small, medium, and large value ranges.2 (ii) The step
length (d) is fixed to 0.4 m.3 Given those specifications,
∆y1 and ∆y2 are guaranteed to be within their respec-
tive viable ranges.

• For straight walking on flat ground with an obstacle
appearing in the front, the robot will either come to a
stop or switch to the steering walking introduced next.

• For steering walking, to guarantee that ∆y1,n and ∆y2,n

are within their viable ranges and vapex is within the
safety region (Proposition 2.1), our keyframe policy will
require (i) a small vapex value, (ii) ∆θ = ±22.5◦, (iii)
a large step length d when steering in the direction
opposite to the foot stance, and (iv) a small d when
steering in the direction matching the foot stance.4

The properties above imply high-level navigation con-
straints induced by low-level locomotion dynamics, since the
steering ability is constrained by the conditions of ∆y1 ∈
R∆y1

and ∆y2 ∈ R∆y2
. For example, steering walking

with a large vapex, may violate Proposition 2.1 or results
in ∆y2,n /∈ R∆y2

. Similarly, a small step length d and
a large vapex, may result in ∆y1,n having the same sign
as ∆y1,c, thus accurate tracking of high-level waypoints is
not achieved. These properties will be translated into task
specifications and embedded in the high-level planner to rule
out undesirable actions in the next section.

IV. TASK PLANNING VIA BELIEF ABSTRACTION

This section will employ the locomotion keyframe prop-
erties above for the high-level task specification design.
The goal of our temporal-logic-based task planner is to
achieve safe locomotion navigation in a partially observable
environment with dynamic obstacles as defined below.

Definition 4.1 (Navigation Safety): Navigation safety is
defined as dynamic maneuvering over uneven terrain without
falling while avoiding collisions with dynamic obstacles.

The task planner consists of two components: A high-
level navigation planner that plays a navigation and collision
avoidance game against the environment on a global coarse
discrete abstraction, and an action planner that plays a local

2In this study, we choose [0.1, 0.3] m/s, [0.3, 0.4] m/s, and [0.4, 0.45] m/s
as the small, medium, and large value ranges for vapex. The granularity
in vapex between two consecutive keyframes is 0.05 m/s.

3The step length value during straight walking needs to be a multiple of
0.1 m to adhere to high-level constraint (See Sec. IV-B).

4[0.2, 0.3] m, [0.3, 0.4] m, and [0.4, 0.5] m are the small, medium, and
large value ranges for the step length d.

navigation game on a fine abstraction of the local environ-
ment (i.e., one coarse cell). The action planner generates
action sets at each keyframe to achieve the desired coarse-cell
transition in the navigation game, which can take multiple
walking steps. The reason for splitting the task planner into
two layers is that the abstraction granularity required to plan
walking actions for each keyframe is too fine to synthesize
plans for large environments in a reasonable amount of time.

A. Navigation Planner Design

The navigation environment is discretized into a coarse
two-dimensional grid with a 2.7 m cell size as shown in
Fig. 7. Each time the robot enters a new cell, the navigation
planner evaluates the robot’s discrete location (lr,c ∈ Lr,c)
and heading (hr,c ∈ Hr,c) on the coarse grid, as well as
the dynamic obstacle’s location (lo ∈ Lo), and determines
a desired navigation action (na ∈ Na). The planner can
choose for the robot to stop, or to transition to any reachable
safe adjacent cell. Lr and Lo denote sets of all coarse
cells the robot and dynamic obstacle can occupy, while Hr,c

represents the four cardinal directions in which the robot can
travel on the coarse abstraction. Static obstacle locations are
encoded into the task specifications. The dynamic obstacle
moves under the following assumptions: (a) it will not
attempt to collide with the robot when the robot is standing
still, (b) it moves with a fixed speed such that the mobile
robot moves to its adjacent coarse cell after each time step,
and (c) it will eventually move out of the way to allow
the robot to pass. Assumption (c) prevents a deadlock. The
task planner guarantees that the walking robot can prevent
collisions and achieve a specified navigation goal.

B. Action Planner Design

The local environment, i.e., one coarse cell, is further
discretized into a fine abstraction of 26 × 26 cells. At
each walking step, the action planner evaluates the robot’s
discrete location (lr,f ∈ Lr,f ) and heading (hr,f ∈ Hr,f )
on the fine grid, as well as the robots current stance foot
(ist), and determines an appropriate action set a. Hr,f

contains a discrete representation of the 16 possible headings
the robot could have. The action planner is responsible
for generating a sequence of actions that guarantee that
the robot eventually transitions to the next desired coarse
cell in the navigation game while ensuring all action sets
are safe and achievable based on the current robot and
environment states. The key components of the action set
are step length (d ∈ {small,medium, large}), heading
change (∆θ ∈ ∆Θ = {left,none, right}), and step height
(∆zfoot ∈ ∆Zfoot = {zdown2, zdown1, zflat, zup1, zup2}). The
fine abstraction models the terrain height for each discrete
location, allowing the action planner to choose the correct
step height ∆zfoot for each keyframe transition. The possible
heading changes ∆Θ, correspond to {−22.5◦, 0◦, 22.5◦}, are
constrained by the minimum number of steps needed to
make a 90◦ turn and the maximum allowable heading angle
change that results in viable keyframe transitions as defined
in Theorem 3.1. We choose ∆θ = ±22.5◦ so that a 90◦



turn can be completed in four steps as can be seen in Fig.
6. Completing the turn in fewer steps is not feasible as it
would overly constrain vapex, as can be seen in Fig. 5(b).

C. Task Planner Synthesis

To formally guarantee that the goal locations are reached
infinitely often while the safety specifications are met, we use
General Reactivity of Rank 1 (GR(1)), a fragment of Linear
Temporal Logic (LTL). GR(1) allows us to design temporal
logic formulas (ϕ) with atomic propositions (AP (ϕ)) that can
either be True (ϕ ∨ ¬ϕ) or False (¬True). With negation
(¬) and disjunction (∨) one can also define the following
operators: conjunction (∧), implication (⇒), and equivalence
(⇔). There also exist temporal operators “next” (©), “until”
(U), “eventually” (�), and “always” (�). Further details of
GR(1) can be found in [23]. Our implementation uses the
SLUGS reactive synthesis tool [24] to design specifications
with Atomic Propositions (APs) and natural numbers, which
are automatically converted to ones using only APs.

A navigation game structure is proposed by including
robot actions in the tuple G := (S, sinit, TRO) with

• S = Lr,c × Lo ×Hr,c ×An is the augmented state;
• sinit = (linit

r,c , l
init
o , hinit

r,c , n
init
a ) is the initial state;

• TRO ⊆ S × S is a transition relation describing the
possible moves of the robot and the obstacle.

To synthesize the transition system TRO, we define the
rules for the possible successor state locations which will
be further expressed in the form of LTL specifications
ψ. We define the successor location of the robot based
on its current state and action succr(lr,c, hr,c, na) =
{l′r,c ∈ Lr,c|((lr,c, lo, hr,c), (l′r,c, l′o, h′r,c)) ∈ TRO}. We
define the set of possible successor robot actions at
the next step as succna

(lr,c, lo, l
′
o, hr,c, na) = {na ∈

Na|((lr,c, lo, hr,c), (l′r,c, l′o, h′r,c)) ∈ TRO}. We define the set
of successor locations of the obstacle. succo(lr,c, lo, na) =
{l′o ∈ Lo|∃l′r,c, h′r,c.((lr,c, lo, hr,c), (l′r,c, l′o, h′r,c)) ∈ TRO}.
Later we will use a belief abstraction inspired from [16] to
solve our synthesis in a partially observable environment.

The task planner models the robot and environment in-
terplay as a two-player game. The robot action is player 1
while the obstacle is player 2 that is possibly adversarial.
The synthesized game guarantees that the robot will always
win the game by solving the following reactive problem.
Reactive synthesis problem: Given a transition system TRO

and linear temporal logic specifications ψ, synthesize a win-
ning strategy for the robot such that only correct decisions
are generated in the sense that the executions satisfy ψ.

The action planner is synthesized using the same game
structure as the navigation planner, with possible states
and actions corresponding to Section IV-B. Since obstacle
avoidance is taken care of in the navigation game the obstacle
location Lo and successor function succo are not needed for
synthesis. Since reactive synthesis is used for both navigation
and action planners, the correctness of this hierarchical task
planner is guaranteed.

Fig. 6: Illustration of fine-level steering walking within one coarse cell.
Discrete actions are planned at each keyframe allowing the robot to traverse
the fine grid toward the next coarse cell. A set of locomotion keyframe
decisions are also annotated.

D. Task Planning Specifications

A set of specifications is needed to describe the possi-
ble successor locations and actions (succr, succna

, succo,
succa) in the transition system. To ensure that the vapex,n

safety criteria in Section II-B are met, we introduce a
navigation policy that limits d based on ∆θ, hr,f , and ist
in the action planner. The turning strategy ensures that the
robot always recovers to the centroid of a cell heading in a
cardinal direction (hr,f = hc ∈ {N,E, S,W}), this ensures
that the same environment transitions happen for a given
action and discrete game state. Such a navigation policy is
composed through safety specifications governing step length
sequences. Here we show an example of these specifications
governing the first step of a 90◦ turn. Similar specifications
exists for other discrete robot states.

�
(
(hr,f = hc ∧ ((ist = left ∧∆θ = right)

∨(ist = right ∧∆θ = left))⇒©(d = large)
)

(9)

�
(
(hr,f = hc ∧ ((ist = left ∧∆θ = left)

∨(ist = right ∧∆θ = right))⇒©(d = small)
)

(10)

To encode the pickup and drop off task visited infinitely
often in the navigation planner, we use two intermediate goal
tracking APs GT1 and GT2.

(�♦GT1) ∧ (�♦GT2) (11)

Collision avoidance specifications are also designed but
omitted due to space limitations.

E. Belief Space Planning in Partial Observable Environment

The navigation planner above synthesizes a reactive, safe
game strategy that is always winning in a fully observable
environment. However, it is unrealistic to assume that the
robot has full knowledge of the environment. We relax this
assumption by assigning the robot a visible range within
which the robot can accurately identify the obstacle location.
To reason about where the out-of-sight obstacle is, we devise



an abstract belief set construction method based on the work
in [16]. Using this belief abstraction, we explicitly track the
possible cell locations of the dynamic obstacle, rather than
assuming it could be in any non-visible cell. The abstraction
is designed by partitioning regions of the environment into
sets of states (Pe) and constructing a powerset of these
regions (P(Pe)). If the obstacle is in the robot’s visible
range, its belief state would be a real location in Lo. If
it is not in the visible range, then its belief state will be
a set of states in P(Pe) complementing the robot visible
region. We define a set of beliefs of obstacle locations as
Bo = Lo +P(Pe). Now we define the belief game structure
as Gbelief := (Sbelief , s

init
belief , Tbelief , vis) with

• Sbelief = Lr,c × Bo ×Hr,c ×An;
• sinit

belief = (linit
r,c , {binit

o }, hinit
r,c , n

init
a ) is the initial location

of the obstacle known a priori;
• Tbelief ⊆ Sbelief ×Sbelief are possible transitions where

((lr,c, bo, hr,c, na), (l′r,c, b
′
o, h
′
r,c, n

′
a)) ∈ Tbelief ;

• vis : Sbelief → B is a visibility function that maps the
state (lr,c, bo) to the boolean as True iff bo is a real
location in the visible range of lr,c.

The successor robot location l′r,c is still defined by
succr(lr,c, hr,c, na) since the belief of the obstacle location
doesn’t affect the robot location transitions determined by its
current action set. The possible actions at the next step still
obey succna

(lr,c, lo, l
′
o, hr,c, na) since the dynamic obstacle

only affects the possible one-step robot action if it is in
the visible range. The set of possible successor beliefs of
the obstacle location, b′o, is defined as succob = {b′o ∈
Bo|∃l′r,c, h′r,c.((lr,c, bo, hr,c), (l′r,c, b′o, h′r,c)) ∈ Tbelief} where
B′o ∈ L′o when vis(lr,c, l

′
o) = True and b′o ∈ P(Pe) when

vis(lr,c, l
′
o) = False. By correctly specifying the possible

successor location of the obstacle based on the current state,
the planner is able to reason about how the belief region will
evolve and where the obstacle can enter the visible range.

We did not need to modify succna
for the belief game

since the action planner remains unchanged. We still in-
corporate the low-level safety constraints using the same
specifications, but allow for a larger set of navigation options
than would be possible without tracking the belief of the
dynamic obstacle’s location.

V. IMPLEMENTATION

We design our coherent planning structure using a com-
bined top-down and bottom-up strategy. The workflow of
our integrated task and motion planner in Fig. 3 is: as
to the top-down strategy, the synthesized navigation and
action planners first generate feasible actions based on the
navigation and locomotion specifications defined in Sec-
tion IV-D. The keyframe decision-maker then online chooses
viable keyframe states using the keyframe policy designed
in III-B. Finally, the motion planner generates a locomotion
trajectory using the keyframe states. As to the bottom-up
strategy, properties of the low-level safe keyframe policy are
incorporated into the high-level offline task planner design.
This section evaluates the performance of (i) the high-level
task planners by synthesizing a pick-up and drop-off task

(a) With explicit belief tracking (b) Without explicit belief tracking

Fig. 7: A snapshot of the coarse-level navigation grid during a simulation
where the robot (blue circle) is going between the two goal states (green
cells), while avoiding a static obstacle (red cells) and a dynamic obstacle
(orange circle). White cells are visible while grey and black cells are
non-visible. Gray cells represent the planner’s belief of potential obstacle
locations. The closest the obstacle could be to the robot, as believed by the
planner, is depicted by the pink circle.

in a partially observable environment, and (ii) the low-
level motion planner by employing our designed keyframe
policy to choose proper keyframe states and generating safe
locomotion trajectories. The results are simulated using the
Drake toolbox [25] and shown in Fig. 8.

A. LTL Task Planning Implementation

The task planner is evaluated in an environment with
multiple static obstacles, one dynamic obstacle, and two
rooms with different ground heights separated by a set of
stairs. The environment is discretized into a 11 × 5 coarse
grid for navigation planning. For action planning, the local
environment of each coarse cell is further discretized into a
26× 26 fine grid. Our simulation shows that the robot suc-
cessfully traverses uneven terrain to complete its navigation
goals while steering away from the dynamic obstacle when
it appears in the robot’s visible range.

The belief structure enables the robot to navigate around
obstacles while still guaranteeing that the dynamic obstacle
is not in the immediate non-visible vicinity. Fig. (7a) depicts
a snapshot of a simulation where the robot must navigate
around such an obstacle to reach its goal states. A successful
strategy can be synthesized only when using belief region
abstraction. Without explicitly tracking possible non-visible
obstacle locations, the task planner believes the obstacle
could be in any non-visible gray cell when it is out of sight.
The planner is not able to synthesize a strategy that would
allow the robot to advance, because it can not guarantee that
the obstacle isn’t immediately behind the wall. Fig. (7b) de-
picts a potential collision that could occur. This comparison
underlines the significance of the belief abstraction approach.

B. Phase-space Locomotion Planner

The keyframe decision-maker in Section III-B determines
keyframe states based on the actions from the task planner.
It is observed that the proposed keyframe policy guaran-
tees safe locomotion trajectories. The navigation motion is
simulated on the Cassie bipedal robot designed by Agility
Robotics [26] in Fig. 2. Cassie’s CoM, foot placments and
the moving obstacle trajectories are illustrated in Fig. 8. The
Cassie walking scenarios include going downstairs, straight
walking, stopping, and steering walking. The trajectory
satisfies the proposed locomotion safety and the desired
navigation task, i.e., the pick and place task at designated
locations.



CoM trajectory
Dynamic obstacle trajectory
High-level waypoints
Foot placement 
Pick and place locations 

Fig. 8: 3D simulation of the Cassie robot dynamically navigating in the partially observable environment while avoiding collisions with the mobile robot.
Trajectories of Cassie CoM and the moving obstacle as well as Cassie foot placements are illustrated. It has been examined that the navigation trajectory
satisfies the proposed locomotion safety and the desired tasks.

VI. CONCLUSIONS

The proposed task and motion planning framework gener-
ated safe locomotion trajectories in a partially observable
environment with non-flat terrain. As far as the authors’
knowledge, this work takes the first step towards locomotion
task and motion planning that incorporates the low-level
dynamics into the high-level specification design. This opens
up new opportunities for formally designing complex loco-
motion behaviors reactive to versatile environmental events.

This framework has the potential to be extended to more
complex environment navigation, such as those with multiple
dynamic obstacles or obstacles that move at different speeds.
Our keyframe decision-maker chooses the keyframe policy
based on a subset of locomotion dynamics constraints. In the
future, we will investigate more rigorous keyframe policy de-
sign by exploring extensive locomotion constraints generally.

ACKNOWLEDGMENT

The authors would like to express our gratefulness to Suda
Bharadwaj and Ufuk Topcu for their discussions on belief
abstraction, and Jialin Li for his help in implementing inverse
kinematics of the Cassie robot simulation. This work was
partially funded by the NSF grant # IIS-1924978.

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[2] S. Kousik, S. Vaskov, M. Johnson-Roberson, and R. Vasudevan, “Safe
trajectory synthesis for autonomous driving in unforeseen environ-
ments,” in Dynamic Systems and Control Conference, 2017.

[3] A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, J. F. Fisac, S. Deglurkar,
A. D. Dragan, and C. J. Tomlin, “A scalable framework for real-
time multi-robot, multi-human collision avoidance,” in International
Conference on Robotics and Automation, 2019, pp. 936–943.

[4] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The international
journal of robotics research, vol. 31, no. 9, pp. 1094–1113, 2012.

[5] S. Heim and A. Spröwitz, “Beyond basins of attraction: Quantifying
robustness of natural dynamics,” IEEE Transactions on Robotics,
vol. 35, no. 4, pp. 939–952, 2019.

[6] J. Luo, Y. Su, L. Ruan, Y. Zhao, D. Kim, L. Sentis, and C. Fu,
“Robust bipedal locomotion based on a hierarchical control structure.”
Robotica, vol. 37, no. 10, pp. 1750–1767, 2019.

[7] N. Bohórquez, A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Safe
navigation strategies for a biped robot walking in a crowd,” in IEEE-
RAS International Conference on Humanoid Robots, 2016.

[8] A. Pajon and P.-B. Wiebe, “Safe 3d bipedal walking through linear
mpc with 3d capturability,” in International Conference on Robotics
and Automation. IEEE, 2019, pp. 1404–1409.

[9] Y. Zhao and L. Sentis, “A three dimensional foot placement planner
for locomotion in very rough terrains,” in IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2012, pp. 726–733.

[10] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning
and control of non-periodic bipedal locomotion with a centroidal
momentum model,” The International Journal of Robotics Research,
vol. 36, no. 11, pp. 1211–1242, 2017.

[11] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
IEEE Transactions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[12] M. Vukobratović and B. Borovac, “Zero-moment point—thirty five
years of its life,” International journal of humanoid robotics, vol. 1,
no. 01, pp. 157–173, 2004.

[13] S. Sarid, B. Xu, and H. Kress-Gazit, “Guaranteeing high-level behav-
iors while exploring partially known maps,” 07 2012.

[14] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “Iterative temporal motion planning for hybrid systems in par-
tially unknown environments,” in Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC.
Association for Computing Machinery, 2013, p. 353–362.

[15] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in ACM International Con-
ference on Hybrid Systems: Computation and Control, 2010.

[16] S. Bharadwaj, R. Dimitrova, and U. Topcu, “Synthesis of surveillance
strategies via belief abstraction,” in IEEE Conference on Decision and
Control. IEEE, 2018, pp. 4159–4166.

[17] Y. Zhao, U. Topcu, and L. Sentis, “High-level planner synthesis
for whole-body locomotion in unstructured environments,” in IEEE
Conference on Decision and Control, 2016, pp. 6557–6564.

[18] Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task
and motion planning for robust whole-body dynamic locomotion in
constrained environments,” arXiv preprint arXiv:1811.04333, 2018.

[19] S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, “Temporal
logic guided locomotion planning and control in cluttered environ-
ments,” in American Control Conference. IEEE, 2020.

[20] J.-P. Aubin, Viability theory. Springer Science & Business Media,
2009.

[21] P.-B. Wieber, “Viability and predictive control for safe locomotion,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 1103–1108.

[22] B. Stephens, “Humanoid push recovery,” in IEEE-RAS International
Conference on Humanoid Robots, 2007, pp. 589–595.

[23] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in Verification, Model Checking, and Abstract Interpretation.
Springer, 2006, pp. 364–380.

[24] V. R. R. Ehlers, “Slugs: Extensible gr(1) synthesis,” Springer, pp. 333–
–339, 2016.

[25] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[26] A. Robotics, “Cassie simulators.” [Online]. Available: http://www.
agilityrobotics.com/sims/,2018

https://drake.mit.edu
http://www.agilityrobotics.com/sims/, 2018
http://www.agilityrobotics.com/sims/, 2018

	Introduction
	Safe Locomotion Planning
	Reduced-order Locomotion Planning
	Safe Locomotion Criteria

	Keyframe decision-making
	Keyframe Transition Map Viability
	Viability-Kernel-Guided Keyframe Policy

	Task Planning via Belief Abstraction
	Navigation Planner Design
	Action Planner Design
	Task Planner Synthesis
	Task Planning Specifications
	Belief Space Planning in Partial Observable Environment

	Implementation
	LTL Task Planning Implementation
	Phase-space Locomotion Planner

	Conclusions
	References

