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SUMMARY

Bipedal robots are becoming more capable as basic hardware and control challenges are

being overcome, however reasoning about safety at the task and motion planning levels has

been largely underexplored in the �eld. My work makes key steps towards guaranteeing

safe locomotion in cluttered environments in the presence of humans or other dynamic ob-

stacles by designing a hierarchical task planning framework that incorporates multi-level

safety guarantees. This layered planning framework is composed of a coarse high-level

symbolic navigation planner and a lower-level local action planner. A belief abstraction

at the global navigation planning level enables belief estimation of non-visible dynamic

obstacle states and guarantees navigation safety with collision avoidance. Both planning

layers employ linear temporal logic (LTL) for a reactive game synthesis between the robot

and its environment while incorporating lower-level safe locomotion keyframe policies into

formal task speci�cation design. The synthesized task planner commands a series of loco-

motion actions, including walking step length, step height, and heading angle changes, to

a motion planner which generates a center of mass trajectory and foot placements.

The modularity of the planning framework allows it to be applied to a diverse selec-

tion of robot agents such as bipedal robots, mobile robots, or quadcopters. Each type of

robot simply requires a modi�ed local action planner to generate actions and navigation

waypoints that take the robot's dynamic limitations into account. The high-level symbolic

navigation planner has been extended to leverage the capabilities of a team of heteroge-

neous agents to resolve unmodeled environmental con�icts that appear at runtime. When

an environment assumption that was used to synthesize a given navigation planner is vio-

lated at runtime, the navigation strategy loses its safety and task completion guarantees and

becomes invalid. Modi�cations in the navigation planner in conjunction with a coordina-

tion layer allow each agent to guarantee immediate safety and eventual task completion in

the presence of an assumption violation if another agent exists that can resolve the said vio-
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lation, e.g., a door is closed that another dexterous agent can open. This is achieved in four

steps: 1) The environment is characterized at runtime, and it is veri�ed whether the next

state in the controller automaton would satisfy or violate any safety speci�cations based on

runtime observations, 2) the immediate control action is replanned by backtracking states

in the automaton and replacing unsafe actions with known safe actions, 3) a resolution is

identi�ed and assigned to another agent, 4) involved agents replan to eliminate the viola-

tion.

The planning framework leverages the expressive nature and formal guarantees of LTL

to generate provably correct controllers for complex robotic systems. The use of belief

space planning for dynamic obstacle belief tracking and heterogeneous robot capabilities to

assist one another when environment assumptions are violated allows the planning frame-

work to reduce the conservativeness traditionally associated with using formal methods for

robot planning.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Robots are increasingly being integrated in real-life scenarios as they can provide a plethora

of physical, economic, and societal bene�ts when deployed correctly. Robots are able to

complete physical tasks that humans can't or don't want to perform, they provide busi-

nesses with novel solutions to automate tasks from logistics to maintenance, and have the

capability of operating in environments that are unsafe for humans, such as performing

search and rescue operations. Legged robots speci�cally present the most utility potential

in complex workspaces as they have the capability of operating in environments designed

for humans, outperforming wheeled robots at negotiating uneven terrain such as debris or

stairs. However, many problems still need to be solved before legged robots can be fully

integrated into our society.

Navigation in real-life workspaces presents the challenge of task and motion planning

as the environments may contain dynamic obstacles such as humans or other autonomous

robots. Dynamic obstacles may be adversarial or, more likely, may be oblivious to an au-

tonomous legged robot and will therefore not necessarily attempt to avoid collision with

such a robot. The burden of collision avoidance must lie on the robot planner to enable

such a robot to be safely inserted into existing environments. Collision avoidance with

dynamic obstacles is further complicated by static obstacles as they can occlude a robot

sensor's view of the environment, making it challenging to safely navigate around them,

this can bee seen in Figure 1.1. In the context of dynamic legged locomotion, maintaining

dynamic balancing, i.e., avoiding a fall [1, 2, 3], becomes an additional essential safety

criterion beyond avoiding collisions. Reasoning about safety from both levels has been

largely under-explored in the �eld. As one closely-related line of research, Wieber's recent

studies [4, 5] proposed a model predictive control (MPC) method to address safe naviga-
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Figure 1.1: A snapshot of the simulation environment for the proposed TAMP framework.
The walking robot is deployed to accomplish safe navigation tasks. The environment con-
tains static and dynamic obstacles, and uneven terrains.

tion problems for bipedal walking robots in a crowded environment. Nevertheless, their

work mainly focused onpassivesafety, i.e., the robot comes to a stop for collision avoid-

ance. Their MPC optimization weighs the safety criteria and lacks formal guarantees on

navigation safety.

Formal guarantees on safe task completion in complex environment has been gaining

interest in recent years [6, 7, 8], however the literature for multi-level guarantees for under-

actuated legged robots in a dynamic environments remains lacking. An intrinsic challenge

of multi-level formal guarantees for bipedal systems, is guaranteeing viable execution of

discretized high-level commands and generating continuous motion plans for the inher-

ently complex bipedal dynamics. This study explicitly addresses this challenge by encod-

ing low-level physics-consistent safety criteria into the high-level task speci�cation design.

This strategy ensures that, on top of collision avoidance, the task planner commands ac-

tions that can be safely executed by a low-level planner. The high level planning method

presented here takes one step towards using a symbolic planning method to designactive

2



Figure 1.2: Block diagram of the proposed locomotion planning framework. The task
planner employs a linear temporal logic approach to synthesize actions. At the low-level,
the keyframe decision-maker generates the keyframe states sent to the motion planner.
Locomotion speci�cations from the low-level will be incorporated into the task planner.

navigation decisions for safety guarantees, i.e., the robot steers its walking direction to

avoid collisions besides the coming-to-a-stop strategy. A proposed integrated hierarchical

framework seen in Figure 1.2 provides multi-layer formal safety and navigation guarantees

for underactuated bipedal system operating in dynamic, cluttered, and partially observable

environments. The work presented here is a continuation of prior work [9], with extensions

toward formal guarantees on low-level motion plans, non-determistic high-level transitions,

and joint-belief abstractions for tracking the belief state of multiple dynamic obstacles to

generate safe reactive plans for the 20 Degrees of Freedom (DoF) Cassie bipedal system

[10].

A major challenge of reactive synthesis methods for formal guarantees on a system

is that they require an explicit model of the environment's capabilities and are not in-

herently robust to unexpected changes in these capabilities encountered at runtime [11].

For example, an unmodeled obstacle that interferes with the operation of the system may

unexpectedly appear. General Reactivity of Rank 1 (GR(1)) is a fragment [12] of Lin-

ear Temporal Logic (LTL), a common and suitable speci�cation language for designing

correct-by-construction robot controllers due to its expressiveness and relative computa-

tional ef�ciency. GR(1) speci�cally relies on an assumption guarantee structure where the

3
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